Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Bioorg Med Chem ; 95: 117502, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37866089

RESUMO

A structure-activity relationship (SAR) study of stimulator of interferon gene (STING) inhibition was performed using a series of indol-3-yl-N-phenylcarbamic amides and indol-2-yl-N-phenylcarbamic amides. Among these analogs, compounds 10, 13, 15, 19, and 21 inhibited the phosphorylation of STING and interferon regulatory factor 3 (IRF3) to a greater extent than the reference compound, H-151. All five analogs showed stronger STING inhibition than H-151 on the 2',3'-cyclic GMP-AMP-induced expression of interferon regulatory factors (IRFs) in a STINGR232 knock-in THP-1 reporter cell line. The half-maximal inhibitory concentration of the most potent compound, 21, was 11.5 nM. The molecular docking analysis of compound 21 and STING combined with the SAR study suggested that the meta- and para-positions of the benzene ring of the phenylcarbamic amide moiety could be structurally modified by introducing halides or alkyl substituents.


Assuntos
Amidas , Nucleotidiltransferases , Amidas/farmacologia , Simulação de Acoplamento Molecular , Fosforilação , Relação Estrutura-Atividade , Nucleotidiltransferases/metabolismo
2.
Eur J Med Chem ; 258: 115583, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37393792

RESUMO

Down-regulation of Cisd2 in the liver has been implicated in the development of nonalcoholic fatty liver disease (NAFLD) and increasing the level of Cisd2 is therefore a potential therapeutic approach to this group of diseases. Herein, we describe the design, synthesis, and biological evaluation of a series of Cisd2 activators, all thiophene analogs, based on a hit obtained using two-stage screening and prepared via either the Gewald reaction or by intramolecular aldol-type condensation of an N,S-acetal. Metabolic stability studies of the resulting potent Cisd2 activators suggest that thiophenes 4q and 6 are suitable for in vivo studies. The results from studies on 4q-treated and 6-treated Cisd2hKO-het mice, which carry a heterozygous hepatocyte-specific Cisd2 knockout, confirm that (1) there is a correlation between Cisd2 levels and NAFLD and (2) these compounds have the ability to prevent, without detectable toxicity, the development and progression of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Regulação para Baixo , Hepatócitos/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Tiofenos/farmacologia , Tiofenos/uso terapêutico
3.
Mol Divers ; 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36735167

RESUMO

A series of 1-benzo[1,3]dioxol-5-yl-indoles bearing 3-N-fused heteroaryl moieties have been designed based on literature reports of the activity of indoles against various cancer cell lines, synthesized via a Pd-catalyzed C-N cross-coupling, and evaluated for their anticancer activity against prostate (LNCaP), pancreatic (MIA PaCa-2), and acute lymphoblastic leukemia (CCRF-CEM) cancer cell lines. A detailed structure-activity relationship study culminated in the identification of 3-N-benzo[1,2,5]oxadiazole 17 and 3-N-2-methylquinoline 20, whose IC50 values ranged from 328 to 644 nM against CCRF-CEM and MIA PaCa-2. Further mechanistic studies revealed that 20 caused cell cycle arrest at the S phase and induced apoptosis in CCRF-CEM cancer cells. These 1-benzo[1,3]dioxol-5-yl-3-N-fused heteroaryl indoles may serve as a template for further optimization to afford more active analogs and develop a comprehensive understanding of the structure-activity relationships of indole anticancer molecules.

4.
Bioorg Chem ; 130: 106236, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36371817

RESUMO

Cannabinoid receptor 1 (CB1) is a G protein-coupled receptor and a therapeutic target for metabolic disorders. Numerous CB1 antagonists have been developed, but their functional selectivities and bias towards G protein or ß-arrestin signaling have not been systemically characterized. In this study, we analyzed the binding affinities and downstream signaling of two series of pyrazole derivatives bearing 1-aminopiperidine (Series I) or 4-aminothiomorpholine 1,1-dioxide (Series II) moieties, as well as the well-known CB1 antagonists rimonabant and taranabant. Analyses of the results for the Series I and II derivatives showed that minor structure modifications to their functional groups and especially the incorporation of 1-aminopiperidine or 4-aminothiomorpholine 1,1-dioxide motifs can profoundly affect their bias toward G protein or ß-arrestin signaling, and that their binding affinity and functional activity can be disassociated. Docking and molecular dynamics simulations revealed that the binding modes of Series I and II antagonists differed primarily in that Series I antagonists formed an additional hydrogen bond with the receptor, whereas those in Series II formed a water bridge.


Assuntos
Antagonistas de Receptores de Canabinoides , Proteínas de Ligação ao GTP , Antagonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/metabolismo , Rimonabanto , beta-Arrestinas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Receptores de Canabinoides/metabolismo
5.
Int J Mol Sci ; 23(19)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36233031

RESUMO

CXCR4 antagonists have been claimed to reduce mortality after myocardial infarction in myocardial infarction (MI) animals, presumably due to suppressing inflammatory responses caused by myocardial ischemia-reperfusion injury, thus, subsequently facilitating tissue repair and cardiac function recovery. This study aims to determine whether a newly designed CXCR4 antagonist DBPR807 could exert better vascular-protective effects than other clinical counterparts (e.g., AMD3100) to alleviate cardiac damage further exacerbated by reperfusion. Consequently, we find that instead of traditional continuous treatment or multiple-dose treatment at different intervals of time, a single-dose treatment of DBPR807 before reperfusion in MI animals could attenuate inflammation via protecting oxidative stress damage and preserve vascular/capillary density and integrity via mobilizing endothelial progenitor cells, leading to a desirable fibrosis reduction and recovery of cardiac function, as evaluated with the LVEF (left ventricular ejection fraction) in infarcted hearts in rats and mini-pigs, respectively. Thus, it is highly suggested that CXCR4 antagonists should be given at a single high dose prior to reperfusion to provide the maximal cardiac functional improvement. Based on its favorable efficacy and safety profiles indicated in tested animals, DBPR807 has a great potential to serve as an adjunctive medicine for percutaneous coronary intervention (PCI) therapies in acute MI patients.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Intervenção Coronária Percutânea , Receptores CXCR4 , Animais , Infarto do Miocárdio/terapia , Traumatismo por Reperfusão Miocárdica/etiologia , Ratos , Receptores CXCR4/antagonistas & inibidores , Volume Sistólico , Suínos , Porco Miniatura , Função Ventricular Esquerda
6.
Proc Natl Acad Sci U S A ; 119(32): e2204779119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914128

RESUMO

Earlier work has shown that siRNA-mediated reduction of the SUPT4H or SUPT5H proteins, which interact to form the DSIF complex and facilitate transcript elongation by RNA polymerase II (RNAPII), can decrease expression of mutant gene alleles containing nucleotide repeat expansions differentially. Using luminescence and fluorescence assays, we identified chemical compounds that interfere with the SUPT4H-SUPT5H interaction and then investigated their effects on synthesis of mRNA and protein encoded by mutant alleles containing repeat expansions in the huntingtin gene (HTT), which causes the inherited neurodegenerative disorder, Huntington's Disease (HD). Here we report that such chemical interference can differentially affect expression of HTT mutant alleles, and that a prototypical chemical, 6-azauridine (6-AZA), that targets the SUPT4H-SUPT5H interaction can modify the biological response to mutant HTT gene expression. Selective and dose-dependent effects of 6-AZA on expression of HTT alleles containing nucleotide repeat expansions were seen in multiple types of cells cultured in vitro, and in a Drosophila melanogaster animal model for HD. Lowering of mutant HD protein and mitigation of the Drosophila "rough eye" phenotype associated with degeneration of photoreceptor neurons in vivo were observed. Our findings indicate that chemical interference with DSIF complex formation can decrease biochemical and phenotypic effects of nucleotide repeat expansions.


Assuntos
Azauridina , Proteína Huntingtina , Doença de Huntington , Proteínas Mutantes , Mutação , Proteínas Nucleares , Fenótipo , Proteínas Repressoras , Fatores de Elongação da Transcrição , Alelos , Animais , Azauridina/farmacologia , Células Cultivadas , Expansão das Repetições de DNA , Modelos Animais de Doenças , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Humanos , Proteína Huntingtina/biossíntese , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Medições Luminescentes , Proteínas Mutantes/biossíntese , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Nucleares/metabolismo , Células Fotorreceptoras de Invertebrados/efeitos dos fármacos , Proteínas Repressoras/metabolismo , Fatores de Elongação da Transcrição/metabolismo
7.
J Med Chem ; 65(6): 4767-4782, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35234475

RESUMO

Chemotherapy-induced neurotoxicity is a common adverse effect of cancer treatment. No medication has been shown to be effective in the prevention or treatment of chemotherapy-induced neurotoxicity. Using minoxidil as an initial template for structural modifications in conjunction with an in vitro neurite outgrowth assay, an image-based high-content screening platform, and mouse behavior models, an effective neuroprotective agent CN016 was discovered. Our results showed that CN016 could inhibit paclitaxel-induced inflammatory responses and infiltration of immune cells into sensory neurons significantly. Thus, the suppression of proinflammatory factors elucidates, in part, the mechanism of action of CN016 on alleviating paclitaxel-induced peripheral neuropathy. Based on excellent efficacy in improving behavioral functions, high safety profiles (MTD > 500 mg/kg), and a large therapeutic window (MTD/MED > 50) in mice, CN016 might have great potential to become a peripherally neuroprotective agent to prevent neurotoxicity caused by chemotherapeutics as typified by paclitaxel.


Assuntos
Antineoplásicos Fitogênicos , Antineoplásicos , Fármacos Neuroprotetores , Doenças do Sistema Nervoso Periférico , Animais , Antineoplásicos/farmacologia , Antineoplásicos Fitogênicos/toxicidade , Gânglios Espinais , Camundongos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Paclitaxel/toxicidade , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/prevenção & controle
8.
Eur J Med Chem ; 229: 114043, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34929581

RESUMO

Indoleamine 2,3-dioxygenase-1 (IDO1) is a potential target for the next generation of cancer immunotherapies. We describe the development of two series of IDO1 inhibitors incorporating a N-hydroxy-thiophene-carboximidamide core generated by knowledge-based drug design. Structural modifications to improve the cellular activity and pharmacokinetic (PK) properties of the compounds synthesized, including extension of the side chain of the N-hydroxythiophene-2-carboximidamide core, resulted in compound 27a, a potent IDO1 inhibitor which demonstrated significant (51%) in vivo target inhibition on IDO1 in a human SK-OV-3 ovarian xenograft tumor mouse model. This strategy is expected to be applicable to the discovery of additional IDO1 inhibitors for the treatment of other diseases susceptible to modulation of IDO1.


Assuntos
Amidas/química , Desenho de Fármacos , Inibidores Enzimáticos/química , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Amidas/metabolismo , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/uso terapêutico , Meia-Vida , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Relação Estrutura-Atividade , Tiofenos/química , Transplante Heterólogo
9.
Life Sci ; 278: 119574, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33961850

RESUMO

AIMS: Dipeptidyl peptidase 4 (DPP-4) is a valid molecular drug target from which its inhibitors have been developed as medicines for treating diabetes. The present study evaluated a new synthetic DPP-4-specific inhibitor of small molecule DBPR108 for pharmacology and pharmacokinetic profiles. MAIN METHODS: DBPR108 of various doses was orally administered to rats, diabetic mice, and dogs and the systemic circulating DPP-4 activities in the animals were measured to demonstrate the pharmacological mechanisms of action via DPP-4 inhibition. Upon an oral administration of DBPR108, the serum active GLP-1 and insulin levels of the rats challenged with an oral glucose ingestion were measured. Oral glucose tolerance test in diet-induced obese mice was performed to examine if DBPR108 increases the glucose tolerability in animals. KEY FINDINGS: Orally administered DBPR108 inhibited the systemic plasma DPP-4 activities in rats, dogs and diabetic mice in a dose-dependent manner. DBPR108 caused elevated serum levels of active GLP-1 and insulin in the rats. DBPR108 dose-dependently increased the glucose tolerability in diet-induced obese (DIO) mice and, furthermore, DIO mice treated with DBPR108 (0.1 mg/kg) in combination with metformin (50 or 100 mg/kg) showed a prominently strong increase in the glucose tolerability. SIGNIFICANCE: DBPR108 is a novel DPP-4-selective inhibitor of small molecule that demonstrated potent in vivo pharmacological effects and good safety profiles in animals. DBPR108 is now a drug candidate being further developed in the clinical studies as therapeutics for treating diabetes.


Assuntos
Butanos/farmacologia , Inibidores da Dipeptidil Peptidase IV/farmacologia , Hiperglicemia/tratamento farmacológico , Hipoglicemiantes/farmacologia , Nitrilas/farmacologia , Pirrolidinas/farmacologia , Administração Oral , Animais , Área Sob a Curva , Peso Corporal , Butanos/farmacocinética , Diabetes Mellitus Experimental/tratamento farmacológico , Dipeptidil Peptidase 4/química , Inibidores da Dipeptidil Peptidase IV/farmacocinética , Cães , Teste de Tolerância a Glucose , Hipoglicemiantes/farmacocinética , Insulina/metabolismo , Veias Jugulares/patologia , Masculino , Metformina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Nitrilas/farmacocinética , Pirrolidinas/farmacocinética , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie
10.
J Med Chem ; 64(11): 7312-7330, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34009981

RESUMO

The A-type Aurora kinase is upregulated in many human cancers, and it stabilizes MYC-family oncoproteins, which have long been considered an undruggable target. Here, we describe the design and synthesis of a series of pyrimidine-based derivatives able to inhibit Aurora A kinase activity and reduce levels of cMYC and MYCN. Through structure-based drug design of a small molecule that induces the DFG-out conformation of Aurora A kinase, lead compound 13 was identified, which potently (IC50 < 200 nM) inhibited the proliferation of high-MYC expressing small-cell lung cancer (SCLC) cell lines. Pharmacokinetic optimization of 13 by prodrug strategies resulted in orally bioavailable 25, which demonstrated an 8-fold higher oral AUC (F = 62.3%). Pharmacodynamic studies of 25 showed it to effectively reduce cMYC protein levels, leading to >80% tumor regression of NCI-H446 SCLC xenograft tumors in mice. These results support the potential of 25 for the treatment of MYC-amplified cancers including SCLC.


Assuntos
Aurora Quinase A/antagonistas & inibidores , Desenho de Fármacos , Inibidores de Proteínas Quinases/síntese química , Proteínas Proto-Oncogênicas c-myc/metabolismo , Pirimidinas/química , Animais , Aurora Quinase A/metabolismo , Aurora Quinase B/antagonistas & inibidores , Aurora Quinase B/metabolismo , Sítios de Ligação , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos ICR , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/metabolismo , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33753481

RESUMO

The CXC chemokine receptor type 4 (CXCR4) receptor and its ligand, CXCL12, are overexpressed in various cancers and mediate tumor progression and hypoxia-mediated resistance to cancer therapy. While CXCR4 antagonists have potential anticancer effects when combined with conventional anticancer drugs, their poor potency against CXCL12/CXCR4 downstream signaling pathways and systemic toxicity had precluded clinical application. Herein, BPRCX807, known as a safe, selective, and potent CXCR4 antagonist, has been designed and experimentally realized. In in vitro and in vivo hepatocellular carcinoma mouse models it can significantly suppress primary tumor growth, prevent distant metastasis/cell migration, reduce angiogenesis, and normalize the immunosuppressive tumor microenvironment by reducing tumor-associated macrophages (TAMs) infiltration, reprogramming TAMs toward an immunostimulatory phenotype and promoting cytotoxic T cell infiltration into tumor. Although BPRCX807 treatment alone prolongs overall survival as effectively as both marketed sorafenib and anti-PD-1, it could synergize with either of them in combination therapy to further extend life expectancy and suppress distant metastasis more significantly.


Assuntos
Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Receptores CXCR4/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Dietilnitrosamina/administração & dosagem , Dietilnitrosamina/toxicidade , Sinergismo Farmacológico , Humanos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/imunologia , Neoplasias Hepáticas Experimentais/patologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Masculino , Camundongos , Simulação de Acoplamento Molecular , Ratos , Receptores CXCR4/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
12.
RSC Adv ; 11(16): 9426-9432, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35423459

RESUMO

Herein, we report the total synthesis of landomycins Q and R as well as the aglycone core, namely anhydrolandomycinone and a related core analogue. The synthesis features an acetate-assisted arylation method for construction of the hindered B-ring in the core component and a one-pot aromatization-deiodination-denbenzylation procedure to streamline the global functional and protecting group manuipulation. Subsequent cytotoxicity and antibacterial studies revealed that the landomycin R is a potential antibacterial agent against methicillin-resistant Staphylococcus aureus.

13.
Sci Rep ; 10(1): 16771, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033310

RESUMO

Machine learning is a well-known approach for virtual screening. Recently, deep learning, a machine learning algorithm in artificial neural networks, has been applied to the advancement of precision medicine and drug discovery. In this study, we performed comparative studies between deep neural networks (DNN) and other ligand-based virtual screening (LBVS) methods to demonstrate that DNN and random forest (RF) were superior in hit prediction efficiency. By using DNN, several triple-negative breast cancer (TNBC) inhibitors were identified as potent hits from a screening of an in-house database of 165,000 compounds. In broadening the application of this method, we harnessed the predictive properties of trained model in the discovery of G protein-coupled receptor (GPCR) agonist, by which computational structure-based design of molecules could be greatly hindered by lack of structural information. Notably, a potent (~ 500 nM) mu-opioid receptor (MOR) agonist was identified as a hit from a small-size training set of 63 compounds. Our results show that DNN could be an efficient module in hit prediction and provide experimental evidence that machine learning could identify potent hits in silico from a limited training set.


Assuntos
Antineoplásicos/uso terapêutico , Aprendizado Profundo , Receptores Acoplados a Proteínas G/agonistas , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Algoritmos , Descoberta de Drogas/métodos , Humanos , Redes Neurais de Computação
14.
Int J Mol Sci ; 21(19)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992950

RESUMO

Intracerebral hemorrhage (ICH) is a major cause of stroke, with high mortality and morbidity. There is no effective pharmacological therapy for ICH. Previous studies have indicated that CXCR4 antagonists reduced microglia activation, attenuated infiltration of T cells, and improved functional recovery in ischemic stroke animals. The interaction of CXCR4 antagonists and ICH has not been characterized. The purpose of this study is to examine the neuroprotective action of a novel CXCR4 antagonist CX807 against ICH. In primary cortical neuronal and BV2 microglia co-culture, CX807 reduced glutamate-mediated neuronal loss and microglia activation. Adult rats were locally administered with collagenase VII to induce ICH. CX807 was given systemically after the ICH. Early post-treatment with CX807 improved locomotor activity in ICH rats. Brain tissues were collected for qRTPCR and histological staining. ICH upregulated the expression of CXCR4, CD8, TNFα, IL6, and TLR4. The immunoreactivity of IBA1 and CD8, as well as TUNEL labeling, were enhanced in the perilesioned area. CX807 significantly mitigated these responses. In conclusion, our data suggest that CX807 is neuroprotective and anti-inflammatory against ICH. CX807 may have clinical implications for the treatment of hemorrhagic stroke.


Assuntos
Anti-Inflamatórios/uso terapêutico , Hemorragia Cerebral/tratamento farmacológico , Locomoção/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Receptores CXCR4/antagonistas & inibidores , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Células Cultivadas , Hemorragia Cerebral/induzido quimicamente , Células HEK293 , Humanos , Masculino , Colagenase Microbiana , Microglia/efeitos dos fármacos , Microglia/patologia , Ratos Sprague-Dawley
16.
Bioorg Chem ; 98: 103689, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32171993

RESUMO

In an effort to develop new cancer therapeutics, we have reported clinical candidate BPR1K871 (1) as a potentanticancercompound in MOLM-13 and MV4-11 leukemia models, as well as in colorectal and pancreatic animal models. As BPR1K871 lacks oral bioavailability, we continued searching for orally bioavailable analogs through drug-like property optimization. We optimized both the physicochemical properties (PCP) as well as in vitro rat liver microsomal stability of 1, with concomitant monitoring of aurora kinase enzyme inhibition as well as cellular anti-proliferative activity in HCT-116 cell line. Structural modification at the 6- and 7-position of quinazoline core of 1 led to the identification of 34 as an orally bioavailable (F% = 54) multi-kinase inhibitor, which exhibits potent anti-proliferative activity against various cancer cell lines. Quinazoline 34 is selected as a promising oral lead candidate for further preclinical evaluation.


Assuntos
Antineoplásicos/farmacologia , Aurora Quinases/antagonistas & inibidores , Descoberta de Drogas , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Aurora Quinases/metabolismo , Disponibilidade Biológica , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Humanos , Masculino , Estrutura Molecular , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/química , Quinazolinas/administração & dosagem , Quinazolinas/química , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
17.
J Med Chem ; 63(4): 1642-1659, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-31961685

RESUMO

Indoleamine 2,3-dioxygenase (IDO1) inhibitors are speculated to be useful in cancer immunotherapy, but a phase III clinical trial of the most advanced IDO1 inhibitor, epacadostat, did not meet its primary end point and was abandoned. In previous work, we identified the novel IDO1 inhibitor N-(4-chlorophenyl)-2-((5-phenylthiazolo[2,3-c][1,2,4]triazol-3-yl)thio)acetamide 1 through high-throughput screening (HTS). Herein, we report a structure-activity relationship (SAR) study of this compound, which resulted in the potent IDO1 inhibitor 1-(4-cyanophenyl)-3-(3-(cyclopropylethynyl)imidazo[2,1-b]thiazol-5-yl)thiourea 47 (hIDO IC50 = 16.4 nM). X-ray cocrystal structural analysis revealed that the basis for this high potency is a unique sulfur-aromatic interaction network formed by the thiourea moiety of 47 with F163 and F226. This finding is expected to inspire new approaches toward the discovery of potent IDO1 inhibitors in the future.


Assuntos
Inibidores Enzimáticos/química , Imidazóis/química , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Tiazóis/química , Sítios de Ligação , Cristalografia por Raios X , Descoberta de Drogas , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Humanos , Imidazóis/síntese química , Imidazóis/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/química , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/metabolismo
18.
Future Med Chem ; 12(3): 183-192, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31813284

RESUMO

Aim: Cancer is a major health burden and a leading cause of death worldwide. We sought to discover potential anticancer molecules with novel scaffold for further development of more active agents to address the issue. Methodology: A series of ß-carboline-1-one hydantoins were designed according to a conformational restriction strategy, synthesized via a one-pot Knoevenagel condensation-intramolecular cyclization, and tested in cytotoxicity assays. Results: The study culminated in the identification of 6b and 6c, both of which were found to potently inhibit breast and lung cancer cell lines. Of particular interest was 6c, which was 83 times more potent an inhibitor than 5-fluorouracil in inhibiting MCF-7. Conclusion: This work establishes ß-carboline-1-one hydantoin as a promising scaffold in the investigation of anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Carbolinas/farmacologia , Desenho de Fármacos , Hidantoínas/farmacologia , Células A549 , Antineoplásicos/síntese química , Antineoplásicos/química , Carbolinas/síntese química , Carbolinas/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Hidantoínas/síntese química , Hidantoínas/química , Células MCF-7 , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
19.
J Med Chem ; 62(24): 11135-11150, 2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31721578

RESUMO

Gastrointestinal stromal tumors (GISTs) are prototypes of stem cell factor receptor (c-KIT)-driven cancer. Two receptor tyrosine kinases, c-KIT and fms-tyrosine kinase (FLT3), are frequently mutated in acute myeloid leukemia (AML) patients, and these mutations are associated with poor prognosis. In this study, we discovered a multitargeted tyrosine kinase inhibitor, compound 15a, with potent inhibition against single or double mutations of c-KIT developed in GISTs. Moreover, crystal structure analysis revealed the unique binding mode of 15a with c-KIT and may elucidate its high potency in inhibiting c-KIT kinase activity. Compound 15a inhibited cell proliferation and induced apoptosis by targeting c-KIT in c-KIT-mutant GIST cell lines. The antitumor effects of 15a were also demonstrated in GIST430 and GIST patient-derived xenograft models. Further studies demonstrated that 15a inhibited the proliferation of c-KIT- and FLT3-driven AML cells in vitro and in vivo. The results of this study suggest that 15a may be a potential anticancer drug for the treatment of GISTs and AML.


Assuntos
Antineoplásicos/farmacologia , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Leucemia Mieloide Aguda/tratamento farmacológico , Mutação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-kit/antagonistas & inibidores , Pirimidinas/farmacologia , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Animais , Antineoplásicos/química , Apoptose , Proliferação de Células , Feminino , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/enzimologia , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/patologia , Tumores do Estroma Gastrointestinal/enzimologia , Tumores do Estroma Gastrointestinal/genética , Tumores do Estroma Gastrointestinal/patologia , Humanos , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Fosforilação , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-kit/genética , Pirimidinas/química , Ratos Sprague-Dawley , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Tirosina Quinase 3 Semelhante a fms/genética
20.
Antiviral Res ; 172: 104636, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31654671

RESUMO

Dengue virus (DENV) is a global health problem that affects approximately 3.9 billion people worldwide. Since safety concerns were raised for the only licensed vaccine, Dengvaxia, and since the present treatment is only supportive care, the development of more effective therapeutic anti-DENV agents is urgently needed. In this report, we identified a potential small-molecule inhibitor, BP34610, via cell-based high-throughput screening (HTS) of 12,000 compounds using DENV-2 reporter viruses. BP34610 reduced the virus yields of type 2 DENV-infected cells with a 50% effective concentration (EC50) and selectivity index value of 0.48 ±â€¯0.06 µM and 197, respectively. Without detectable cytotoxicity, the compound inhibited not only all four serotypes of DENV but also Japanese encephalitis virus (JEV). Time-of-addition experiments suggested that BP34610 may act at an early stage of DENV virus infection. Sequencing analyses of several individual clones derived from BP34610-resistant viruses revealed a consensus amino acid substitution (S397P) in the N-terminal stem region of the E protein. Introduction of S397P into the DENV reporter viruses conferred an over 14.8-fold EC90 shift for BP34610. Importantly, the combination of BP34610 with a viral replication inhibitor, ribavirin, displayed synergistic enhancement of anti-DENV-2 activity. Our results identify an effective small-molecule inhibitor, BP34610, which likely targets the DENV E protein. BP34610 could be developed as an anti-flavivirus agent in the future.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Flavivirus/efeitos dos fármacos , Proteínas do Envelope Viral/efeitos dos fármacos , Animais , Antivirais/toxicidade , Linhagem Celular , Dengue/tratamento farmacológico , Sinergismo Farmacológico , Vírus da Encefalite Japonesa (Espécie)/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Humanos , Ribavirina/farmacologia , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA