Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Virus Evol ; 8(2): veac098, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36381230

RESUMO

Type 41 of human adenovirus species F (HAdV-F41) is a frequent aetiology of gastroenteritis in children, and nosocomial as well as kindergarten outbreaks have been frequently described. In contrast to other HAdV types, HAdV-F41 was not associated with a life-threatening disseminated disease in allogeneic haematopoietic stem cell transplant (HSCT) recipients or any severe organ infections so far. Due to the limited clinical significance, the evolution of HAdV-F41 has not been studied in detail. Recently, HAdV-F41 has been associated with severe hepatitis in young children, and interest in HAdV-F41 has skyrocketed, although the aetiology of hepatitis has not been resolved. Complete genomic HAdV-F41 sequences from thirty-two diagnostic specimens of the past 11 years (2011-22) were generated, all originating from gastroenteritis patients. Additionally, thirty-three complete HAdV-F41 genomes from GenBank were added to our phylogenetic analysis. Phylogenetic analysis of sixty-five genomes indicated that HAdV-F41 evolved with three lineages co-circulating. Lineage 1 included the prototype 'Tak' from 1973 and six isolates from 2007 to 2017 with an average nucleotide identity of 99.3 per cent. Lineage 2 included 53 isolates from 2000 to 2022, had an average nucleotide identity of 99.8 per cent, and split into two sublineages. Lineage 3, probably described for the first time in 2009, had a 45-nucleotide deletion in the long fibre gene and had evolved significantly in the short fibre and E3 region. Moreover, a recent Lineage 3 isolate from 2022 had a recombinant phylogeny of the short fibre gene. Fibres interact with cellular receptors and determine cellular tropism, whereas E3 gene products interfere with the immune recognition of HAdV-infected cells. This in-depth study on the phylogeny of HAdV-F41 discovered significant evolution of recently described Lineage 3 of HAdV-F41, possibly resulting in altered cellular tropism, virulence, and pathophysiology.

2.
Nat Commun ; 13(1): 5215, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064805

RESUMO

Hemochromatosis is one of the most common inherited metabolic diseases among white populations and predominantly originates from a homozygous C282Y mutation in the HFE gene. The G > A transition at position c.845 of the gene causes misfolding of the HFE protein, ultimately resulting in its absence at the cell membrane. Consequently, the lack of interaction with the transferrin receptors 1 and 2 leads to systemic iron overload. We screened potential gRNAs in a highly precise cell culture assay and applied an AAV8 split-vector expressing the adenine base editor ABE7.10 and our candidate gRNA in 129-Hfetm.1.1Nca mice. Here we show that a single injection of our therapeutic vector leads to a gene correction rate of >10% and improved iron metabolism in the liver. Our study presents a proof-of-concept for a targeted gene correction therapy for one of the most frequent hereditary diseases affecting humans.


Assuntos
Adenina , Proteína da Hemocromatose , Hemocromatose , Adenina/metabolismo , Animais , Ferritinas/genética , Hemocromatose/genética , Hemocromatose/metabolismo , Hemocromatose/terapia , Proteína da Hemocromatose/genética , Proteína da Hemocromatose/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Homozigoto , Ferro/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Mutação , Transferrina/metabolismo
3.
Int Arch Allergy Immunol ; 183(3): 337-349, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34619682

RESUMO

INTRODUCTION: Primary immunodeficiencies (PIDs) are a heterogeneous group of disorders characterized by increased susceptibility to infections, immune dysregulation, and/or malignancy. Genetic studies, especially during the last decade, led to a better understanding of the pathogenesis of primary immunodeficiencies and contributed to their classification into distinct monogenic disorders falling under one of the >430 currently known inborn errors of immunity (IEI). The growing availability of molecular genetic testing resulted in the increasing identification of patients with IEI. Here, we evaluated the diagnostic yield and the clinical consequences of targeted next-generation sequencing (tNGS) in a cohort of 294 primary immunodeficiency patients, primarily consisting of cases with sporadic primary antibody deficiency. METHOD: We have custom designed a tNGS panel to sequence a cohort of PID patients. Agilent's HaloPlex Target Enrichment System for Illumina was used for DNA target enrichment. RESULTS: tNGS identified a definite or predicted pathogenic variant in 15.3% of patients. The highest diagnostic rate was observed among patients with combined immunodeficiency or immune dysregulation, for whom genetic diagnosis may affect therapeutic decision-making. CONCLUSION: Next-generation sequencing has changed diagnostic assignment and paved the way for targeted therapeutic intervention with agents directed at reverting the disease-causing molecular abnormality or its pathophysiological consequences. Therefore, such targeted therapies and identifying the genetic basis of PID can be essential for patients with manifested immune dysregulation as conventional immunomodulatory regimens may exert an immunosuppressive effect, aggravating their immunodeficiency or may only inadequately control autoimmune or lymphoproliferative manifestations.


Assuntos
Síndromes de Imunodeficiência , Doenças da Imunodeficiência Primária , Estudos de Coortes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Síndromes de Imunodeficiência/diagnóstico , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/terapia , Doenças da Imunodeficiência Primária/diagnóstico , Doenças da Imunodeficiência Primária/genética , Doenças da Imunodeficiência Primária/terapia
4.
Wellcome Open Res ; 6: 121, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095513

RESUMO

Late in 2020, two genetically-distinct clusters of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with mutations of biological concern were reported, one in the United Kingdom and one in South Africa. Using a combination of data from routine surveillance, genomic sequencing and international travel we track the international dispersal of lineages B.1.1.7 and B.1.351 (variant 501Y-V2). We account for potential biases in genomic surveillance efforts by including passenger volumes from location of where the lineage was first reported, London and South Africa respectively. Using the software tool grinch (global report investigating novel coronavirus haplotypes), we track the international spread of lineages of concern with automated daily reports, Further, we have built a custom tracking website (cov-lineages.org/global_report.html) which hosts this daily report and will continue to include novel SARS-CoV-2 lineages of concern as they are detected.

5.
Front Immunol ; 12: 721738, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456929

RESUMO

Here, we described the case of a B cell-deficient patient after CD19 CAR-T cell therapy for refractory B cell Non-Hodgkin Lymphoma with protracted coronavirus disease 2019 (COVID-19). For weeks, this patient only inefficiently contained the virus while convalescent plasma transfusion correlated with virus clearance. Interestingly, following convalescent plasma therapy natural killer cells matured and virus-specific T cells expanded, presumably allowing virus clearance and recovery from the disease. Our findings, thus, suggest that convalescent plasma therapy can activate cellular immune responses to clear SARS-CoV-2 infections. If confirmed in larger clinical studies, these data could be of general importance for the treatment of COVID-19 patients.


Assuntos
Linfócitos B , COVID-19/imunologia , COVID-19/terapia , Síndromes de Imunodeficiência/imunologia , Imunoterapia Adotiva , Células Matadoras Naturais/imunologia , Linfócitos T/imunologia , Linfócitos B/imunologia , COVID-19/complicações , Feminino , Humanos , Imunização Passiva , Imunoglobulinas Intravenosas , Síndromes de Imunodeficiência/complicações , Ativação Linfocitária , Linfopoese , SARS-CoV-2 , Carga Viral , Soroterapia para COVID-19
6.
Brief Bioinform ; 22(3)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34020538

RESUMO

Infection with human cytomegalovirus (HCMV) can cause severe complications in immunocompromised individuals and congenitally infected children. Characterizing heterogeneous viral populations and their evolution by high-throughput sequencing of clinical specimens requires the accurate assembly of individual strains or sequence variants and suitable variant calling methods. However, the performance of most methods has not been assessed for populations composed of low divergent viral strains with large genomes, such as HCMV. In an extensive benchmarking study, we evaluated 15 assemblers and 6 variant callers on 10 lab-generated benchmark data sets created with two different library preparation protocols, to identify best practices and challenges for analyzing such data. Most assemblers, especially metaSPAdes and IVA, performed well across a range of metrics in recovering abundant strains. However, only one, Savage, recovered low abundant strains and in a highly fragmented manner. Two variant callers, LoFreq and VarScan2, excelled across all strain abundances. Both shared a large fraction of false positive variant calls, which were strongly enriched in T to G changes in a 'G.G' context. The magnitude of this context-dependent systematic error is linked to the experimental protocol. We provide all benchmarking data, results and the entire benchmarking workflow named QuasiModo, Quasispecies Metric determination on omics, under the GNU General Public License v3.0 (https://github.com/hzi-bifo/Quasimodo), to enable full reproducibility and further benchmarking on these and other data.


Assuntos
Citomegalovirus/genética , Variação Genética , Genoma Viral , Software , Humanos
7.
Front Cell Infect Microbiol ; 11: 664247, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937103

RESUMO

Reactivation and shedding of human cytomegalovirus (HCMV) in breast milk during lactation is highly frequent in HCMV-seropositive mothers. This represents a key transmission route for postnatal HCMV infection and can lead to severe disease in preterm neonates. Little is known about HCMV strain composition or longitudinal intrahost viral population dynamics in breast milk from immunocompetent women. We performed HCMV-specific target enrichment and high-throughput sequencing of 38 breast milk samples obtained in Germany between days 10 and 60 postpartum from 15 mothers with HCMV DNA lactia, and assembled HCMV consensus sequences de novo. The genotype distribution and number of HCMV strains present in each sample were determined by quantifying genotype-specific sequence motifs in 12 hypervariable viral genes, revealing a wide range of genotypes (82/109) for these genes in the cohort and a unique, longitudinally stable strain composition in each mother. Reactivation of up to three distinct HCMV strains was detected in 8/15 of mothers, indicating that a representative subset of the woman's HCMV reservoir might be locally reactivated early during lactation. As described previously, nucleotide diversity of samples with multiple strains was much higher than that of samples with single strains. Breast milk as a main source of postnatal mother-to-infant transmission may serve as a repository for viral diversity and thus play an essential role in the natural epidemiology of HCMV.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Citomegalovirus/genética , DNA Viral , Feminino , Alemanha , Humanos , Lactente , Recém-Nascido , Leite Humano
8.
Proc Natl Acad Sci U S A ; 117(31): 18649-18660, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32690687

RESUMO

Starting at birth, the immune system of newborns and children encounters and is influenced by environmental challenges. It is still not completely understood how γδ T cells emerge and adapt during early life. Studying the composition of T cell receptors (TCRs) using next-generation sequencing (NGS) in neonates, infants, and children can provide valuable insights into the adaptation of T cell subsets. To investigate how neonatal γδ T cell repertoires are shaped by microbial exposure after birth, we monitored the γ-chain (TRG) and δ-chain (TRD) repertoires of peripheral blood T cells in newborns, infants, and young children from Europe and sub-Saharan Africa. We identified a set of TRG and TRD sequences that were shared by all children from Europe and Africa. These were primarily public clones, characterized by simple rearrangements of Vγ9 and Vδ2 chains with low junctional diversity and usage of non-TRDJ1 gene segments, reminiscent of early ontogenetic subsets of γδ T cells. Further profiling revealed that these innate, public Vγ9Vδ2+ T cells underwent an immediate TCR-driven polyclonal proliferation within the first 4 wk of life. In contrast, γδ T cells using Vδ1+ and Vδ3+TRD rearrangements did not significantly expand after birth. However, different environmental cues may lead to the observed increase of Vδ1+ and Vδ3+TRD sequences in the majority of African children. In summary, we show how dynamic γδ TCR repertoires develop directly after birth and present important differences among γδ T cell subsets.


Assuntos
Receptores de Antígenos de Linfócitos T gama-delta , Subpopulações de Linfócitos T/imunologia , África Subsaariana , Bactérias/imunologia , Criança , Pré-Escolar , Europa (Continente) , Rearranjo Gênico do Linfócito T/genética , Rearranjo Gênico do Linfócito T/imunologia , Humanos , Lactente , Recém-Nascido , Estudos Longitudinais , Receptores de Antígenos de Linfócitos T gama-delta/genética , Receptores de Antígenos de Linfócitos T gama-delta/imunologia
9.
J Virol ; 94(20)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727874

RESUMO

To ensure productive infection, herpesviruses utilize tegument proteins and nonstructural regulatory proteins to counteract cellular defense mechanisms and to reprogram cellular pathways. The M25 proteins of mouse cytomegalovirus (MCMV) belong to the betaherpesvirus UL25 gene family that encodes viral proteins implicated with regulatory functions. Through affinity purification and mass spectrometric analysis, we discovered the tumor suppressor protein p53 as a host factor interacting with the M25 proteins. M25-p53 interaction in infected and transfected cells was confirmed by coimmunoprecipitation. Moreover, the proteins colocalized in nuclear dot-like structures upon both infection and inducible expression of the two M25 isoforms. p53 accumulated in wild-type MCMV-infected cells, while this did not occur upon infection with a mutant lacking the M25 gene. Both M25 proteins were able to mediate the effect, identifying them as the first CMV proteins responsible for p53 accumulation during infection. Interaction with M25 proteins led to substantial prolongation of the half-life of p53. In contrast to the higher abundance of the p53 protein in wild-type MCMV-infected cells, the transcript levels of the prominent p53 target genes Cdkn1a and Mdm2 were diminished compared to cells infected with the ΔM25 mutant, and this was associated with reduced binding of p53 to responsive elements within the respective promoters. Notably, the productivity of the M25 deletion mutant was partially rescued on p53-negative fibroblasts. We propose that the MCMV M25 proteins sequester p53 molecules in the nucleus of infected cells, reducing their availability for activating a subset of p53-regulated genes, thereby dampening the antiviral role of p53.IMPORTANCE Host cells use a number of factors to defend against viral infection. Viruses are, however, in an arms race with their host cells to overcome these defense mechanisms. The tumor suppressor protein p53 is an important sensor of cell stress induced by oncogenic insults or viral infections, which upon activation induces various pathways to ensure the integrity of cells. Viruses have to counteract many functions of p53, but complex DNA viruses such as cytomegaloviruses may also utilize some p53 functions for their own benefit. In this study, we discovered that the M25 proteins of mouse cytomegalovirus interact with p53 and mediate its accumulation during infection. Interaction with the M25 proteins sequesters p53 molecules in nuclear dot-like structures, limiting their availability for activation of a subset of p53-regulated target genes. Understanding the interaction between viral proteins and p53 may allow to develop new therapeutic strategies against cytomegalovirus and other viruses.


Assuntos
Núcleo Celular/metabolismo , Infecções por Herpesviridae/metabolismo , Muromegalovirus/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Virais/metabolismo , Animais , Núcleo Celular/genética , Núcleo Celular/virologia , Células HCT116 , Células HEK293 , Infecções por Herpesviridae/genética , Humanos , Camundongos , Muromegalovirus/genética , Proteína Supressora de Tumor p53/genética , Proteínas Virais/genética
10.
J Leukoc Biol ; 107(6): 1023-1032, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32064671

RESUMO

The Vγ9Vδ2 T cell subset is the major γδ T cell subset in human peripheral blood and has the unique ability to contribute to immune surveillance by detecting pyrophosphorylated metabolites of isoprenoid synthesis, termed phosphoantigens (pAgs). Vγ9Vδ2 T cells are first detected at midgestation and show postnatal expansion. Interestingly, neonatal Vγ9Vδ2 T cells display a higher TCR repertoire diversity with more public clonotypes and lower pAg responsiveness than in adults. Notably, it is not known whether postnatal changes occur by TCR-dependent reactivity to pAg exposure. Here, we applied next-generation sequencing of γδ TCR repertoires to understand potential differences in the pAg-mediated response of neonatal and adult Vγ9Vδ2 T cells at the level of the expressed γδ TCR. We observed a polyclonal pAg-induced response of neonatal and adult Vγ9Vδ2 T cells, albeit neonatal γδ T cells showed less in vitro pAg responsiveness. Neonatal Vγ9Vδ2 T cells displayed a less pronounced bias for Jδ1 usage and a more frequent use of Jδ2 or Jδ3 that remained stable after pAg exposure. In addition, public and private Vδ2 TRD clones took part in the polyclonal pAg-induced response in neonates and adults. In conclusion, adult and neonatal Vγ9Vδ2 T cells both undergo polyclonal pAg-induced proliferation, whereas especially adult Vγ9Vδ2 T cells display a high stability at the level of the expressed TCR repertoire.


Assuntos
Sangue Fetal/imunologia , Fosfoproteínas/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Subpopulações de Linfócitos T/imunologia , Adulto , Proliferação de Células/efeitos dos fármacos , Células Clonais , Sangue Fetal/citologia , Sangue Fetal/efeitos dos fármacos , Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Recém-Nascido , Interleucina-2/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Organofosfatos/farmacologia , Fosfoproteínas/genética , Cultura Primária de Células , Receptores de Antígenos de Linfócitos T gama-delta/genética , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/efeitos dos fármacos , Ácido Zoledrônico/farmacologia
11.
iScience ; 23(1): 100764, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31887661

RESUMO

Adeno-associated virus (AAV)-based vectors are considered efficient and safe gene delivery systems in gene therapy. We combined two guide RNA genes, Cas9, and a self-linearizing repair template in one vector (AIO-SL) to correct fumarylacetoacetate hydrolase (FAH) deficiency in mice. The vector genome of 5.73 kb was packaged into VP2-depleted AAV particles (AAV2/8ΔVP2), which, however, did not improve cargo capacity. Reprogrammed hepatocytes were treated with AIO-SL.AAV2ΔVP2 and subsequently transplanted, resulting in large clusters of FAH-positive hepatocytes. Direct injection of AIO-SL.AAV8ΔVP2 likewise led to FAH expression and long-term survival. The AIO-SL vector achieved an ∼6-fold higher degree of template integration than vectors without template self-linearization. Subsequent analysis revealed that AAV8 particles, in contrast to AAV2, incorporate oversized genomes distinctly greater than 5.2 kb. Finally, our AAV8-based vector represents a promising tool for gene editing strategies to correct monogenic liver diseases requiring (large) fragment removal and/or simultaneous sequence replacement.

12.
Virus Evol ; 2(1): vev025, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27774294

RESUMO

Human influenza viruses are rapidly evolving RNA viruses that cause short-term respiratory infections with substantial morbidity and mortality in annual epidemics. Uncovering the general principles of viral coevolution with human hosts is important for pathogen surveillance and vaccine design. Protein regions are an appropriate model for the interactions between two macromolecules, but the currently used epitope definition for the major antigen of influenza viruses, namely hemagglutinin, is very broad. Here, we combined genetic, evolutionary, antigenic, and structural information to determine the most relevant regions of the hemagglutinin of human influenza A/H3N2 viruses for interaction with human immunoglobulins. We estimated the antigenic weights of amino acid changes at individual sites from hemagglutination inhibition data using antigenic tree inference followed by spatial clustering of antigenicity-altering protein sites on the protein structure. This approach determined six relevant areas (patches) for antigenic variation that had a key role in the past antigenic evolution of the viruses. Previous transitions between successive predominating antigenic types of H3N2 viruses always included amino acid changes in either the first or second antigenic patch. Interestingly, there was only partial overlap between the antigenic patches and the patches under strong positive selection. Therefore, besides alterations of antigenicity, other interactions with the host may shape the evolution of human influenza A/H3N2 viruses.

13.
J Virol ; 90(13): 5860-5875, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27009952

RESUMO

UNLABELLED: Several essential viral proteins are proposed to participate in genome encapsidation of human cytomegalovirus (HCMV), among them pUL77 and pUL93, which remain largely uncharacterized. To gain insight into their properties, we generated an HCMV mutant expressing a pUL77-monomeric enhanced green fluorescent protein (mGFP) fusion protein and a pUL93-specific antibody. Immunoblotting demonstrated that both proteins are incorporated into capsids and virions. Conversely to data suggesting internal translation initiation sites within the UL93 open reading frame (ORF), we provide evidence that pUL93 synthesis commences at the first start codon. In infected cells, pUL77-mGFP was found in nuclear replication compartments and dot-like structures, colocalizing with capsid proteins. Immunogold labeling of nuclear capsids revealed that pUL77 is present on A, B, and C capsids. Pulldown of pUL77-mGFP revealed copurification of pUL93, indicating interaction between these proteins, which still occurred when capsid formation was prevented. Correct subnuclear distribution of pUL77-mGFP required pUL93 as well as the major capsid protein (and thus probably the presence of capsids), but not the tegument protein pp150 or the encapsidation protein pUL52, demonstrating that pUL77 nuclear targeting occurs independently of the formation of DNA-filled capsids. When pUL77 or pUL93 was missing, generation of unit-length genomes was not observed, and only empty B capsids were produced. Taken together, these results show that pUL77 and pUL93 are capsid constituents needed for HCMV genome encapsidation. Therefore, the task of pUL77 seems to differ from that of its alphaherpesvirus orthologue pUL25, which exerts its function subsequent to genome cleavage-packaging. IMPORTANCE: The essential HCMV proteins pUL77 and pUL93 were suggested to be involved in viral genome cleavage-packaging but are poorly characterized both biochemically and functionally. By producing a monoclonal antibody against pUL93 and generating an HCMV mutant in which pUL77 is fused to a fluorescent protein, we show that pUL77 and pUL93 are capsid constituents, with pUL77 being similarly abundant on all capsid types. Each protein is required for genome encapsidation, as the absence of either pUL77 or pUL93 results in a genome packaging defect with the formation of empty capsids only. This distinguishes pUL77 from its alphaherpesvirus orthologue pUL25, which is enriched on DNA-filled capsids and exerts its function after the viral DNA is packaged. Our data for the first time describe an HCMV mutant with a fluorescent capsid and provide insight into the roles of pUL77 and pUL93, thus contributing to a better understanding of the HCMV encapsidation network.


Assuntos
Capsídeo/metabolismo , Citomegalovirus/química , Citomegalovirus/genética , DNA Viral/metabolismo , Genoma Viral , Proteínas Virais/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/metabolismo , Citomegalovirus/metabolismo , DNA Viral/genética , Proteínas de Fluorescência Verde , Humanos , Montagem de Vírus
14.
J Virol ; 88(24): 14326-39, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25275132

RESUMO

UNLABELLED: The human cytomegalovirus (CMV) UL11 open reading frame (ORF) encodes a putative type I transmembrane glycoprotein which displays remarkable amino acid sequence variability among different CMV isolates, suggesting that it represents an important virulence factor. In a previous study, we have shown that UL11 can interact with the cellular receptor tyrosine phosphatase CD45, which has a central role for signal transduction in T cells, and treatment of T cells with large amounts of a soluble UL11 protein inhibited their proliferation. In order to analyze UL11 expression in CMV-infected cells, we constructed CMV recombinants whose genomes either encode tagged UL11 versions or carry a stop mutation in the UL11 ORF. Moreover, we examined whether UL11 affects the function of virus-specific cytotoxic T lymphocytes (CTLs). We found that the UL11 ORF gives rise to several proteins due to both posttranslational modification and alternative translation initiation sites. Biotin labeling of surface proteins on infected cells indicated that only highly glycosylated UL11 forms are present at the plasma membrane, whereas less glycosylated UL11 forms were found in the endoplasmic reticulum. We did not find evidence of UL11 cleavage or secretion of a soluble UL11 version. Cocultivation of CTLs recognizing different CMV epitopes with fibroblasts infected with a UL11 deletion mutant or the parental strain revealed that under the conditions applied UL11 did not influence the activation of CMV-specific CD8 T cells. For further studies, we propose to investigate the interaction of UL11 with CD45 and the functional consequences in other immune cells expressing CD45. IMPORTANCE: Human cytomegalovirus (CMV) belongs to those viruses that extensively interfere with the host immune response, yet the precise function of many putative immunomodulatory CMV proteins remains elusive. Previously, we have shown that the CMV UL11 protein interacts with the leukocyte common antigen CD45, a cellular receptor tyrosine phosphatase with a central role for signal transduction in T cells. Here, we examined the proteins expressed by the UL11 gene in CMV-infected cells and found that at least one form of UL11 is present at the cell surface, enabling it to interact with CD45 on immune cells. Surprisingly, CMV-expressed UL11 did not affect the activity of virus-specific CD8 T cells. This finding warrants investigation of the impact of UL11 on CD45 functions in other leukocyte subpopulations.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Citomegalovirus/imunologia , Glicoproteínas/imunologia , Proteínas Virais/imunologia , Células Cultivadas , Técnicas de Cocultura , Fibroblastos/virologia , Glicoproteínas/biossíntese , Humanos , Ativação Linfocitária , Proteínas Virais/biossíntese
15.
Viruses ; 6(1): 354-70, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24452007

RESUMO

Human cytomegalovirus (HCMV) has a large 240 kb genome that may encode more than 700 gene products with many of them remaining uncharacterized. Mutagenesis of bacterial artificial chromosome (BAC)-cloned CMV genomes has greatly facilitated the analysis of viral gene functions. However, the roles of essential proteins often remain particularly elusive because their investigation requires the cumbersome establishment of suitable complementation systems. Here, we show that HCMV genomes can be introduced into cells with unprecedented efficiency by applying a transfection protocol based on replication-defective, inactivated adenovirus particles (adenofection). Upon adenofection of several permissive cell types with HCMV genomes carrying mutations in essential genes, transfection rates of up to 60% were observed and viral proteins of all kinetic classes were found expressed. This enabled further analyses of the transfected cells by standard biochemical techniques. Remarkably, HCMV genomes lacking elements essential for viral DNA replication, such as the lytic origin of replication, still expressed several late proteins. In conclusion, adenofection allows the study of essential HCMV genes directly in BAC-transfected cells without the need for sophisticated complementation strategies.


Assuntos
Citomegalovirus/genética , Genes Essenciais , Genes Virais , Genética Microbiana/métodos , Biologia Molecular/métodos , Adenoviridae/genética , Linhagem Celular , Teste de Complementação Genética , Humanos , Transfecção
16.
PeerJ ; 1: e89, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23825794

RESUMO

Phylogenetic reconstruction is vital to analyzing the evolutionary relationship of genes within and across populations of different species. Nowadays, with next generation sequencing technologies producing sets comprising thousands of sequences, robust identification of the tree topology, which is optimal according to standard criteria such as maximum parsimony, maximum likelihood or posterior probability, with phylogenetic inference methods is a computationally very demanding task. Here, we describe a stochastic search method for a maximum parsimony tree, implemented in a software package we named PTree. Our method is based on a new pattern-based technique that enables us to infer intermediate sequences efficiently where the incorporation of these sequences in the current tree topology yields a phylogenetic tree with a lower cost. Evaluation across multiple datasets showed that our method is comparable to the algorithms implemented in PAUP* or TNT, which are widely used by the bioinformatics community, in terms of topological accuracy and runtime. We show that our method can process large-scale datasets of 1,000-8,000 sequences. We believe that our novel pattern-based method enriches the current set of tools and methods for phylogenetic tree inference. The software is available under: http://algbio.cs.uni-duesseldorf.de/webapps/wa-download/.

17.
PLoS Comput Biol ; 8(4): e1002492, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22532796

RESUMO

Distinguishing mutations that determine an organism's phenotype from (near-) neutral 'hitchhikers' is a fundamental challenge in genome research, and is relevant for numerous medical and biotechnological applications. For human influenza viruses, recognizing changes in the antigenic phenotype and a strains' capability to evade pre-existing host immunity is important for the production of efficient vaccines. We have developed a method for inferring 'antigenic trees' for the major viral surface protein hemagglutinin. In the antigenic tree, antigenic weights are assigned to all tree branches, which allows us to resolve the antigenic impact of the associated amino acid changes. Our technique predicted antigenic distances with comparable accuracy to antigenic cartography. Additionally, it identified both known and novel sites, and amino acid changes with antigenic impact in the evolution of influenza A (H3N2) viruses from 1968 to 2003. The technique can also be applied for inference of 'phenotype trees' and genotype-phenotype relationships from other types of pairwise phenotype distances.


Assuntos
Antígenos Virais/genética , Mapeamento Cromossômico/métodos , Evolução Molecular , Hemaglutininas/genética , Vírus da Influenza A Subtipo H3N2/genética , Modelos Genéticos , Simulação por Computador , Genótipo , Fenótipo
18.
Mol Biol Evol ; 29(8): 2063-71, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22427709

RESUMO

Influenza A viruses are single-stranded RNA viruses capable of evolving rapidly to adapt to environmental conditions. Examples include the establishment of a virus in a novel host or an adaptation to increasing immunity within the host population due to prior infection or vaccination against a circulating strain. Knowledge of the viral protein regions under positive selection is therefore crucial for surveillance. We have developed a method for detecting positively selected patches of sites on the surface of viral proteins, which we assume to be relevant for adaptive evolution. We measure positive selection based on dN/dS ratios of genetic changes inferred by considering the phylogenetic structure of the data and suggest a graph-cut algorithm to identify such regions. Our algorithm searches for dense and spatially distinct clusters of sites under positive selection on the protein surface. For the hemagglutinin protein of human influenza A viruses of the subtypes H3N2 and H1N1, our predicted sites significantly overlap with known antigenic and receptor-binding sites. From the structure and sequence data of the 2009 swine-origin influenza A/H1N1 hemagglutinin and PB2 protein, we identified regions that provide evidence of evolution under positive selection since introduction of the virus into the human population. The changes in PB2 overlap with sites reported to be associated with mammalian adaptation of the influenza A virus. Application of our technique to the protein structures of viruses of yet unknown adaptive behavior could identify further candidate regions that are important for host-virus interaction.


Assuntos
Vírus da Influenza A/genética , Seleção Genética , Proteínas Virais/química , Animais , Afinidade de Anticorpos/imunologia , Bases de Dados de Proteínas , Epitopos/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Modelos Moleculares , Suínos , Moldes Genéticos
19.
ISME J ; 6(2): 298-308, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21850055

RESUMO

Here we describe, the longest microbial time-series analyzed to date using high-resolution 16S rRNA tag pyrosequencing of samples taken monthly over 6 years at a temperate marine coastal site off Plymouth, UK. Data treatment effected the estimation of community richness over a 6-year period, whereby 8794 operational taxonomic units (OTUs) were identified using single-linkage preclustering and 21 130 OTUs were identified by denoising the data. The Alphaproteobacteria were the most abundant Class, and the most frequently recorded OTUs were members of the Rickettsiales (SAR 11) and Rhodobacteriales. This near-surface ocean bacterial community showed strong repeatable seasonal patterns, which were defined by winter peaks in diversity across all years. Environmental variables explained far more variation in seasonally predictable bacteria than did data on protists or metazoan biomass. Change in day length alone explains >65% of the variance in community diversity. The results suggested that seasonal changes in environmental variables are more important than trophic interactions. Interestingly, microbial association network analysis showed that correlations in abundance were stronger within bacterial taxa rather than between bacteria and eukaryotes, or between bacteria and environmental variables.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biodiversidade , Estações do Ano , Bactérias/classificação , Bactérias/genética , Meio Ambiente , Oceanos e Mares , Fotoperíodo , RNA Ribossômico 16S/genética , Reino Unido
20.
PLoS Pathog ; 7(12): e1002432, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22174689

RESUMO

Human cytomegalovirus (CMV) exerts diverse and complex effects on the immune system, not all of which have been attributed to viral genes. Acute CMV infection results in transient restrictions in T cell proliferative ability, which can impair the control of the virus and increase the risk of secondary infections in patients with weakened or immature immune systems. In a search for new immunomodulatory proteins, we investigated the UL11 protein, a member of the CMV RL11 family. This protein family is defined by the RL11 domain, which has homology to immunoglobulin domains and adenoviral immunomodulatory proteins. We show that pUL11 is expressed on the cell surface and induces intercellular interactions with leukocytes. This was demonstrated to be due to the interaction of pUL11 with the receptor tyrosine phosphatase CD45, identified by mass spectrometry analysis of pUL11-associated proteins. CD45 expression is sufficient to mediate the interaction with pUL11 and is required for pUL11 binding to T cells, indicating that pUL11 is a specific CD45 ligand. CD45 has a pivotal function regulating T cell signaling thresholds; in its absence, the Src family kinase Lck is inactive and signaling through the T cell receptor (TCR) is therefore shut off. In the presence of pUL11, several CD45-mediated functions were inhibited. The induction of tyrosine phosphorylation of multiple signaling proteins upon TCR stimulation was reduced and T cell proliferation was impaired. We therefore conclude that pUL11 has immunosuppressive properties, and that disruption of T cell function via inhibition of CD45 is a previously unknown immunomodulatory strategy of CMV.


Assuntos
Infecções por Citomegalovirus/metabolismo , Citomegalovirus/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Linfócitos T/metabolismo , Linfócitos T/virologia , Proteínas Virais/metabolismo , Linhagem Celular , Separação Celular , Citomegalovirus/imunologia , Citometria de Fluxo , Humanos , Antígenos Comuns de Leucócito/imunologia , Espectrometria de Massas , Microscopia Confocal , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/imunologia , Transfecção , Proteínas Virais/genética , Proteínas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA