Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(22): 4190-4205.e25, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36243004

RESUMO

Neuroepithelial crosstalk is critical for gut physiology. However, the mechanisms by which sensory neurons communicate with epithelial cells to mediate gut barrier protection at homeostasis and during inflammation are not well understood. Here, we find that Nav1.8+CGRP+ nociceptor neurons are juxtaposed with and signal to intestinal goblet cells to drive mucus secretion and gut protection. Nociceptor ablation led to decreased mucus thickness and dysbiosis, while chemogenetic nociceptor activation or capsaicin treatment induced mucus growth. Mouse and human goblet cells expressed Ramp1, receptor for the neuropeptide CGRP. Nociceptors signal via the CGRP-Ramp1 pathway to induce rapid goblet cell emptying and mucus secretion. Notably, commensal microbes activated nociceptors to control homeostatic CGRP release. In the absence of nociceptors or epithelial Ramp1, mice showed increased epithelial stress and susceptibility to colitis. Conversely, CGRP administration protected nociceptor-ablated mice against colitis. Our findings demonstrate a neuron-goblet cell axis that orchestrates gut mucosal barrier protection.


Assuntos
Colite , Células Caliciformes , Camundongos , Humanos , Animais , Células Caliciformes/metabolismo , Nociceptores/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Colite/metabolismo , Muco/metabolismo , Proteína 1 Modificadora da Atividade de Receptores/metabolismo
2.
Adv Drug Deliv Rev ; 191: 114542, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36179916

RESUMO

The surfaces of human internal organs are lined by a mucus layer that ensures symbiotic relationships with commensal microbiome while protecting against potentially injurious environmental chemicals, toxins, and pathogens, and disruption of this layer can contribute to disease development. Studying mucus biology has been challenging due to the lack of physiologically relevant human in vitro models. Here we review recent progress that has been made in the development of human organ-on-a-chip microfluidic culture models that reconstitute epithelial tissue barriers and physiologically relevant mucus layers with a focus on lung, colon, small intestine, cervix and vagina. These organ-on-a-chip models that incorporate dynamic fluid flow, air-liquid interfaces, and physiologically relevant mechanical cues can be used to study mucus composition, mechanics, and structure, as well as investigate its contributions to human health and disease with a level of biomimicry not possible in the past.


Assuntos
Modelos Biológicos , Muco , Humanos , Colo , Dispositivos Lab-On-A-Chip , Microbiota , Microfluídica , Muco/fisiologia
3.
Proc Natl Acad Sci U S A ; 117(49): 31309-31318, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33214151

RESUMO

Adipose tissue (AT) inflammation contributes to systemic insulin resistance. In obesity and type 2 diabetes (T2D), retinol binding protein 4 (RBP4), the major retinol carrier in serum, is elevated in AT and has proinflammatory effects which are mediated partially through Toll-like receptor 4 (TLR4). We now show that RBP4 primes the NLRP3 inflammasome for interleukin-1ß (IL1ß) release, in a glucose-dependent manner, through the TLR4/MD2 receptor complex and TLR2. This impairs insulin signaling in adipocytes. IL1ß is elevated in perigonadal white AT (PGWAT) of chow-fed RBP4-overexpressing mice and in serum and PGWAT of high-fat diet-fed RBP4-overexpressing mice vs. wild-type mice. Holo- or apo-RBP4 injection in wild-type mice causes insulin resistance and elevates PGWAT inflammatory markers, including IL1ß. TLR4 inhibition in RBP4-overexpressing mice reduces PGWAT inflammation, including IL1ß levels and improves insulin sensitivity. Thus, the proinflammatory effects of RBP4 require NLRP3-inflammasome priming. These studies may provide approaches to reduce AT inflammation and insulin resistance in obesity and diabetes.


Assuntos
Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , Transdução de Sinais , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Células 3T3-L1 , Adipócitos/metabolismo , Tecido Adiposo Branco/patologia , Animais , Glucose/farmacologia , Glicólise/efeitos dos fármacos , Humanos , Inflamação/patologia , Resistência à Insulina , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Fator de Necrose Tumoral alfa/metabolismo
4.
Nat Biomed Eng ; 4(4): 407-420, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31988458

RESUMO

Organ chips can recapitulate organ-level (patho)physiology, yet pharmacokinetic and pharmacodynamic analyses require multi-organ systems linked by vascular perfusion. Here, we describe an 'interrogator' that employs liquid-handling robotics, custom software and an integrated mobile microscope for the automated culture, perfusion, medium addition, fluidic linking, sample collection and in situ microscopy imaging of up to ten organ chips inside a standard tissue-culture incubator. The robotic interrogator maintained the viability and organ-specific functions of eight vascularized, two-channel organ chips (intestine, liver, kidney, heart, lung, skin, blood-brain barrier and brain) for 3 weeks in culture when intermittently fluidically coupled via a common blood substitute through their reservoirs of medium and endothelium-lined vascular channels. We used the robotic interrogator and a physiological multicompartmental reduced-order model of the experimental system to quantitatively predict the distribution of an inulin tracer perfused through the multi-organ human-body-on-chips. The automated culture system enables the imaging of cells in the organ chips and the repeated sampling of both the vascular and interstitial compartments without compromising fluidic coupling.


Assuntos
Técnicas de Cultura de Células/métodos , Dispositivos Lab-On-A-Chip , Microfluídica/métodos , Robótica/métodos , Barreira Hematoencefálica , Encéfalo , Calibragem , Técnicas de Cultura de Células/instrumentação , Desenho de Equipamento , Coração , Humanos , Intestinos , Rim , Fígado , Pulmão , Robótica/instrumentação , Pele
5.
Nat Biomed Eng ; 4(4): 421-436, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31988459

RESUMO

Analyses of drug pharmacokinetics (PKs) and pharmacodynamics (PDs) performed in animals are often not predictive of drug PKs and PDs in humans, and in vitro PK and PD modelling does not provide quantitative PK parameters. Here, we show that physiological PK modelling of first-pass drug absorption, metabolism and excretion in humans-using computationally scaled data from multiple fluidically linked two-channel organ chips-predicts PK parameters for orally administered nicotine (using gut, liver and kidney chips) and for intravenously injected cisplatin (using coupled bone marrow, liver and kidney chips). The chips are linked through sequential robotic liquid transfers of a common blood substitute by their endothelium-lined channels (as reported by Novak et al. in an associated Article) and share an arteriovenous fluid-mixing reservoir. We also show that predictions of cisplatin PDs match previously reported patient data. The quantitative in-vitro-to-in-vivo translation of PK and PD parameters and the prediction of drug absorption, distribution, metabolism, excretion and toxicity through fluidically coupled organ chips may improve the design of drug-administration regimens for phase-I clinical trials.


Assuntos
Dispositivos Lab-On-A-Chip , Microfluídica/métodos , Preparações Farmacêuticas , Farmacocinética , Animais , Cisplatino/farmacocinética , Desenho de Fármacos , Humanos , Técnicas In Vitro , Fígado/metabolismo , Microfluídica/instrumentação , Modelos Biológicos , Nicotina/farmacocinética , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/metabolismo
6.
Cell Mol Gastroenterol Hepatol ; 9(3): 507-526, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31778828

RESUMO

BACKGROUND & AIMS: The mucus layer in the human colon protects against commensal bacteria and pathogens, and defects in its unique bilayered structure contribute to intestinal disorders, such as ulcerative colitis. However, our understanding of colon physiology is limited by the lack of in vitro models that replicate human colonic mucus layer structure and function. Here, we investigated if combining organ-on-a-chip and organoid technologies can be leveraged to develop a human-relevant in vitro model of colon mucus physiology. METHODS: A human colon-on-a-chip (Colon Chip) microfluidic device lined by primary patient-derived colonic epithelial cells was used to recapitulate mucus bilayer formation, and to visualize mucus accumulation in living cultures noninvasively. RESULTS: The Colon Chip supports spontaneous goblet cell differentiation and accumulation of a mucus bilayer with impenetrable and penetrable layers, and a thickness similar to that observed in the human colon, while maintaining a subpopulation of proliferative epithelial cells. Live imaging of the mucus layer formation on-chip showed that stimulation of the colonic epithelium with prostaglandin E2, which is increased during inflammation, causes rapid mucus volume expansion via an Na-K-Cl cotransporter 1 ion channel-dependent increase in its hydration state, but no increase in de novo mucus secretion. CONCLUSIONS: This study shows the production of colonic mucus with a physiologically relevant bilayer structure in vitro, which can be analyzed in real time noninvasively. The Colon Chip may offer a new preclinical tool to analyze the role of mucus in human intestinal homeostasis as well as diseases, such as ulcerative colitis and cancer.


Assuntos
Colo/metabolismo , Mucosa Intestinal/metabolismo , Dispositivos Lab-On-A-Chip , Muco/metabolismo , Células Cultivadas , Dinoprostona/metabolismo , Células Caliciformes/fisiologia , Humanos , Organoides , Cultura Primária de Células/métodos , Membro 1 da Família 12 de Carreador de Soluto/metabolismo
7.
Microbiome ; 7(1): 43, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30890187

RESUMO

BACKGROUND: Species-specific differences in tolerance to infection are exemplified by the high susceptibility of humans to enterohemorrhagic Escherichia coli (EHEC) infection, whereas mice are relatively resistant to this pathogen. This intrinsic species-specific difference in EHEC infection limits the translation of murine research to human. Furthermore, studying the mechanisms underlying this differential susceptibility is a difficult problem due to complex in vivo interactions between the host, pathogen, and disparate commensal microbial communities. RESULTS: We utilize organ-on-a-chip (Organ Chip) microfluidic culture technology to model damage of the human colonic epithelium induced by EHEC infection, and show that epithelial injury is greater when exposed to metabolites derived from the human gut microbiome compared to mouse. Using a multi-omics approach, we discovered four human microbiome metabolites-4-methyl benzoic acid, 3,4-dimethylbenzoic acid, hexanoic acid, and heptanoic acid-that are sufficient to mediate this effect. The active human microbiome metabolites preferentially induce expression of flagellin, a bacterial protein associated with motility of EHEC and increased epithelial injury. Thus, the decreased tolerance to infection observed in humans versus other species may be due in part to the presence of compounds produced by the human intestinal microbiome that actively promote bacterial pathogenicity. CONCLUSION: Organ-on-chip technology allowed the identification of specific human microbiome metabolites modulating EHEC pathogenesis. These identified metabolites are sufficient to increase susceptibility to EHEC in our human Colon Chip model and they contribute to species-specific tolerance. This work suggests that higher concentrations of these metabolites could be the reason for higher susceptibility to EHEC infection in certain human populations, such as children. Furthermore, this research lays the foundation for therapeutic-modulation of microbe products in order to prevent and treat human bacterial infection.


Assuntos
Bactérias/metabolismo , Escherichia coli Êntero-Hemorrágica/patogenicidade , Infecções por Escherichia coli/patologia , Intestinos/citologia , Técnicas de Cultura de Órgãos/métodos , Animais , Benzoatos/farmacologia , Caproatos/farmacologia , Células Cultivadas , Escherichia coli Êntero-Hemorrágica/metabolismo , Infecções por Escherichia coli/microbiologia , Feminino , Microbioma Gastrointestinal , Ácidos Heptanoicos/farmacologia , Humanos , Intestinos/microbiologia , Masculino , Camundongos , Procedimentos Analíticos em Microchip , Especificidade da Espécie
8.
Nat Rev Cancer ; 19(2): 65-81, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30647431

RESUMO

One of the problems that has slowed the development and approval of new anticancer therapies is the lack of preclinical models that can be used to identify key molecular, cellular and biophysical features of human cancer progression. This is because most in vitro cancer models fail to faithfully recapitulate the local tissue and organ microenvironment in which tumours form, which substantially contributes to the complex pathophysiology of the disease. More complex in vitro cancer models have been developed, including transwell cell cultures, spheroids and organoids grown within flexible extracellular matrix gels, which better mimic normal and cancerous tissue development than cells maintained on conventional 2D substrates. But these models still lack the tissue-tissue interfaces, organ-level structures, fluid flows and mechanical cues that cells experience within living organs, and furthermore, it is difficult to collect samples from the different tissue microcompartments. In this Review, we outline how recent developments in microfluidic cell culture technology have led to the generation of human organs-on-chips (also known as organ chips) that are now being used to model cancer cell behaviour within human-relevant tissue and organ microenvironments in vitro. Organ chips enable experimentalists to vary local cellular, molecular, chemical and biophysical parameters in a controlled manner, both individually and in precise combinations, while analysing how they contribute to human cancer formation and progression and responses to therapy. We also discuss the challenges that must be overcome to ensure that organ chip models meet the needs of cancer researchers, drug developers and clinicians interested in personalized medicine.


Assuntos
Neoplasias/patologia , Animais , Progressão da Doença , Humanos , Microfluídica/métodos , Modelos Biológicos , Medicina de Precisão/métodos , Microambiente Tumoral/fisiologia
10.
Cell Mol Gastroenterol Hepatol ; 5(4): 659-668, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29713674

RESUMO

Microfluidic organ-on-a-chip models of human intestine have been developed and used to study intestinal physiology and pathophysiology. In this article, we review this field and describe how microfluidic Intestine Chips offer new capabilities not possible with conventional culture systems or organoid cultures, including the ability to analyze contributions of individual cellular, chemical, and physical control parameters one-at-a-time; to coculture human intestinal cells with commensal microbiome for extended times; and to create human-relevant disease models. We also discuss potential future applications of human Intestine Chips, including how they might be used for drug development and personalized medicine.

11.
Sci Rep ; 8(1): 2871, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29440725

RESUMO

Here we describe a method for fabricating a primary human Small Intestine-on-a-Chip (Intestine Chip) containing epithelial cells isolated from healthy regions of intestinal biopsies. The primary epithelial cells are expanded as 3D organoids, dissociated, and cultured on a porous membrane within a microfluidic device with human intestinal microvascular endothelium cultured in a parallel microchannel under flow and cyclic deformation. In the Intestine Chip, the epithelium forms villi-like projections lined by polarized epithelial cells that undergo multi-lineage differentiation similar to that of intestinal organoids, however, these cells expose their apical surfaces to an open lumen and interface with endothelium. Transcriptomic analysis also indicates that the Intestine Chip more closely mimics whole human duodenum in vivo when compared to the duodenal organoids used to create the chips. Because fluids flowing through the lumen of the Intestine Chip can be collected continuously, sequential analysis of fluid samples can be used to quantify nutrient digestion, mucus secretion and establishment of intestinal barrier function over a period of multiple days in vitro. The Intestine Chip therefore may be useful as a research tool for applications where normal intestinal function is crucial, including studies of metabolism, nutrition, infection, and drug pharmacokinetics, as well as personalized medicine.


Assuntos
Intestino Delgado/citologia , Dispositivos Lab-On-A-Chip , Organoides/citologia , Biópsia , Proliferação de Células , Células Epiteliais/citologia , Humanos
12.
Cell Rep ; 21(2): 508-516, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-29020635

RESUMO

Here, we show that microfluidic organ-on-a-chip (organ chip) cell culture technology can be used to create in vitro human orthotopic models of non-small-cell lung cancer (NSCLC) that recapitulate organ microenvironment-specific cancer growth, tumor dormancy, and responses to tyrosine kinase inhibitor (TKI) therapy observed in human patients in vivo. Use of the mechanical actuation functionalities of this technology revealed a previously unknown sensitivity of lung cancer cell growth, invasion, and TKI therapeutic responses to physical cues associated with breathing motions, which appear to be mediated by changes in signaling through epidermal growth factor receptor (EGFR) and MET protein kinase. These findings might help to explain the high level of resistance to therapy in cancer patients with minimal residual disease in regions of the lung that remain functionally aerated and mobile, in addition to providing an experimental model to study cancer persister cells and mechanisms of tumor dormancy in vitro.


Assuntos
Dispositivos Lab-On-A-Chip , Neoplasias Pulmonares/patologia , Mucosa Respiratória/citologia , Antineoplásicos/farmacologia , Células Cultivadas , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/metabolismo , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA