Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Spine Deform ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558382

RESUMO

PURPOSE: Hypoplastic pedicles of the thoracolumbar spine (<5 mm diameter) are often found in syndromic deformities of the spine and pose a challenge in pedicle screw instrumentation. 3D-printed patient-specific guides might help overcome anatomical difficulties when instrumenting pedicles with screws, thereby reducing the necessity for less effective fixation methods such as hooks or sublaminar wires. In this study, the surgical feasibility and clinical outcome of patients with hypoplastic pedicles following pedicle screw instrumentation with 3D-printed patient-specific guides were assessed. METHODS: Hypoplastic pedicles were identified on preoperative computed tomography (CT) scans in six patients undergoing posterior spinal fusion surgery between 2017 and 2020. Based on these preoperative CT scans, patient-specific guides were produced to help with screw instrumentation of these thin pedicles. Postoperatively, pedicle-screw-related complications or revisions were analyzed. RESULTS: 93/105 (88.6%) pedicle screws placed with patient-specific guides were instrumented. 62/93 (66.7%) of these instrumented pedicles were defined as hypoplastic with a mean width of 3.07 mm (SD ±0.98 mm, 95% CI [2.82-3.32]). Overall, 6 complications in the 62 hypoplastic pedicles (9.7%) were observed and included intraoperatively managed 4 cerebrospinal fluid leaks, 1 pneumothorax and 1 delayed revision due to 2 lumbar screws (2/62, 3.3%) impinging the L3 nerve root causing a painful radiculopathy. The mean follow-up time was 26.7 (SD ±11.7) months. Complications were only noted when the pedicle-width-to-screw-diameter ratio measured less than 0.62. CONCLUSION: Patient-specific 3D-printed guides can aid in challenging instrumentation of hypoplastic pedicles in the thoracolumbar spine, especially if the pedicle-width-to-screw-diameter ratio is greater than 0.62.

2.
Comput Methods Programs Biomed ; 247: 108096, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447314

RESUMO

BACKGROUND AND OBJECTIVE: As part of spinal fusion surgery, shaping the rod implant to align with the anatomy is a tedious, error-prone, and time-consuming manual process. Inadequately contoured rod implants introduce stress on the screw-bone interface of the pedicle screws, potentially leading to screw loosening or even pull-out. METHODS: We propose the first fully automated solution to the rod bending problem by leveraging the advantages of augmented reality and robotics. Augmented reality not only enables the surgeons to intraoperatively digitize the screw positions but also provides a human-computer interface to the wirelessly integrated custom-built rod bending machine. Furthermore, we introduce custom-built test rigs to quantify per screw absolute tensile/compressive residual forces on the screw-bone interface. Besides residual forces, we have evaluated the required bending times and reducer engagements, and compared our method to the freehand gold standard. RESULTS: We achieved a significant reduction of the average absolute residual forces from for the freehand gold standard to (p=0.0015) using the bending machine. Moreover, our bending machine reduced the average time to instrumentation per screw from to . Reducer engagements per rod were significantly decreased from an average of 1.00±1.14 to 0.11±0.32 (p=0.0037). CONCLUSION: The combination of augmented reality and robotics has the potential to improve surgical outcomes while minimizing the dependency on individual surgeon skill and dexterity.


Assuntos
Parafusos Pediculares , Fusão Vertebral , Humanos , Teste de Materiais , Vértebras Lombares/cirurgia , Fenômenos Biomecânicos
3.
Spine J ; 24(4): 730-735, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37871659

RESUMO

BACKGROUD CONTEXT: Pedicle screws are commonly used for posterior fixation of the lumbar spine. Inaccuracy of screw placement can lead to disastrous complications. PURPOSE: As fluoroscopic assisted pedicle screw instrumentation is the most frequently used technique, the aim of this study was to assess the specificity, sensitivity and accuracy of intraoperative fluoroscopy to detect mediolateral screw malpositioning. We also analyzed whether the addition of an oblique view could improve these parameters. STUDY DESIGN: On 12 human cadavers, 138 pedicle screws were placed intentionally either with 0 to 2 mm (75 screws), with 2 to 4 mm (six medial and 12 lateral screws) and with >4 mm (22 medial and 23 lateral screws) breach of the pedicle from Th12 to L5. METHODS: Three experienced spine surgeons evaluated the screw positioning in fluoroscopic AP views and 4 weeks later in AP views and additional oblique views. The surgeons' interpretation was compared with the effective screw position on postoperative CT scans. RESULTS: Pedicle breaches greater than 2 mm were detected in 68% with AP views and in 67% with additional oblique views (p=.742). The specificity of AP views was 0.86 and 0.93 with additional oblique views (p=<.01). The accuracy was 0.78 with AP views and 0.81 with AP + oblique views (p=.114). There was a substantial inter-reader agreement (Fleiss's kappa: 0.632). CONCLUSIONS: Fluoroscopic screening of pedicle screw misplacement has a limited sensitivity. Adding an oblique view improves specificity but not sensitivity and accuracy in detecting screw malpositions. CLINICAL SIGNIFICANCE: When in doubt of a screw malpositioning, other modalities than a fluoroscopic assisted pedicle screw instrumentation such as intraoperative CT imaging or an intraoperative exploration of the screw trajectory must be evaluated.


Assuntos
Parafusos Pediculares , Fusão Vertebral , Humanos , Parafusos Pediculares/efeitos adversos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Tomografia Computadorizada por Raios X/métodos , Fluoroscopia/métodos , Complicações Pós-Operatórias/etiologia , Fusão Vertebral/métodos
4.
Front Cell Dev Biol ; 11: 1286280, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965581

RESUMO

The pain in patients with Modic type 1 changes (MC1) is often due to vertebral body endplate pain, which is linked to abnormal neurite outgrowth in the vertebral body and adjacent endplate. The aim of this study was to understand the role of MC1 bone marrow stromal cells (BMSCs) in neurite outgrowth. BMSCs can produce neurotrophic factors, which have been shown to be pro-fibrotic in MC1, and expand in the perivascular space where sensory vertebral nerves are located. The study involved the exploration of the BMSC transcriptome in MC1, co-culture of MC1 BMSCs with the neuroblastoma cell line SH-SY5Y, analysis of supernatant cytokines, and analysis of gene expression changes in co-cultured SH-SY5Y. Transcriptomic analysis revealed upregulated brain-derived neurotrophic factor (BDNF) signaling-related pathways. Co-cultures of MC1 BMSCs with SH-SY5Y cells resulted in increased neurite sprouting compared to co-cultures with control BMSCs. The concentration of BDNF and other cytokines supporting neuron growth was increased in MC1 vs. control BMSC co-culture supernatants. Taken together, these findings show that MC1 BMSCs provide strong pro-neurotrophic cues to nearby neurons and could be a relevant disease-modifying treatment target.

5.
Front Bioeng Biotechnol ; 11: 1270522, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954015

RESUMO

Background: Spinal fusion is the most common surgical treatment for the management of degenerative spinal disease. However, complications such as screw loosening lead to painful pseudoarthrosis, and are a common reason for revision. Optimization of screw trajectories to increase implant resistance to mechanical loading is essential. A recent optimization method has shown potential for determining optimal screw position and size based on areas of high bone elastic modulus (E-modulus). Aim: The aim of this biomechanical study was to verify the optimization algorithm for pedicle screw placement in a cadaveric study and to quantify the effect of optimization. The pull-out strength of pedicle screws with an optimized trajectory was compared to that of a traditional trajectory. Methods: Twenty-five lumbar vertebrae were instrumented with pedicle screws (on one side, the pedicle screws were inserted in the traditional way, on the other side, the screws were inserted using an optimized trajectory). Results: An improvement in pull-out strength and pull-out strain energy of the optimized screw trajectory compared to the traditional screw trajectory was only observed for E-modulus values greater than 3500 MPa cm3. For values of 3500 MPa cm3 or less, optimization showed no clear benefit. The median screw length of the optimized pedicle screws was significantly smaller than the median screw length of the traditionally inserted pedicle screws, p < 0.001. Discussion: Optimization of the pedicle screw trajectory is feasible, but seems to apply only to vertebrae with very high E-modulus values. This is likely because screw trajectory optimization resulted in a reduction in screw length and therefore a reduction in the implant-bone interface. Future efforts to predict the optimal pedicle screw trajectory should include screw length as a critical component of potential stability.

6.
BMC Musculoskelet Disord ; 24(1): 688, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644445

RESUMO

BACKGROUND: Pseudoarthrosis after anterior cervical discectomy and fusion (ACDF) is relatively common and can result in revision surgery. The aim of the study was to analyze the outcome of patients who underwent anterior revision surgery for pseudoarthrosis after ACDF. METHODS: From 99 patients with cervical revision surgery, ten patients (median age: 48, range 37-74; female: 5, male: 5) who underwent anterior revision surgery for pseudoarthrosis after ACDF with a minimal follow up of one year were included in the study. Microbiological investigations were performed in all patients. Computed tomography (CT) scans were used to evaluate the radiological success of revision surgery one year postoperatively. Clinical outcome was quantified with the Neck Disability Index (NDI), the Visual Analog Scale (VAS) for neck and arm pain, and the North American Spine Society Patient Satisfaction Scale (NASS) 12 months (12-60) after index ACDF surgery. The achievement of the minimum clinically important difference (MCID) one year postoperatively was documented. RESULTS: Occult infection was present in 40% of patients. Fusion was achieved in 80%. The median NDI was the same one year postoperatively as preoperatively (median 23.5 (range 5-41) versus 23.5 (7-40)), respectively. The MCID for the NDI was achieved 30%. VAS-neck pain was reduced by a median of 1.5 points one year postoperatively from 8 (3-8) to 6.5 (1-8); the MCID for VAS-neck pain was achieved in only 10%. Median VAS-arm pain increased slightly to 3.5 (0-8) one year postoperatively compared with the preoperative value of 1 (0-6); the MCID for VAS-arm pain was achieved in 14%. The NASS patient satisfaction scale could identify 20% of responders, all other patients failed to reach the expected benefit from anterior ACDF revision surgery. 60% of patients would undergo the revision surgery again in retrospect. CONCLUSION: Occult infections occur in 40% of patients who undergo anterior revision surgery for ACDF pseudoarthrosis. Albeit in a small cohort of patients, this study shows that anterior revision surgery may not result in relevant clinical improvements for patients, despite achieving fusion in 80% of cases. LEVEL OF EVIDENCE: Retrospective study, level III.


Assuntos
Cervicalgia , Pseudoartrose , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Reoperação , Cervicalgia/etiologia , Cervicalgia/cirurgia , Pseudoartrose/diagnóstico por imagem , Pseudoartrose/etiologia , Pseudoartrose/cirurgia , Estudos Retrospectivos , Discotomia/efeitos adversos
7.
Eur Spine J ; 32(6): 1876-1886, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37093262

RESUMO

PURPOSE: The aim of this study was to elucidate segmental range of motion (ROM) before and after common decompression and fusion procedures on the lumbar spine. METHODS: ROM of fourteen fresh-frozen human cadaver lumbar segments (L1/2: 4, L3/4: 5, L5/S1: 5) was evaluated in six loading directions: flexion/extension (FE), lateral bending (LB), lateral shear (LS), anterior shear (AS), axial rotation (AR), and axial compression/distraction (AC). ROM was tested with and without posterior instrumentation under the following conditions: 1) native 2) after unilateral laminotomy, 3) after midline decompression, and 4) after nucleotomy. RESULTS: Median native ROM was FE 6.8°, LB 5.6°, and AR 1.7°, AS 1.8 mm, LS 1.4 mm, AC 0.3 mm. Unilateral laminotomy significantly increased ROM by 6% (FE), 3% (LB), 12% (AR), 11% (AS), and 8% (LS). Midline decompression significantly increased these numbers to 15%, 5%, 21%, 20%, and 19%, respectively. Nucleotomy further increased ROM in all directions, most substantially in AC of 153%. Pedicle screw fixation led to ROM decreases of 82% in FE, 72% in LB, 42% in AR, 31% in AS, and 17% in LS. In instrumented segments, decompression only irrelevantly affected ROM. CONCLUSIONS: The amount of posterior decompression significantly impacts ROM of the lumbar spine. The here performed biomechanical study allows creation of a simplified rule of thumb: Increases in segmental ROM of approximately 10%, 20%, and 50% can be expected after unilateral laminotomy, midline decompression, and nucleotomy, respectively. Instrumentation decreases ROM by approximately 80% in bending moments and accompanied decompression procedures only minorly destabilize the instrumentation construct.


Assuntos
Parafusos Pediculares , Fusão Vertebral , Humanos , Laminectomia , Fenômenos Biomecânicos , Fusão Vertebral/métodos , Vértebras Lombares/cirurgia , Amplitude de Movimento Articular , Cadáver , Descompressão
8.
Eur Spine J ; 32(4): 1401-1410, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36877366

RESUMO

PURPOSE: To compare the residual range of motion (ROM) of cortical screw (CS) versus pedicle screw (PS) instrumented lumbar segments and the additional effect of transforaminal interbody fusion (TLIF) and cross-link (CL) augmentation. METHODS: ROM of thirty-five human cadaver lumbar segments in flexion/extension (FE), lateral bending (LB), lateral shear (LS), anterior shear (AS), axial rotation (AR), and axial compression (AC) was recorded. After instrumenting the segments with PS (n = 17) and CS (n = 18), ROM in relation to the uninstrumented segments was evaluated without and with CL augmentation before and after decompression and TLIF. RESULTS: CS and PS instrumentations both significantly reduced ROM in all loading directions, except AC. In undecompressed segments, a significantly lower relative (and absolute) reduction of motion in LB was found with CS 61% (absolute 3.3°) as compared to PS 71% (4.0°; p = 0.048). FE, AR, AS, LS, and AC values were similar between CS and PS instrumented segments without interbody fusion. After decompression and TLIF insertion, no difference between CS and PS was found in LB and neither in any other loading direction. CL augmentation did not diminish differences in LB between CS and PS in the undecompressed state but led to an additional small AR reduction of 11% (0.15°) in CS and 7% (0.05°) in PS instrumentation. CONCLUSION: Similar residual motion is found with CS and PS instrumentation, except of slightly, but significantly inferior reduction of ROM in LB with CS. Differences between CS and PS in diminish with TLIF but not with CL augmentation.


Assuntos
Parafusos Pediculares , Fusão Vertebral , Humanos , Vértebras Lombares/cirurgia , Fenômenos Biomecânicos , Amplitude de Movimento Articular , Cadáver , Descompressão
9.
J Imaging ; 9(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36826963

RESUMO

Translational research is aimed at turning discoveries from basic science into results that advance patient treatment. The translation of technical solutions into clinical use is a complex, iterative process that involves different stages of design, development, and validation, such as the identification of unmet clinical needs, technical conception, development, verification and validation, regulatory matters, and ethics. For this reason, many promising technical developments at the interface of technology, informatics, and medicine remain research prototypes without finding their way into clinical practice. Augmented reality is a technology that is now making its breakthrough into patient care, even though it has been available for decades. In this work, we explain the translational process for Medical AR devices and present associated challenges and opportunities. To the best knowledge of the authors, this concept paper is the first to present a guideline for the translation of medical AR research into clinical practice.

10.
J Neuroimaging ; 32(6): 1121-1133, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35962464

RESUMO

BACKGROUND AND PURPOSE: The timing of decision-making for a surgical intervention in patients with mild degenerative cervical myelopathy (DCM) is challenging. Spinal cord motion phase contrast MRI (PC-MRI) measurements can reveal the extent of dynamic mechanical strain on the spinal cord to potentially identify high-risk patients. This study aims to determine the comparability of axial and sagittal PC-MRI measurements of spinal cord motion with the prospect of improving the clinical workup. METHODS: Sixty-four DCM patients underwent a PC-MRI scan assessing spinal cord motion. The agreement of axial and sagittal measurements was determined by means of intraclass correlation coefficients (ICCs) and Bland-Altman analyses. RESULTS: The comparability of axial and sagittal PC-MRI measurements was good to excellent at all cervical levels (ICCs motion amplitude: .810-.940; p < .001). Significant differences between axial and sagittal amplitude values could be found at segments C3 and C4, while its magnitude was low (C3: 0.07 ± 0.19 cm/second; C4: -0.12 ± 0.30 cm/second). Bland-Altman analysis showed a good agreement between axial and sagittal PC-MRI scans (coefficients of repeatability: minimum -0.23 cm/second at C2; maximum -0.58 cm/second at C4). Subgroup analysis regarding anatomic conditions (stenotic vs. nonstenotic segments) and different velocity encoding (2 vs. 3 cm/second) showed comparable results. CONCLUSIONS: This study demonstrates good comparability between axial and sagittal spinal cord motion measurements in DCM patients. To this end, axial and sagittal PC-MRI are both accurate and sensitive in detecting pathologic cord motion. Therefore, such measures could identify high-risk patients and improve clinical decision-making (ie, timing of decompression).


Assuntos
Compressão da Medula Espinal , Doenças da Medula Espinal , Humanos , Vértebras Cervicais/diagnóstico por imagem , Doenças da Medula Espinal/diagnóstico por imagem , Doenças da Medula Espinal/patologia , Medula Espinal , Pescoço , Imageamento por Ressonância Magnética/métodos , Compressão da Medula Espinal/diagnóstico por imagem
11.
Spine J ; 22(11): 1903-1912, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35671943

RESUMO

BACKGROUND CONTEXT: The biomechanical impact of spondylophytes on segmental stiffness is largely unknown, despite their high incidence. PURPOSE: The aim of this study was to quantify the biomechanical contribution according to location and cranio-caudal extent of spondylophytes and to create a clinically applicable radiological classification system. STUDY DESIGN: Biomechanical cadaveric study. METHODS: Twenty-six cadaveric human lumbar spinal segments with spondylophytes were tested with a displacement-controlled stepwise reduction method. The reduction in load required for the same motion after spondylophyte dissection was used to calculate the biomechanical contribution in flexion, extension, axial rotation, lateral bending, anterior, posterior and lateral shear. The spondylophytes were categorized by assessment of their anatomical position and cranio-caudal extent in computed tomography images (grade 1: spondylophytes spanning less than 50% of the disc-height, grade 2:>50%, grade 3:>90%, grade 4: bony bridging between the vertebrae) by two experienced radiologists. Cohen's kappa (κ) was used to report interreader reliability. RESULTS: The largest biomechanical effect of non-bridging spondylophytes (grade 1-3) was recorded during contralateral bending with a grade-dependent contribution of up to 35%. Other loading directions including ipsilateral bending and translational loading were affected with values below 13%. Spondylophytes with osseous bridging (grade 4) show large contribution to the segmental stiffness in most loading conditions with values reaching over 80%. Interreader agreement for the spondylophyte grading was "substantial" (κ=0.73, p<.001). CONCLUSIONS: The location and cranio-caudal extent of spondylophytes are essential parameters for their biomechanical effect. A reproducible classification has been validated biomechanically and helps evaluate the effect of specific spondylophyte configurations on segmental stiffness. CLINICAL SIGNIFICANCE: Non-bridging spondylophytes primarily act as tensile structures and do not provide relevant propping. A classification system is presented to support understanding of the biomechanical consequences of different spondylophyte configuration for clinical decision making in surgical planning.


Assuntos
Vértebras Lombares , Humanos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Fenômenos Biomecânicos , Reprodutibilidade dos Testes , Cadáver , Amplitude de Movimento Articular
12.
N Am Spine Soc J ; 10: 100123, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35619626

RESUMO

Background: Surgical correction of neuromuscular scoliosis can be associated with high complication rates, including such associated with pelvic fixation. Up to now it is debated whether and when to include the pelvis into the fusion construct. Therefore, we aimed to illuminate when pelvic fixation is beneficial in surgical correction of neuromuscular scoliosis. Methods: A prospective cohort of 49 patients (mean age 13 ± 3 y, 63% females, follow up 56 months, range 24-215) who underwent correction of neuromuscular scoliosis including S1/the ileum (n = 18) or without (n = 31) pelvic fixation were included. The outcome was measured with analysis of radiological parameters, clinical improvement and complication/revision rates. Subgroup analysis was performed to find if non-ambulatory patients with gross motor function classification system (GMFCS) levels >III, with larger scoliotic curves (>60°) and moderate pelvic obliquities up to 35° benefit from pelvic fixation. Results: There was no significant difference in complications when comparing patients with (9 out of 18 patients, 50%) or without (9 out of 31 patients, 29%) fixation to the pelvis (p = .219). Wheelchair bound patients (GMFCS >III) with cobb angles greater than 60° and pelvic obliquity less than 35° (n = 20) revealed no differences in amount of clinical improvement of ambulation with (n = 9) or without (n = 11) pelvic fixation (p: n.s.). And even complication or revision rates where not different in those two groups. Conclusion: Pelvic fixation does not seem obligatory in wheelchair bound patients per definition. Even with pelvic obliquities up to 35° and large scoliotic curves >60°, avoiding pelvic fixation does not result in higher revision rate or worse clinical outcomes.

13.
N Am Spine Soc J ; 10: 100120, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35602175

RESUMO

Background: Pedicle screw instrumentation of the cervical spine, although technically challenging due to the potential risk of serious neurovascular injuries, is biomechanically favorable for stabilization purposes. Patient-specific templates are increasingly used in the thoracolumbar spine with excellent accuracy. The aim of this study was to evaluate the accuracy of cervical pedicle screw placement with patient-specific templates in a clinical setting and to report the European experience so far. Methods: Multicentric, retrospectively obtained data of twelve patients who underwent dorsal instrumentation of the cervical spine with 3D-printed patient-specific templates were analyzed. Postoperative computed tomography (CT) scans were used to evaluate pedicle perforation and screw deviations between the planned and actual screw position. Furthermore, surgical time, radiation exposure, blood loss and immediate postoperative complications were analyzed. Results: A total of 86 screws were inserted, of which 82 (95.3%) were fully contained inside the pedicle. All perforations (four screws, 4.7%) were within the safe zone of 2 mm and did not result in any neurovascular complications. Overall, median deviation from planned entry point (Euclidean distance) was 1.2 mm (0.1 - 11 mm), median deviation from the planned trajectory (Euler angle) was 4.4° (0.2-71.5°), median axial and sagittal trajectory deviation from the planned trajectory were 2.5° (0 - 57.5°) and 3.3° (0 - 54.9°), respectively. Median operative time was 168 minutes (111 - 564 minutes), median blood loss was 300 ml (150 - 1300 ml) and median intraoperative fluoroscopic dose was 321.2 mGycm2 (102.4 - 825.0 mGycm2). Overall complications were one adjacent segment kyphosis, one transient C5 palsy and one wound healing disorder. Conclusion: Patient-specific 3D-printed templates provide a highly accurate option for placing cervical pedicle screws for dorsal instrumentation of the cervical spine.

14.
Sci Rep ; 12(1): 7621, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538122

RESUMO

Posterior screw-rod constructs can be used to stabilize spinal segments; however, the stiffness is not absolute, and some motion can persist. While the effect of crosslink-augmentation has been evaluated in multiple studies, the fundamental explanation of their effectiveness has not been investigated. The aim of this study was to quantify the parameters "screw rotation" and "parallelogram deformation" in posterior instrumentations with and without crosslinks to analyze and explain their fundamental effect. Biomechanical testing of 15 posteriorly instrumented human spinal segments (Th10/11-L4/L5) was conducted in axial rotation, lateral bending, and flexion-extension with ± 7.5 Nm. Screw rotation and parallelogram deformation were compared for both configurations. Parallelogram deformation occurred predominantly during axial rotation (2.6°) and was reduced by 60% (-1.45°, p = 0.02) by the addition of a crosslink. Simultaneously, screw rotation (0.56°) was reduced by 48% (-0.27°, p = 0.02) in this loading condition. During lateral bending, 0.38° of parallelogram deformation and 1.44° of screw rotation was measured and no significant reduction was achieved by crosslink-augmentation (8%, -0.03°, -p = 0.3 and -13%, -0.19°, p = 0.7 respectively). During flexion-extension, parallelogram deformation was 0.4° and screw rotation was 0.39° and crosslink-augmentation had no significant effect on these values (-0.12°, -30%, p = 0.5 and -0°, -0%, p = 0.8 respectively). In axial rotation, crosslink-augmentation can reduce parallelogram deformation and with that, screw rotation. In lateral bending and flexion-extension parallelogram deformation is minimal and crosslink-augmentation has no significant effect. Since the relatively large screw rotation in lateral bending is not caused by parallelogram deformation, crosslink-augmentation is no adequate countermeasure. The fundamental understanding of the biomechanical effect of crosslink-augmentation helps better understand its potential and limitations in increasing construct stiffness.


Assuntos
Parafusos Ósseos , Fusão Vertebral , Fenômenos Biomecânicos , Cadáver , Fixação Interna de Fraturas , Humanos , Vértebras Lombares/cirurgia , Procedimentos Neurocirúrgicos , Amplitude de Movimento Articular , Rotação
15.
Spine J ; 22(8): 1265-1270, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35385789

RESUMO

BACKGROUND CONTEXT: Facet joint degeneration (FJD) and disc degeneration (DD) with associated endplate (EP) changes, specifically Modic 1 changes, might occur concurrently and therefore pose a challenge in the treatment of lower back pain (LBP). PURPOSE: The aim of the present study was to investigate if the presence of active EP changes (Modic 1) would alter the effect of facet joint infiltrations (FJI) for the treatment of concurrent FJD. STUDY DESIGN: Prospective cohort study, Level III. PATIENT SAMPLE: 42 patients (Male:20, Female:22) with an average of 58±14 years with FJD on conventional magnetic resonance imaging (MRI) receiving a FJI for treatment of lower back pain were included. OUTCOME MEASURES: The pain score at baseline, 15 min, 1 day, 1 week and 1 month following FJI as well as the reduction of pain were analyzed. Furthermore, active EP changes on conventional MRI and increased EP metabolic activity on PET/MRI were evaluated and compared. METHODS: All the patients underwent a (18F)-NaF PET/MRI, conventional MRI and FJI for symptomatic FJD. Active EP changes on conventional MRI and increased EP metabolic activity on PET/MR were analyzed for conformity. The pain score as well as the pain reduction at the above-mentioned time points were compared between patients with and without increased EP metabolic activity in PET/MRI. RESULTS: The LBP reduction was significantly different between patients with (n=20) and without (n=22) active EP changes at 15 minutes (1.3±2.4 vs. 2.9±2.4, p=.03) and 1 month (0.9±2.3 vs. 2.8±2.9, p<.001) following FJI. The minimal clinically important difference for LBP reduction was reached significantly more often in the absence of active EP changes (73%) compared with patients with active EP changes (35%) 1 month following FJI (p=.03). CONCLUSIONS: FJI is less effective in LBP reduction of patients with FJD and concurrent active EP changes (eg Modic 1).


Assuntos
Degeneração do Disco Intervertebral , Dor Lombar , Espondilose , Articulação Zigapofisária , Feminino , Humanos , Degeneração do Disco Intervertebral/complicações , Degeneração do Disco Intervertebral/diagnóstico por imagem , Degeneração do Disco Intervertebral/patologia , Dor Lombar/patologia , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/patologia , Imageamento por Ressonância Magnética/métodos , Masculino , Estudos Prospectivos , Espondilose/complicações , Articulação Zigapofisária/diagnóstico por imagem , Articulação Zigapofisária/patologia
16.
Spine J ; 22(7): 1160-1168, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35017055

RESUMO

BACKGROUND CONTEXT: Patient-specific instruments (PSI) have been well established in spine surgery for pedicle screw placement. However, its utility in spinal decompression surgery is yet to be investigated. PURPOSE: The purpose of this study was to investigate the feasibility and utility of PSI in spinal decompression surgery compared with conventional freehand (FH) technique for both expert and novice surgeons. STUDY DESIGN: Human cadaver study. METHODS: Thirty-two midline decompressions were performed on 4 fresh-frozen human cadavers. An expert spine surgeon and an orthopedic resident (novice) each performed 8 FH and 8 PSI-guided decompressions. Surgical time for each decompression method was measured. Postoperative decompression area, cranial decompression extent in relation to the intervertebral disc, and lateral recess bony overhang were measured on postoperative CT-scans. In the PSI-group, the decompression area and osteotomy accuracy were evaluated. RESULTS: The surgical time was similar in both techniques, with 07:25 min (PSI) versus 06:53 min (FH) for the expert surgeon and 12:36 min (PSI) vs. 11:54 (FH) for the novice surgeon. The postoperative cranial decompression extent and the lateral recess bony overhang did not differ between both techniques and surgeons. Further, the postoperative decompression area was significantly larger with the PSI than with the FH for the novice surgeon (477 vs. 305 mm2; p=.01), but no significant difference was found between both techniques for the expert surgeon. The execution of the decompression differed from the preoperative plan in the decompression area by 5%, and the osteotomy planes had an accuracy of 1-3 mm. CONCLUSION: PSI-guided decompression is feasible and accurate with similar procedure time to the standard FH technique in a cadaver model, which warrants further investigation in vivo. In comparison to the FH technique, a more extensive decompression was achieved with PSI in the novice surgeon's hands in this study. CLINICAL SIGNIFICANCE: The PSI-guided spinal decompression technique may be a useful alternative to FH decompression in certain situations. A special potential of the PSI technique could lie in the technical aid for novice surgeons and in situations with unconventional anatomy or pathologies such as deformity or tumor. This study serves as a starting point toward PSI-guided spinal decompression, but further in vivo investigations are necessary.


Assuntos
Parafusos Pediculares , Fusão Vertebral , Cirurgia Assistida por Computador , Cadáver , Descompressão Cirúrgica/métodos , Humanos , Vértebras Lombares/cirurgia , Fusão Vertebral/métodos , Cirurgia Assistida por Computador/métodos
17.
Spine J ; 22(6): 927-933, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35093558

RESUMO

BACKGROUND CONTEXT: Pedicle fractures are a rare but potentially devastating complication of posterior instrumented spinal fusion (PSF). Preoperative awareness of the possible risk factors may help prevent these fractures by modifying the surgical plan. However, the risk factors have not yet been identified. PURPOSE: To determine the preoperative parameters associated with postoperative L5 pedicle fracture after L4/5 PSF. STUDY DESIGN: Case control study. PATIENT SAMPLE: Patients undergoing L4/5 PSF at a single academic institution between 2014 and 2020. OUTCOME MEASURES: Occurrence of postoperative L5 pedicle fracture. METHODS: Of 253 patients (female:male, 145:108) undergoing L4/5 PSF from 2014 to 2020, patients with postoperative L5 pedicle fractures were identified retrospectively as "cases" (n = 8, all female, age: 70 ± 10.7 years). As a control group all remaining patients with a follow-up of more than 12 months were allocated (n = 184, 104 females, age: 64.27 ± 13.00 years). In all but 16 cases, anterior support with transforaminal or posterior interbody fusion was performed. Demographic and clinical data (body mass index (BMI)), surgical factors, and comorbidities) were compared. Radiological assessment of spinopelvic parameters was performed using pre- and postoperative standing lateral radiographs. RESULTS: The overall incidence of L5 pedicle fractures after L4/5 spinal fusion was 3.16%, with a median time from index surgery to diagnosis of 25 days (range, 6-199 days) (75% within the first 32 days postoperatively). Patients with L5 pedicle fractures had higher pelvic incidence (PI) (71° ± 9° vs. 56° ± 11°; p=.001), sacral slope (SS) (45° ± 7° vs. 35° ± 8°; p=.002), L5 slope (30° ± 11° vs. 15° ± 10°, p=.001), L5 incidence (42° ± 14° vs. 26° ± 11°; p= .003), L1-S1 lumbar lordosis (LL) postop (57° ± 10° vs. 45° ± 11°; p=.006), and L4 -S1 LL postop (33° ± 7° vs. 28° ± 7°; p=.049) compared with the control group. Pelvic tilt and PI- LL mismatch were not significantly different. Female gender was a significant risk factor for L5 pedicle fractures (p=.015). BMI (kg/m2) was statistically equal in patients with or without pedicle fractures (28.37 ± 5.96 vs. 28.53 ± 16.32; p=.857). There was no significant difference between the groups for approximative bone mineral density assessment (Hounsfield units; 113 ± 60 vs. 120 ± 43; p=.396) using the L3 trabecular region of interest (ROI) measurement. The correlation analysis demonstrated that most of the identified risk factors except for the postoperative L4-S1 lordosis show significant positive associations among each other. All eight patients in the fracture group underwent revision surgery, and the instrumented fusion was extended to the sacrum, with the addition of sacral-alar-iliac or iliac screws, in six cases. CONCLUSIONS: L5 pedicle fractures occurred in 3% of the patients after single level L4/5 PSF. Risk factors are female gender, higher PI, SS, L5 slope, L5 incidence, and LL postop but not high BMI. These findings can be used for surgical planning and decision of fusion levels.


Assuntos
Lordose , Fusão Vertebral , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Humanos , Lordose/cirurgia , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Fusão Vertebral/efeitos adversos
18.
Eur Spine J ; 31(12): 3696-3702, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34173075

RESUMO

BACKGROUND: Anomalous vertebral artery (VA) with loop formation is a rare cause of cervical nerve root compression. Various techniques with anterior and posterior approaches have been described for surgical treatment once conservative treatments fail. We herein present a case treated with the new technique of anterior release, distraction and fusion (ARDF) and further provide an updated review of surgically managed VA loops in the subaxial spine. CASE DESCRIPTION: A 76-year-old female complained of a 6-year history of pulsating, shooting pain in her right arm to the thumb. After obtaining repeated MRI, the VA loop compressing the right-sided C6-nerve root was detected. A neurovascular decompression through ARDF which led to an indirect loop straightening was performed. The patient immediately improved after surgery and remained pain-free 1 year postoperative. CONCLUSION: Neural irritation due to VA loop formation is a rare cause of cervical radiculopathy. While various surgical strategies have been described, we believe that anterior and anterolateral approaches are the safest to yield neurovascular decompression. We described and documented ARDF (anterior VA release, intervertebral distraction and fusion) on a patient case. LEVEL OF EVIDENCE: II (Diagnostic: individual cross-sectional studies with consistently applied reference standard and blinding).


Assuntos
Radiculopatia , Humanos , Feminino , Idoso , Radiculopatia/diagnóstico por imagem , Radiculopatia/etiologia , Radiculopatia/cirurgia , Artéria Vertebral/diagnóstico por imagem , Artéria Vertebral/cirurgia , Artéria Vertebral/anormalidades , Estudos Transversais , Vértebras Cervicais/diagnóstico por imagem , Vértebras Cervicais/cirurgia , Imageamento por Ressonância Magnética/efeitos adversos
19.
Spine J ; 22(5): 769-775, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34848344

RESUMO

BACKGROUND CONTEXT: [18F]-sodium fluoride (NaF) PET/MR is a modern diagnostic modality for imaging increased bone turnover. Its merits in detecting painful facet joint osteoarthritis in patients with lumbar back pain are unknown. PURPOSE: To perform a prospective randomized controlled study investigating [18F]-NaF PET/MR for detecting painful facet joints in comparison to the standard of care (SOC), including clinical examination and conventional MRI. STUDY DESIGN/SETTING: Randomized controlled clinical study. PATIENT SAMPLE: Thirty-nine patients. OUTCOME MEASURES: Visual analog pain scale (VAS) before and at several time points after facet joint infiltration. METHODS: Patients with low back pain and suspected facet joint osteoarthritis underwent lumbar [18F]-NaF PET/MR, besides conventional MRI and clinical examination. After randomization, they either received local anesthetics/ corticosteroid infiltration of facet joints as defined by clinical examination and conventional MRI (SOC), or according to the hot spots on PET/MR. VAS was documented at 15 minutes, 1 day, 1 week and 1 month after infiltration. Thirty-nine patients underwent PET/MR before the study was stopped due to new Good Manufacturing Practice requirement and new regulations by radiation protection authorities limiting staff radiation exposure during the production of this radiotracer. RESULTS: Significant pain reduction compared to baseline was shown at every timepoint in both groups, except at 1 month after infiltration in the SOC group. Pain levels did not differ between SOC (n=17) and PET/MR patients (n=12) before infiltration and at 15 minutes, 1 day, 1 week and 1 month after infiltration. No significant correlation was detected between the sum of the PET/MR activity and the initial pain scores or relative reduction of pain after 15 minutes. The constructed study groups of patients with infiltration of all facet joints being PET/MR-positive (n=18) had significantly less pain after 1 months than patients with infiltration in PET/MR-negative facet joints (n=11) (VAS: 4 [0, 9] vs. 7 [2, 10], p=.046). CONCLUSIONS: There is no correlation of pain to NaF activity nor a relevant superiority of [18F]-NaF PET/MR for identification of painful facet joints compared to the standard of care.


Assuntos
Dor Lombar , Osteoartrite , Espondilose , Articulação Zigapofisária , Humanos , Dor Lombar/diagnóstico por imagem , Dor Lombar/etiologia , Vértebras Lombares/diagnóstico por imagem , Osteoartrite/complicações , Osteoartrite/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Estudos Prospectivos , Fluoreto de Sódio , Articulação Zigapofisária/diagnóstico por imagem
20.
Comput Methods Biomech Biomed Engin ; 25(4): 464-474, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34369827

RESUMO

Pedicle screw instrumentation is performed in the surgical treatment of a wide variety of spinal pathologies. A common postoperative complication associated with this procedure is screw loosening. It has been shown that patient-specific screw fixation can be automated to match standard clinical practice and that failure can be estimated preoperatively using computed tomography images. Hence, we set out to optimize three-dimensional preoperative planning to achieve more mechanically robust screw purchase allowing deviation from intuitive, standard screw parameters. Toward this purpose, we employed a genetic algorithm optimization to find optimal screw sizes and trajectories by maximizing the CT derived bone mechanical properties. The method was tested on cadaveric lumbar vertebrae (L1 to L5) of four human spines (2 female/2 male; age range 60-78 years). The main boundary conditions were the predefined, level-dependent areas of possible screw entry points, as well as the automatically located pedicle structures. Finite element analysis was used to compare the genetic algorithm output to standard clinical planning of screw positioning in terms of the simulated pull-out strength. The genetic algorithm optimization successfully found screw sizes and trajectories that maximize the sum of the Young's modulus within the screw's volume for all 40 pedicle screws included in this study. Overall, there was a 26% increase in simulated pull-out strength for optimized compared to traditional screw trajectories and sizes. Our results indicate that optimizing pedicle screw instrumentation in lumbar vertebrae based on bone quality measures improves screw purchase as compared to traditional instrumentation.


Assuntos
Parafusos Pediculares , Fusão Vertebral , Idoso , Fenômenos Biomecânicos , Densidade Óssea , Feminino , Humanos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Masculino , Pessoa de Meia-Idade , Fusão Vertebral/métodos , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA