Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Blood Adv ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38607381

RESUMO

Chimeric antigen receptor T cell therapy (CAR-T) has revolutionized treatment for relapsed/refractory (r/r) B-cell non-Hodgkin's lymphoma (NHL). Robust biomarkers and a complete understanding of CAR-T cell function in the post-infusion phase remain limited. Here we used a 37-color spectral flow cytometry panel to perform high dimensional single cell analysis of post-infusion samples in 26 patients treated with CD28 co-stimulatory domain containing commercial CAR-T (CD28-CAR-T) for NHL and focused on computationally gated CD8+ CAR-T cells. We found that the presence of post-infusion PD-1+ CD8+ CAR-T cells at the Day 14 timepoint highly correlated with the ability to achieve complete response (CR) by 6 months. Further analysis identified multiple subtypes of CD8+ PD-1+ CAR-T cells including PD-1+ TCF1+ stem-like CAR-T cells and PD-1+ TIM3+ effector-like CAR-T cells that correlated with improved clinical outcomes such as response and progression free survival. Additionally, we identified a subset of PD-1+ CD8+ CAR+ T cells with effector-like function that was increased in patients who achieved a CR and was associated with Grade 3 or higher immune effector cell-associated neurotoxicity syndrome. Here we identified robust biomarkers of response to CD28-CAR-T and highlight the importance of PD-1 positivity in CD8+ CAR-T cells post-infusion in achieving CR.

2.
J Immunother Cancer ; 12(1)2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177076

RESUMO

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant is highly transmissible and evades pre-established immunity. Messenger RNA (mRNA) vaccination against ancestral strain spike protein can induce intact T-cell immunity against the Omicron variant, but efficacy of booster vaccination in patients with late-stage lung cancer on immune-modulating agents including anti-programmed cell death protein 1(PD-1)/programmed death-ligand 1 (PD-L1) has not yet been elucidated. METHODS: We assessed T-cell responses using a modified activation-induced marker assay, coupled with high-dimension flow cytometry analyses. Peripheral blood mononuclear cells (PBMCs) were stimulated with various viral peptides and antigen-specific T-cell responses were evaluated using flow cytometry. RESULTS: Booster vaccines induced CD8+ T-cell response against the ancestral SARS-CoV-2 strain and Omicron variant in both non-cancer subjects and patients with lung cancer, but only a marginal induction was detected for CD4+ T cells. Importantly, antigen-specific T cells from patients with lung cancer showed distinct subpopulation dynamics with varying degrees of differentiation compared with non-cancer subjects, with evidence of dysfunction. Notably, female-biased T-cell responses were observed. CONCLUSION: We conclude that patients with lung cancer on immunotherapy show a substantial qualitative deviation from non-cancer subjects in their T-cell response to mRNA vaccines, highlighting the need for heightened protective measures for patients with cancer to minimize the risk of breakthrough infection with the Omicron and other future variants.


Assuntos
COVID-19 , Neoplasias Pulmonares , Humanos , Feminino , Vacinas de mRNA , Vacinas contra COVID-19/uso terapêutico , SARS-CoV-2 , Leucócitos Mononucleares , COVID-19/prevenção & controle
3.
JCI Insight ; 8(6)2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36749632

RESUMO

We assessed vaccine-induced antibody responses to the SARS-CoV-2 ancestral virus and Omicron variant before and after booster immunization in 57 patients with B cell malignancies. Over one-third of vaccinated patients at the pre-booster time point were seronegative, and these patients were predominantly on active cancer therapies such as anti-CD20 monoclonal antibody. While booster immunization was able to induce detectable antibodies in a small fraction of seronegative patients, the overall booster benefit was disproportionately evident in patients already seropositive and not receiving active therapy. While ancestral virus- and Omicron variant-reactive antibody levels among individual patients were largely concordant, neutralizing antibodies against Omicron tended to be reduced. Interestingly, in all patients, including those unable to generate detectable antibodies against SARS-CoV-2 spike, we observed comparable levels of EBV- and influenza-reactive antibodies, demonstrating that B cell-targeting therapies primarily impair de novo but not preexisting antibody levels. These findings support rationale for vaccination before cancer treatment.


Assuntos
COVID-19 , Neoplasias , Humanos , Vacinas contra COVID-19 , Formação de Anticorpos , SARS-CoV-2 , Neoplasias/terapia , Anticorpos Monoclonais , Anticorpos Antivirais
4.
J Immunother Cancer ; 10(9)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36096533

RESUMO

BACKGROUND: Immune checkpoint blockade (ICB) has revolutionized cancer immunotherapy. However, most patients with cancer fail to respond clinically. One potential reason is the accumulation of immunosuppressive transforming growth factor ß (TGFß) in the tumor microenvironment (TME). TGFß drives cancer immune evasion in part by inducing regulatory T cells (Tregs) and limiting CD8+ T cell function. Glycoprotein-A repetitions predominant (GARP) is a cell surface docking receptor for activating latent TGFß1, TGFß2 and TGFß3, with its expression restricted predominantly to effector Tregs, cancer cells, and platelets. METHODS: We investigated the role of GARP in human patients with cancer by analyzing existing large databases. In addition, we generated and humanized an anti-GARP monoclonal antibody and evaluated its antitumor efficacy and underlying mechanisms of action in murine models of cancer. RESULTS: We demonstrate that GARP overexpression in human cancers correlates with a tolerogenic TME and poor clinical response to ICB, suggesting GARP blockade may improve cancer immunotherapy. We report on a unique anti-human GARP antibody (named PIIO-1) that specifically binds the ligand-interacting domain of all latent TGFß isoforms. PIIO-1 lacks recognition of GARP-TGFß complex on platelets. Using human LRRC32 (encoding GARP) knock-in mice, we find that PIIO-1 does not cause thrombocytopenia; is preferentially distributed in the TME; and exhibits therapeutic efficacy against GARP+ and GARP- cancers, alone or in combination with anti-PD-1 antibody. Mechanistically, PIIO-1 treatment reduces canonical TGFß signaling in tumor-infiltrating immune cells, prevents T cell exhaustion, and enhances CD8+ T cell migration into the TME in a C-X-C motif chemokine receptor 3 (CXCR3)-dependent manner. CONCLUSION: GARP contributes to multiple aspects of immune resistance in cancer. Anti-human GARP antibody PIIO-1 is an efficacious and safe strategy to block GARP-mediated LTGFß activation, enhance CD8+ T cell trafficking and functionality in the tumor, and overcome primary resistance to anti-PD-1 ICB. PIIO-1 therefore warrants clinical development as a novel cancer immunotherapeutic.


Assuntos
Neoplasias , Microambiente Tumoral , Animais , Linfócitos T CD8-Positivos/metabolismo , Glicoproteínas , Humanos , Inibidores de Checkpoint Imunológico , Proteínas de Membrana , Camundongos , Fator de Crescimento Transformador beta/metabolismo
5.
Front Genet ; 13: 951025, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035184

RESUMO

Although there are a number of discoveries from genome-wide association studies (GWAS) for obesity, it has not been successful in linking GWAS results to biology. We sought to discover causal genes for obesity by conducting functional studies on genes detected from genetic association analysis. Gene-based association analysis of 917 individual exome sequences showed that HOGA1 attains exome-wide significance (p-value < 2.7 × 10-6) for body mass index (BMI). The mRNA expression of HOGA1 is significantly increased in human adipose tissues from obese individuals in the Genotype-Tissue Expression (GTEx) dataset, which supports the genetic association of HOGA1 with BMI. Functional analyses employing cell- and animal model-based approaches were performed to gain insights into the functional relevance of Hoga1 in obesity. Adipogenesis was retarded when Hoga1 was knocked down by siRNA treatment in a mouse 3T3-L1 cell line and a similar inhibitory effect was confirmed in mice with down-regulated Hoga1. Hoga1 antisense oligonucleotide (ASO) treatment reduced body weight, blood lipid level, blood glucose, and adipocyte size in high-fat diet-induced mice. In addition, several lipogenic genes including Srebf1, Scd1, Lp1, and Acaca were down-regulated, while lipolytic genes Cpt1l, Ppara, and Ucp1 were up-regulated. Taken together, HOGA1 is a potential causal gene for obesity as it plays a role in excess body fat development.

6.
Sci Immunol ; 7(73): eabq2630, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35420889

RESUMO

Sex bias exists in the development and progression of nonreproductive organ cancers, but the underlying mechanisms are enigmatic. Studies so far have focused largely on sexual dimorphisms in cancer biology and socioeconomic factors. Here, we establish a role for CD8+ T cell-dependent antitumor immunity in mediating sex differences in tumor aggressiveness, which is driven by the gonadal androgen but not sex chromosomes. A male bias exists in the frequency of intratumoral antigen-experienced Tcf7/TCF1+ progenitor exhausted CD8+ T cells that are devoid of effector activity as a consequence of intrinsic androgen receptor (AR) function. Mechanistically, we identify a novel sex-specific regulon in progenitor exhausted CD8+ T cells and a pertinent contribution from AR as a direct transcriptional transactivator of Tcf7/TCF1. The T cell-intrinsic function of AR in promoting CD8+ T cell exhaustion in vivo was established using multiple approaches including loss-of-function studies with CD8-specific Ar knockout mice. Moreover, ablation of the androgen-AR axis rewires the tumor microenvironment to favor effector T cell differentiation and potentiates the efficacy of anti-PD-1 immune checkpoint blockade. Collectively, our findings highlight androgen-mediated promotion of CD8+ T cell dysfunction in cancer and imply broader opportunities for therapeutic development from understanding sex disparities in health and disease.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Androgênios , Animais , Diferenciação Celular , Feminino , Masculino , Camundongos , Sexismo , Microambiente Tumoral
7.
Cells ; 11(3)2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35159237

RESUMO

The leptin receptor (LepR) acts as a signaling nexus for the regulation of glucose uptake and obesity, among other metabolic responses. The functional role of LepR under leptin-deficient conditions remains unclear. This study reports that epiregulin (EREG) governed glucose uptake in vitro and in vivo in Lepob mice by activating LepR under leptin-deficient conditions. Single and long-term treatment with EREG effectively rescued glucose intolerance in comparative insulin and EREG tolerance tests in Lepob mice. The immunoprecipitation study revealed binding between EREG and LepR in adipose tissue of Lepob mice. EREG/LepR regulated glucose uptake without changes in obesity in Lepob mice via mechanisms, including ERK activation and translocation of GLUT4 to the cell surface. EREG-dependent glucose uptake was abolished in Leprdb mice which supports a key role of LepR in this process. In contrast, inhibition of the canonical epidermal growth factor receptor (EGFR) pathway implicated in other EREG responses, increased glucose uptake. Our data provide a basis for understanding glycemic responses of EREG that are dependent on LepR unlike functions mediated by EGFR, including leptin secretion, thermogenesis, pain, growth, and other responses. The computational analysis identified a conserved amino acid sequence, supporting an evolutionary role of EREG as an alternative LepR ligand.


Assuntos
Intolerância à Glucose , Receptores para Leptina , Animais , Glicemia/metabolismo , Epirregulina , Receptores ErbB , Leptina/metabolismo , Ligantes , Camundongos , Obesidade/metabolismo , Receptores para Leptina/genética , Receptores para Leptina/metabolismo
8.
J Hematol Oncol ; 15(1): 5, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35012610

RESUMO

BACKGROUND: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) through direct lysis of infected lung epithelial cells, which releases damage-associated molecular patterns and induces a pro-inflammatory cytokine milieu causing systemic inflammation. Anti-viral and anti-inflammatory agents have shown limited therapeutic efficacy. Soluble CD24 (CD24Fc) blunts the broad inflammatory response induced by damage-associated molecular patterns via binding to extracellular high mobility group box 1 and heat shock proteins, as well as regulating the downstream Siglec10-Src homology 2 domain-containing phosphatase 1 pathway. A recent randomized phase III trial evaluating CD24Fc for patients with severe COVID-19 (SAC-COVID; NCT04317040) demonstrated encouraging clinical efficacy. METHODS: Using a systems analytical approach, we studied peripheral blood samples obtained from patients enrolled at a single institution in the SAC-COVID trial to discern the impact of CD24Fc treatment on immune homeostasis. We performed high dimensional spectral flow cytometry and measured the levels of a broad array of cytokines and chemokines to discern the impact of CD24Fc treatment on immune homeostasis in patients with COVID-19. RESULTS: Twenty-two patients were enrolled, and the clinical characteristics from the CD24Fc vs. placebo groups were matched. Using high-content spectral flow cytometry and network-level analysis, we found that patients with severe COVID-19 had systemic hyper-activation of multiple cellular compartments, including CD8+ T cells, CD4+ T cells, and CD56+ natural killer cells. Treatment with CD24Fc blunted this systemic inflammation, inducing a return to homeostasis in NK and T cells without compromising the anti-Spike protein antibody response. CD24Fc significantly attenuated the systemic cytokine response and diminished the cytokine coexpression and network connectivity linked with COVID-19 severity and pathogenesis. CONCLUSIONS: Our data demonstrate that CD24Fc rapidly down-modulates systemic inflammation and restores immune homeostasis in SARS-CoV-2-infected individuals, supporting further development of CD24Fc as a novel therapeutic against severe COVID-19.


Assuntos
Antígeno CD24/uso terapêutico , COVID-19/prevenção & controle , Síndrome da Liberação de Citocina/prevenção & controle , Inflamação/prevenção & controle , SARS-CoV-2/efeitos dos fármacos , Idoso , Alarminas/imunologia , Alarminas/metabolismo , Antígeno CD24/química , COVID-19/imunologia , COVID-19/virologia , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/metabolismo , Método Duplo-Cego , Feminino , Proteína HMGB1/imunologia , Proteína HMGB1/metabolismo , Proteínas de Choque Térmico/imunologia , Proteínas de Choque Térmico/metabolismo , Homeostase/efeitos dos fármacos , Homeostase/imunologia , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/virologia , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Solubilidade , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/virologia , Resultado do Tratamento
10.
J Med Food ; 24(12): 1271-1279, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34847724

RESUMO

Butea monosperma (Lam.) Taub. has been applied to treat inflammatory, metabolic, and infectious diseases. However, the antiobesity effects of B. monosperma (Lam.) Taub. flower (BMF) and the underlying mechanisms have not been determined. In this study, we analyzed the various extraction procedures, investigated the antiobesity effects, and identified the main chemical constituents of BMF. The BMF was subjected to acid hydrolysis in 5% H2SO4 in methanol at 50°C for 48 h and partitioned with ethyl acetate. The acid-hydrolyzed BMF ethyl acetate extracts (BMFE) strongly induced the expression of uncoupling protein 1 (Ucp1) and other thermogenic genes in C3H10T1/2 adipocytes. Daily oral administration of 70 mg/kg BMFE (BMFE70) to mice with diet-induced obesity resulted in less body weight gain, increased glucose tolerance, higher rectal temperature, and increased oxygen consumption. Qualitative and quantitative analyses along with treatments in Akt1 knockout mouse embryonic fibroblasts indicate that butein is a major active ingredient of BMFE, which stimulates Ucp1 gene expression. These data show the effects of butein-containing B. monosperma flower extract on thermogenesis and energy expenditure, further suggesting the potential role of BMFE as a functional ingredient in obesity and related metabolic diseases.


Assuntos
Butea , Chalconas/farmacologia , Extratos Vegetais , Animais , Butea/química , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético , Fibroblastos , Flores/química , Camundongos , Camundongos Obesos , Extratos Vegetais/farmacologia , Aumento de Peso
11.
medRxiv ; 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34462760

RESUMO

BACKGROUND: SARS-CoV-2 causes COVID-19 through direct lysis of infected lung epithelial cells, which releases damage-associated molecular patterns (DAMPs) and induces a pro-inflammatory cytokine milieu causing systemic inflammation. Anti-viral and anti-inflammatory agents have shown limited therapeutic efficacy. Soluble CD24 (CD24Fc) is able to blunt the broad inflammatory response induced by DAMPs in multiple models. A recent randomized phase III trial evaluating the impact of CD24Fc in patients with severe COVID-19 demonstrated encouraging clinical efficacy. METHODS: We studied peripheral blood samples obtained from patients enrolled at a single institution in the SAC-COVID trial (NCT04317040) collected before and after treatment with CD24Fc or placebo. We performed high dimensional spectral flow cytometry analysis of peripheral blood mononuclear cells and measured the levels of a broad array of cytokines and chemokines. A systems analytical approach was used to discern the impact of CD24Fc treatment on immune homeostasis in patients with COVID-19. FINDINGS: Twenty-two patients were enrolled, and the clinical characteristics from the CD24Fc vs. placebo groups were matched. Using high-content spectral flow cytometry and network-level analysis, we found systemic hyper-activation of multiple cellular compartments in the placebo group, including CD8+ T cells, CD4+ T cells, and CD56+ NK cells. By contrast, CD24Fc-treated patients demonstrated blunted systemic inflammation, with a return to homeostasis in both NK and T cells within days without compromising the ability of patients to mount an effective anti-Spike protein antibody response. A single dose of CD24Fc significantly attenuated induction of the systemic cytokine response, including expression of IL-10 and IL-15, and diminished the coexpression and network connectivity among extensive circulating inflammatory cytokines, the parameters associated with COVID-19 disease severity. INTERPRETATION: Our data demonstrates that CD24Fc treatment rapidly down-modulates systemic inflammation and restores immune homeostasis in SARS-CoV-2-infected individuals, supporting further development of CD24Fc as a novel therapeutic against severe COVID-19. FUNDING: NIH.

12.
Nutrients ; 12(5)2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443555

RESUMO

Sesamol found in sesame oil has been shown to ameliorate obesity by regulating lipid metabolism. However, its effects on energy expenditure and the underlying molecular mechanism have not been clearly elucidated. In this study, we show that sesamol increased the uncoupling protein 1 (Ucp1) expression in adipocytes. The administration of sesamol in high-fat diet (HFD)-fed mice prevented weight gain and improved metabolic derangements. The three-week sesamol treatment of HFD-fed mice, when the body weights were not different between the sesamol and control groups, increased energy expenditure, suggesting that an induced energy expenditure is a primary contributing factor for sesamol's anti-obese effects. Consistently, sesamol induced the expression of energy-dissipating thermogenic genes, including Ucp1, in white adipose tissues. The microarray analysis showed that sesamol dramatically increased the Nrf2 target genes such as Hmox1 and Atf3 in adipocytes. Moreover, 76% (60/79 genes) of the sesamol-induced genes were also regulated by tert-butylhydroquinone (tBHQ), a known Nrf2 activator. We further verified that sesamol directly activated the Nrf2-mediated transcription. In addition, the Hmox1 and Ucp1 induction by sesamol was compromised in Nrf2-deleted cells, indicating the necessity of Nrf2 in the sesamol-mediated Ucp1 induction. Together, these findings demonstrate the effects of sesamol in inducing Ucp1 and in increasing energy expenditure, further highlighting the use of the Nrf2 activation in stimulating thermogenic adipocytes and in increasing energy expenditure in obesity and its related metabolic diseases.


Assuntos
Tecido Adiposo Branco/metabolismo , Benzodioxóis/farmacologia , Metabolismo Energético/efeitos dos fármacos , Obesidade/metabolismo , Fenóis/farmacologia , Proteína Desacopladora 1/efeitos dos fármacos , Adipócitos/efeitos dos fármacos , Animais , Técnicas de Cultura de Células , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Camundongos , Camundongos Obesos , Aumento de Peso/efeitos dos fármacos
13.
Biomaterials ; 239: 119839, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32065973

RESUMO

Differences in glucose uptake in peripheral and neural tissues account for the reduced efficacy of insulin in nervous tissues. Herein, we report the design of short peptides, referred as amino acid compounds (AAC) with and without a modified side chain moiety. At nanomolar concentrations, a candidate therapeutic molecule, AAC2, containing a 7-(diethylamino) coumarin-3-carboxamide side-chain improved glucose control in human peripheral adipocytes and the endothelial brain barrier cells by activation of insulin-insensitive glucose transporter 1 (GLUT1). AAC2 interacted specifically with the leptin receptor (LepR) and activated atypical protein kinase C zeta (PKCς) to increase glucose uptake. The effects induced by AAC2 were absent in leptin receptor-deficient predipocytes and in Leprdb mice. In contrast, AAC2 established glycemic control altering food intake in leptin-deficient Lepob mice. Therefore, AAC2 activated the LepR and acted in a cytokine-like manner distinct from leptin. In a monogenic Ins2Akita mouse model for the phenotypes associated with type 1 diabetes, AAC2 rescued systemic glucose uptake in these mice without an increase in insulin levels and adiposity, as seen in insulin-treated Ins2Akita mice. In contrast to insulin, AAC2 treatment increased brain mass and reduced anxiety-related behavior in Ins2Akita mice. Our data suggests that the unique mechanism of action for AAC2, activating LepR/PKCς/GLUT1 axis, offers an effective strategy to broaden glycemic control for the prevention of diabetic complications of the nervous system and, possibly, other insulin insensitive or resistant tissues.


Assuntos
Glicemia , Diabetes Mellitus Experimental , Aminoácidos , Animais , Ansiedade , Diabetes Mellitus Experimental/tratamento farmacológico , Insulina , Camundongos , Camundongos Endogâmicos C57BL , Receptores para Leptina
14.
Exp Hematol Oncol ; 8: 27, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31709128

RESUMO

The use of chimeric antigen receptor (CAR) T cell technology as a therapeutic strategy for the treatment blood-born human cancers has delivered outstanding clinical efficacy. However, this treatment modality can also be associated with serious adverse events in the form of cytokine release syndrome. While several avenues are being pursued to limit the off-target effects, it is critically important that any intervention strategy has minimal consequences on long term efficacy. A recent study published in Science Translational Medicine by Dr. Hudecek's group proved that dasatinib, a tyrosine kinase inhibitor, can serve as an on/off switch for CD19-CAR-T cells in preclinical models by limiting toxicities while maintaining therapeutic efficacy. In this editorial, we discuss the recent strategies for generating safer CAR-T cells, and also important questions surrounding the use of dasatinib for emergency intervention of CAR-T cell mediated cytokine release syndrome.

15.
Sci Rep ; 9(1): 15177, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31645582

RESUMO

Visceral obesity increases risks for all-cause mortality worldwide. A small population of thermogenic adipocytes expressing uncoupling protein-1 (Ucp1) regulates energy dissipation in white adipose tissue (WAT) depots. Thermogenic adipocytes subsets decrease obesity in mice, but their efficacy has not been tested in obese large animals. Here we enclosed murine subcutaneous adipocytes with and without engineered thermogenic response in biocompatible microcapsules and implanted them into the left and right side of the visceral falciform depot in six obese dogs. After 28 days of treatment, dogs have markedly reduced waist circumference, body weight, and fat mass. Ucp1 expression in canine WAT was increased at sites implanted with thermogenic vs. wild type murine adipocytes. This site-specific thermogenic remodeling of canine tissue by thermogenic murine adipocytes suggests evolutionary conserved paracrine regulation of energy dissipation across species. These findings have translational potential aimed to reduce deleterious WAT depots in humans and pets.


Assuntos
Adipócitos/metabolismo , Termogênese , Adipócitos/citologia , Adipócitos/transplante , Tecido Adiposo Branco/metabolismo , Adiposidade , Animais , Peso Corporal , Encapsulamento de Células , Cães , Regulação da Expressão Gênica , Inflamação/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR gama/genética , PPAR gama/metabolismo , Especificidade da Espécie , Tela Subcutânea/metabolismo , Proteína Desacopladora 1/metabolismo , Circunferência da Cintura
16.
Biomol Ther (Seoul) ; 27(1): 107-116, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30130954

RESUMO

The global obesity epidemic and associated metabolic diseases require alternative biological targets for new therapeutic strategies. In this study, we show that a phytochemical sulfuretin suppressed adipocyte differentiation of preadipocytes and administration of sulfuretin to high fat diet-fed obese mice prevented obesity and increased insulin sensitivity. These effects were associated with a suppressed expression of inflammatory markers, induced expression of adiponectin, and increased levels of phosphorylated ERK and AKT. To elucidate the molecular mechanism of sulfuretin in adipocytes, we performed microarray analysis and identified activating transcription factor 3 (Atf3) as a sulfuretin-responsive gene. Sulfuretin elevated Atf3 mRNA and protein levels in white adipose tissue and adipocytes. Consistently, deficiency of Atf3 promoted lipid accumulation and the expression of adipocyte markers. Sulfuretin's but not resveratrol's anti-adipogenic effects were diminished in Atf3 deficient cells, indicating that Atf3 is an essential factor in the effects of sulfuretin. These results highlight the usefulness of sulfuretin as a new anti-obesity intervention for the prevention of obesity and its associated metabolic diseases.

17.
Obes Rev ; 20(2): 241-251, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30450758

RESUMO

The growing focus on brown adipocytes has spurred an interest in their potential benefits for metabolic diseases. Brown and beige (or brite) adipocytes express high levels of uncoupling protein 1 (Ucp1) to dissipate heat instead of generating ATP. Ucp1 induction by stimuli including cold, exercise, and diet increases nonshivering thermogenesis, leading to increased energy expenditure and prevention of obesity. Recently, studies in adipocytes have indicated the existence of functional Ucp1-independent thermogenic regulators. Furthermore, substrate cycling involving creatine metabolites, cold-induced N-acyl amino acids, and oxidized lipids in white adipocytes can increase energy expenditure in the absence of Ucp1. These studies emphasize the need for a better understanding of the mechanisms governing energy expenditure in adipocytes and their potential applications in the prevention of human obesity and metabolic diseases.


Assuntos
Adipócitos/metabolismo , Metabolismo Energético/fisiologia , Termogênese/fisiologia , Proteína Desacopladora 1/metabolismo , Animais , Humanos , Mitocôndrias/metabolismo
18.
J Cell Biochem ; 120(3): 3599-3610, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30272815

RESUMO

Adipocyte differentiation is controlled by multiple signaling pathways. To identify new adipogenic factors, C3H10T1/2 adipocytes were treated with previously known antiadipogenic phytochemicals (resveratrol, butein, sulfuretin, and fisetin) for 24 hours. Commonly regulated genes were then identified by transcriptional profiling analysis. Three genes (chemokine (C-X-C motif) ligand 1 [ Cxcl1], heme oxygenase 1 [ Hmox1], and PHD (plant homeo domain) finger protein 16 [ Phf16]) were upregulated while two genes (G0/G1 switch gene 2 [ G0s2] and patatin-like phospholipase domain containing 3 [ Pnpla3]) were downregulated by these four antiadipogenic compounds. Tissue expression profiles showed that the G0s2 and Pnpla3 expressions were highly specific to adipose depots while the other three induced genes were ubiquitously expressed with significantly higher expression in adipose tissues. While Cxcl1 expression was decreased, expressions of the other four genes were significantly increased during adipogenic differentiation of C3H10T1/2 cells. Small interfering RNA-mediated knockdown including Phf16 and Pnpla3 indicated that these genes might play regulatory roles in lipid accumulation and adipocyte differentiation. Specifically, the silencing of two newly identified adipogenic genes, Phf16 or Pnpla3, suppressed lipid accumulation and expression of adipocyte markers in both 3T3-L1 and C3H10T1/2 cells. Taken together, these data showed previously uncovered roles of Phf16 and Pnpla3 in adipogenesis, highlighting the potential of using phytochemicals for further investigation of adipocyte biology.


Assuntos
Adipogenia/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas Oncogênicas/metabolismo , Fosfolipases A2 Independentes de Cálcio/metabolismo , Compostos Fitoquímicos/farmacologia , Células 3T3-L1 , Animais , Quimiocina CXCL1/biossíntese , Camundongos , Proteínas Oncogênicas/genética , Fosfolipases A2 Independentes de Cálcio/genética
19.
Stem Cells ; 37(3): 368-381, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30444564

RESUMO

Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into mature cells of various cell types. Although the differentiation process of MSCs requires lineage-specific transcription factors, the exact molecular mechanism that determines MSCs differentiation is not clearly addressed. Here, we demonstrate a Smad4-Taz axis as a new intrinsic regulator for adipo-osteogenic differentiation of MSCs and show that this function of Smad4 is independent of the transforming growth factor-ß signal. Smad4 directly bound to the Taz protein and facilitated nuclear localization of Taz through its nuclear localization signal. Nuclear retention of Taz by direct binding to Smad4 increased expression of osteogenic genes through enhancing Taz-runt-related transcription factor 2 (Runx2) interactions in the C3H10T1/2 MSC cell line and preosteoblastic MC3T3-E1 cells, whereas it suppressed expression of adipogenic genes through promoting Taz-peroxisome proliferator-activated receptor-γ (PPARγ) interaction in C3H10T1/2 and preadipogenic 3T3-L1 cells. A reciprocal role of the Smad4 in osteogenic and adipogenic differentiation was also observed in human adipose tissue-derived stem cells (hASCs). Consequently, Smad4 depletion in C3H10T1/2 and hASCs reduced nuclear retention of Taz and thus caused the decreased interaction with Runx2 or PPARγ, resulting in delayed osteogenesis or enhanced adipogenesis of the MSC. Therefore, these findings provide insight into a novel function of Smad4 to regulate the balance of MSC lineage commitment through reciprocal targeting of the Taz protein in osteogenic and adipogenic differentiation pathways. Stem Cells 2019;37:368-381.


Assuntos
Adipogenia , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Transdução de Sinais , Proteína Smad4/metabolismo , Transativadores/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Diferenciação Celular , Linhagem Celular , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Proteína Smad4/genética , Transativadores/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional
20.
Front Immunol ; 10: 3154, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32117210

RESUMO

The endoplasmic reticulum (ER) is an organelle equipped with mechanisms for proper protein folding, trafficking, and degradation to maintain protein homeostasis in the secretory pathway. As a defense mechanism, perturbation of ER proteostasis by ER stress agents activates a cascade of signaling pathways from the ER to the nucleus known as unfolded protein response (UPR). The primary goal of UPR is to induce transcriptional and translational programs to restore ER homeostasis for cell survival. As such, defects in UPR signaling have been implicated as a key contributor to multiple diseases including metabolic diseases, degenerative diseases, inflammatory disorders, and cancer. Growing evidence support the critical role of ER stress in regulating the fate as well as the magnitude of the immune response. Moreover, the availability of multiple UPR pharmacological inhibitors raises the hope that targeting UPR can be a new strategy for immune modulation and immunotherapy of diseases. This paper reviews the principal mechanisms by which ER stress affects immune cell biology and function, with a focus of discussion on UPR-associated immunopathology and the development of potential ER stress-targeted therapeutics.


Assuntos
Estresse do Retículo Endoplasmático/imunologia , Homeostase/imunologia , Tolerância Imunológica/imunologia , Imunidade/imunologia , Resposta a Proteínas não Dobradas/imunologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA