Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 38(16): e23891, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39150822

RESUMO

Atrial Natriuretic Peptide (ANP) plays an important role in blood pressure regulation. Low levels of ANP correlate with the development of salt-sensitive hypertension (SS-HTN). Our previous studies indicated that ANP deficiency exacerbated renal function decline in SS-HTN. In the heart and fat tissue, ANP was reported to affect lipid peroxidation and mitochondrial bioenergetics but the effects of ANP on mitochondrial function in the kidney are unexplored. We hypothesized that ANP deficiency in SS-HTN causes renal bioenergetic shift, leading to disruption of mitochondrial network and oxidative stress. To address the hypothesis, we placed Dahl SS wild-type (SSWT) and ANP knockout (SSNPPA-/-) rats on 4% NaCl high salt (HS) diet to induce HTN or maintained them on 0.4% NaCl normal salt (NS) diet and assessed mitochondrial bioenergetics and dynamics using spectrofluorimetry, Seahorse assay, electron paramagnetic resonance (EPR) spectroscopy, Western blotting, electron microscopy, PCR and cytokine assays. We report that under high salt conditions, associated with hypertension and renal damage, the SSNPPA-/- rats exhibit a decrease in mitochondrial membrane potential and elevation in mitochondrial ROS levels compared to SSWT. The redox shift is also evident by the presence of more pronounced medullar lipid peroxidation in the SSNPPA-/- strain. We also revealed fragmented, more damaged mitochondria in the SSNPPA-/- rats, accompanied by increased turnover and biogenesis. Overall, our data indicate that ANP deficiency causes disruptions in mitochondrial bioenergetics and dynamics which likely contributes to aggravation of the renal damage and hypertension in the Dahl SS rat; the major pathological effects are evident in the groups subjected to a combined salt and ANP deficiency-induced mitochondrial stress.


Assuntos
Fator Natriurético Atrial , Metabolismo Energético , Hipertensão , Mitocôndrias , Ratos Endogâmicos Dahl , Animais , Fator Natriurético Atrial/metabolismo , Mitocôndrias/metabolismo , Ratos , Hipertensão/metabolismo , Hipertensão/etiologia , Hipertensão/patologia , Masculino , Estresse Oxidativo , Córtex Renal/metabolismo , Córtex Renal/patologia , Cloreto de Sódio na Dieta/efeitos adversos
2.
bioRxiv ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39149397

RESUMO

Dietary interventions such as caloric restriction (CR) 1 and methionine restriction 2 that prolong lifespan induce the 'browning' of white adipose tissue (WAT), an adaptive metabolic response that increases heat production to maintain health 3,4 . However, how diet influences adipose browning and metabolic health is unclear. Here, we identified that weight-loss induced by CR in humans 5 reduces cysteine concentration in WAT suggesting depletion of this amino-acid may be involved in metabolic benefits of CR. To investigate the role of cysteine on organismal metabolism, we created a cysteine-deficiency mouse model in which dietary cysteine was eliminated and cystathionine γ-lyase (CTH) 6 , the enzyme that synthesizes cysteine was conditionally deleted. Using this animal model, we found that systemic cysteine-depletion causes drastic weight-loss with increased fat utilization and browning of adipose tissue. The restoration of dietary cysteine in cysteine-deficient mice rescued weight loss together with reversal of adipose browning and increased food-intake in an on-demand fashion. Mechanistically, cysteine deficiency induced browning and weight loss is dependent on sympathetic nervous system derived noradrenaline signaling via ß3-adrenergic-receptors and does not require UCP1. Therapeutically, in high-fat diet fed obese mice, one week of cysteine-deficiency caused 30% weight-loss and reversed inflammation. These findings thus establish that cysteine is essential for organismal metabolism as removal of cysteine in the host triggers adipose browning and rapid weight loss.

3.
Compr Physiol ; 14(1): 5225-5242, 2023 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-38158371

RESUMO

According to the Centers for Disease Control and Prevention, 1 in 2 U.S. adults have hypertension, and more than 1 in 7 chronic kidney disease. In fact, hypertension is the second leading cause of kidney failure in the United States; it is a complex disease characterized by, leading to, and caused by renal dysfunction. It is well-established that hypertensive renal damage is accompanied by mitochondrial damage and oxidative stress, which are differentially regulated and manifested along the nephron due to the diverse structure and functions of renal cells. This article provides a summary of the relevant knowledge of mitochondrial bioenergetics and metabolism, focuses on renal mitochondrial function, and discusses the evidence that has been accumulated regarding the role of epithelial mitochondrial bioenergetics in the development of renal tissue dysfunction in hypertension. © 2024 American Physiological Society. Compr Physiol 14:5225-5242, 2024.


Assuntos
Hipertensão Renal , Hipertensão , Humanos , Rim/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Hipertensão Renal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA