Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Eur J Immunol ; 54(4): e2250318, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38072999

RESUMO

Innate lymphocytes comprise cytotoxic natural killer (NK) cells and tissue-resident innate lymphoid cells (ILC) that are subgrouped according to their cytokine profiles into group 1 ILC (ILC1), ILC2, and ILC3. However, cell surface receptors unambiguously defining or specifically activating such ILC subsets are scarcely known. Here, we report on the physiologic expression of the human activating C-type lectin-like receptor (CTLR) NKp65, a high-affinity receptor for the CTLR keratinocyte-associated C-type lectin (KACL). Tracking rare NKp65 transcripts in human blood, we identify ILC3 to selectively express NKp65. NKp65 expression not only demarcates "bona fide" ILC3 from likewise RORγt-expressing ILC precursors and lymphoid tissue inducer cells but also from mature NK cells which acquire the NKp65-relative NKp80 during a Notch-dependent differentiation from NKp65+ precursor cells. Hence, ILC3 and NK cells mutually exclusively and interdependently express the genetically coupled sibling receptors NKp65 and NKp80. Much alike NKp80, NKp65 promotes cytotoxicity by innate lymphocytes which may become relevant during pathophysiological reprogramming of ILC3. Altogether, we report the selective expression of the activating immunoreceptor NKp65 by ILC3 demarcating ILC3 from mature NK cells and endowing ILC3 with a dedicated immunosensor for the epidermal immune barrier.


Assuntos
Técnicas Biossensoriais , Imunidade Inata , Humanos , Imunoensaio , Células Matadoras Naturais , Lectinas Tipo C/metabolismo
2.
MAbs ; 15(1): 2208697, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37165468

RESUMO

The field of immuno-oncology has revolutionized cancer patient care and improved survival and quality of life for patients. Much of the focus in the field has been on exploiting the power of the adaptive immune response through therapeutic targeting of T cells. While these approaches have markedly advanced the field, some challenges remain, and the clinical benefit of T cell therapies does not extend to all patients or tumor indications. Alternative strategies, such as engaging the innate immune system, have become an intense area of focus in the field. In particular, the engagement of natural killer (NK) cells as potent effectors of the innate immune response has emerged as a promising modality in immunotherapy. Here, we review therapeutic approaches for selective engagement of NK cells for cancer therapy, with a particular focus on targeting the key activating receptors NK Group 2D (NKG2D) and cluster of differentiation 16A (CD16A).


Assuntos
Subfamília K de Receptores Semelhantes a Lectina de Células NK , Neoplasias , Humanos , Qualidade de Vida , Células Matadoras Naturais , Neoplasias/terapia , Imunoterapia
3.
Sci Rep ; 12(1): 4834, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35318366

RESUMO

The C-type lectin-related protein, Clr-f, encoded by Clec2h in the mouse NK gene complex (NKC), is a member of a family of immune regulatory lectins that guide immune responses at distinct tissues of the body. Clr-f is highly expressed in the kidney; however, its activity in this organ is unknown. To assess the requirement for Clr-f in kidney health and function, we generated a Clr-f-deficient mouse (Clr-f-/-) by targeted deletions in the Clec2h gene. Mice lacking Clr-f exhibited glomerular and tubular lesions, immunoglobulin and C3 complement protein renal deposits, and significant abdominal and ectopic lipid accumulation. Whole kidney transcriptional profile analysis of Clr-f-/- mice at 7, 13, and 24 weeks of age revealed a dynamic dysregulation in lipid metabolic processes, stress responses, and inflammatory mediators. Examination of the immune contribution to the pathologies of Clr-f-/- mouse kidneys identified elevated IL-12 and IFNγ in cells of the tubulointerstitium, and an infiltrating population of neutrophils and T and B lymphocytes. The presence of these insults in a Rag1-/-Clr-f-/- background reveals that Clr-f-/- mice are susceptible to a T and B lymphocyte-independent renal pathogenesis. Our data reveal a role for Clr-f in the maintenance of kidney immune and metabolic homeostasis.


Assuntos
Células Matadoras Naturais , Lectinas Tipo C , Animais , Homeostase , Rim/metabolismo , Lectinas Tipo C/metabolismo , Lipídeos , Camundongos , Camundongos Endogâmicos C57BL , Subfamília B de Receptores Semelhantes a Lectina de Células NK/metabolismo
4.
Front Immunol ; 12: 633658, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34012432

RESUMO

Systemic lupus erythematosus (SLE) is a severe autoimmune disease of unknown etiology. The major histocompatibility complex (MHC) class I-related chain A (MICA) and B (MICB) are stress-inducible cell surface molecules. MICA and MICB label malfunctioning cells for their recognition by cytotoxic lymphocytes such as natural killer (NK) cells. Alterations in this recognition have been found in SLE. MICA/MICB can be shed from the cell surface, subsequently acting either as a soluble decoy receptor (sMICA/sMICB) or in CD4+ T-cell expansion. Conversely, NK cells are frequently defective in SLE and lower NK cell numbers have been reported in patients with active SLE. However, these cells are also thought to exert regulatory functions and to prevent autoimmunity. We therefore investigated whether, and how, plasma membrane and soluble MICA/B are modulated in SLE and whether they influence NK cell activity, in order to better understand how MICA/B may participate in disease development. We report significantly elevated concentrations of circulating sMICA/B in SLE patients compared with healthy individuals or a control patient group. In SLE patients, sMICA concentrations were significantly higher in patients positive for anti-SSB and anti-RNP autoantibodies. In order to study the mechanism and the potential source of sMICA, we analyzed circulating sMICA concentration in Behcet patients before and after interferon (IFN)-α therapy: no modulation was observed, suggesting that IFN-α is not intrinsically crucial for sMICA release in vivo. We also show that monocytes and neutrophils stimulated in vitro with cytokines or extracellular chromatin up-regulate plasma membrane MICA expression, without releasing sMICA. Importantly, in peripheral blood mononuclear cells from healthy individuals stimulated in vitro by cell-free chromatin, NK cells up-regulate CD69 and CD107 in a monocyte-dependent manner and at least partly via MICA-NKG2D interaction, whereas NK cells were exhausted in SLE patients. In conclusion, sMICA concentrations are elevated in SLE patients, whereas plasma membrane MICA is up-regulated in response to some lupus stimuli and triggers NK cell activation. Those results suggest the requirement for a tight control in vivo and highlight the complex role of the MICA/sMICA system in SLE.


Assuntos
Membrana Celular/imunologia , Antígenos de Histocompatibilidade Classe I/sangue , Células Matadoras Naturais/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Ativação Linfocitária , Anticorpos Antinucleares/sangue , Biomarcadores/sangue , Estudos de Casos e Controles , Membrana Celular/metabolismo , Células Cultivadas , Humanos , Células Matadoras Naturais/metabolismo , Lúpus Eritematoso Sistêmico/sangue , Lúpus Eritematoso Sistêmico/diagnóstico , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Nucleossomos/imunologia , Nucleossomos/metabolismo , Fenótipo , Ribonucleoproteínas/imunologia , Síndrome de Sjogren/sangue , Síndrome de Sjogren/diagnóstico , Síndrome de Sjogren/imunologia , Regulação para Cima
5.
PLoS One ; 16(2): e0246726, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33556116

RESUMO

The C-type lectin-like receptor NKG2D contributes to the immunosurveillance of virally infected and malignant cells by cytotoxic lymphocytes. A peculiar and puzzling feature of the NKG2D-based immunorecognition system is the high number of ligands for this single immunoreceptor. In humans, there are a total of eight NKG2D ligands (NKG2DL) comprising two members of the MIC (MICA, MICB) and six members of the ULBP family of glycoproteins (ULBP1 to ULBP6). While MICA has been extensively studied with regard to its biochemistry, cellular expression and function, very little is known about the NKG2DL ULBP4. This is, at least in part, due to its rather restricted expression by very few cell lines and tissues. Recently, constitutive ULBP4 expression by human monocytes was reported, questioning the view of tissue-restricted ULBP4 expression. Here, we scrutinized ULBP4 expression by human peripheral blood mononuclear cells and monocytes by analyzing ULBP4 transcripts and ULBP4 surface expression. In contrast to MICA, there was no ULBP4 expression detectable, neither by freshly isolated monocytes nor by PAMP-activated monocytes. However, a commercial antibody erroneously indicated surface ULBP4 on monocytes due to a non-ULBP4-specific binding activity, emphasizing the critical importance of validated reagents for life sciences. Collectively, our data show that ULBP4 is not expressed by monocytes, and likely also not by other peripheral blood immune cells, and therefore exhibits an expression pattern rather distinct from other human NKG2DL.


Assuntos
Proteínas de Transporte/biossíntese , Regulação da Expressão Gênica , Antígenos de Histocompatibilidade Classe I/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/biossíntese , Monócitos/metabolismo , Proteínas Ligadas por GPI/metabolismo , Humanos , Monócitos/citologia
6.
Open Res Eur ; 1: 107, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35967081

RESUMO

Background: MICA and MICB are tightly regulated stress-induced proteins that trigger the immune system by binding to the activating receptor NKG2D on cytotoxic lymphocytes. MICA and MICB are highly polymorphic molecules with prevalent expression on several types of solid tumors and limited expression in normal/healthy tissues, making them attractive targets for therapeutic intervention. Methods: We have generated a series of anti-MICA and MICB cross-reactive antibodies with the unique feature of binding to the most prevalent isoforms of both these molecules. Results: The anti-MICA and MICB antibody MICAB1, a human IgG1 Fc-engineered monoclonal antibody (mAb), displayed potent antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) of MICA/B-expressing tumor cells in vitro. However, it showed insufficient efficiency against solid tumors in vivo, which prompted the development of antibody-drug conjugates (ADC). Indeed, optimal tumor control was achieved with MICAB1-ADC format in several solid tumor models, including patient-derived xenografts (PDX) and carcinogen-induced tumors in immunocompetent MICAgen transgenic mice. Conclusions: These data indicate that MICA and MICB are promising targets for cytotoxic immunotherapy.

8.
Expert Opin Biol Ther ; 20(12): 1491-1501, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32726145

RESUMO

INTRODUCTION: The activating NKG2D receptor plays a central role in the immune recognition and elimination of abnormal self-cells by cytotoxic lymphocytes. NKG2D binding to cell stress-inducible ligands (NKG2DL) up-regulated on cancer cells facilitates their immunorecognition. Yet tumor cells utilize various escape mechanisms to avert NKG2D-based immunosurveillance. Hence, therapeutic strategies targeting the potent NKG2D/NKG2DL axis and such immune escape mechanisms become increasingly attractive in cancer therapy. AREAS COVERED: This perspective provides a brief introduction into the NKG2D/NKG2DL axis and its relevance for cancer immune surveillance. Subsequently, the most advanced therapeutic approaches targeting the NKG2D system are presented focusing on NKG2D-CAR engineered immune cells and antibody-mediated strategies to inhibit NKG2DL shedding by tumors. EXPERT OPINION: Thus far, NKG2D-CAR engineered lymphocytes represent the most advanced therapeutic approach utilizing the NKG2D system. Similarly to other tumor-targeting CAR approaches, NKG2D-CAR cells demonstrate powerful on-target activity, but may also cause off-tumor toxicities or lose efficacy, if NKG2DL expression by tumors is reduced. However, NKG2D-CAR cells also act on the tumor microenvironment curtailing its immunosuppressive properties, thus providing an independent therapeutic benefit. The potency of tumoricidal NKG2D-expressing lymphocytes can be further boosted by enhancing NKG2DL expression through small molecules and therapeutic antibodies inhibiting tumor-associated shedding of NKG2DL.


Assuntos
Imunoterapia Adotiva/métodos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Neoplasias/terapia , Linfócitos T Citotóxicos/metabolismo , Animais , Terapia Combinada/métodos , Terapia Genética/métodos , Humanos , Vigilância Imunológica/genética , Vigilância Imunológica/fisiologia , Ligantes , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Neoplasias/genética , Neoplasias/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T Citotóxicos/transplante , Microambiente Tumoral/imunologia
9.
Front Immunol ; 11: 960, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582150

RESUMO

NKG2D is a potent activating immunoreceptor expressed on nearly all cytotoxic lymphocytes promoting their cytotoxicity against self-cells expressing NKG2D ligands (NKG2DLs). NKG2DLs are MHC class I-like glycoproteins that usually are not expressed on "healthy" cells. Rather, their surface expression is induced by various forms of cellular stress, viral infection, or malignant transformation. Hence, cell surface NKG2DLs mark "dangerous" cells for elimination by cytotoxic lymphocytes and therefore can be considered as "kill-me" signals. In addition, NKG2DLs are up-regulated on activated leukocytes, which facilitates containment of immune responses. While the NKG2D receptor is conserved among mammals, NKG2DL genes have rapidly diversified during mammalian speciation, likely due to strong selective pressures exerted by species-specific pathogens. Consequently, NKG2DL genes are not conserved in man and mice, although their NKG2D-binding domains maintained structural homology. Human NKG2DLs comprise two members of the MIC (MICA/MICB) and six members of the ULBP family of glycoproteins (ULBP1-6) with MICA representing the best-studied human NKG2DLs by far. Many of these studies implicate a role of MICA in various malignant, infectious, or autoimmune diseases. However, conclusions from these studies often were limited in default of supporting in vivo experiments. Here, we report a MICA transgenic (MICAgen) mouse model that replicates central features of human MICA expression and function and, therefore, constitutes a novel tool to critically assess and extend conclusions from previous in vitro studies on MICA. Similarly to humans, MICA transcripts are broadly present in organs of MICAgen mice, while MICA glycoproteins are barely detectable. Upon activation, hematopoietic cells up-regulate and proteolytically shed surface MICA. Shed soluble MICA (sMICA) is also present in plasma of MICAgen mice but affects neither surface NKG2D expression of circulating NK cells nor their functional recognition of MICA-expressing tumor cells. Accordingly, MICAgen mice also show a delayed growth of MICA-expressing B16F10 tumors, not accompanied by an emergence of MICA-specific antibodies. Such immunotolerance for the xenoantigen MICA ideally suits MICAgen mice for anti-MICA-based immunotherapies. Altogether, MICAgen mice represent a valuable model to study regulation, function, disease relevance, and therapeutic targeting of MICA in vivo.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Ativação Linfocitária , Linfócitos/metabolismo , Melanoma Experimental/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Animais , Linhagem Celular Tumoral , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Tolerância Imunológica , Isoanticorpos/imunologia , Isoanticorpos/metabolismo , Ligantes , Linfócitos/imunologia , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/deficiência , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Transdução de Sinais , Carga Tumoral
10.
Front Immunol ; 10: 2689, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31803194

RESUMO

Transforming growth factor-ß (TGF-ß) suppresses innate and adaptive immune responses via multiple mechanisms. TGF-ß also importantly contributes to the formation of an immunosuppressive tumor microenvironment thereby promoting tumor growth. Amongst others, TGF-ß impairs tumor recognition by cytotoxic lymphocytes via NKG2D. NKG2D is a homodimeric C-type lectin-like receptor expressed on virtually all human NK cells and cytotoxic T cells, and stimulates their effector functions upon engagement by NKG2D ligands (NKG2DL). While NKG2DL are mostly absent from healthy cells, their expression is induced by cellular stress and malignant transformation, and, accordingly, frequently detected on various tumor cells. Hence, the NKG2D axis is thought to play a decisive role in cancer immunosurveillance and, obviously, often is compromised in clinically apparent tumors. There is mounting evidence that TGF-ß, produced by tumor cells and immune cells in the tumor microenvironment, plays a key role in blunting the NKG2D-mediated tumor surveillance. Here, we review the current knowledge on the impairment of NKG2D-mediated cancer immunity through TGF-ß and discuss therapeutic approaches aiming at counteracting this major immune escape pathway. By reducing tumor-associated expression of NKG2DL and blinding cytotoxic lymphocytes through down-regulation of NKG2D, TGF-ß is acting upon both sides of the NKG2D axis severely compromising NKG2D-mediated tumor rejection. Consequently, novel therapies targeting the TGF-ß pathway are expected to reinvigorate NKG2D-mediated tumor elimination and thereby to improve the survival of cancer patients.


Assuntos
Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Fator de Crescimento Transformador beta/imunologia , Evasão Tumoral/imunologia , Microambiente Tumoral/imunologia , Animais , Humanos
11.
Blood Adv ; 3(22): 3674-3687, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31765481

RESUMO

An understanding of natural killer (NK) cell physiology in acute myeloid leukemia (AML) has led to the use of NK cell transfer in patients, demonstrating promising clinical results. However, AML is still characterized by a high relapse rate and poor overall survival. In addition to conventional NKs that can be considered the innate counterparts of CD8 T cells, another family of innate lymphocytes has been recently described with phenotypes and functions mirroring those of helper CD4 T cells. Here, in blood and tissues, we identified a CD56+ innate cell population harboring mixed transcriptional and phenotypic attributes of conventional helper innate lymphoid cells (ILCs) and lytic NK cells. These CD56+ ILC1-like cells possess strong cytotoxic capacities that are impaired in AML patients at diagnosis but are restored upon remission. Their cytotoxicity is KIR independent and relies on the expression of TRAIL, NKp30, NKp80, and NKG2A. However, the presence of leukemic blasts, HLA-E-positive cells, and/or transforming growth factor-ß1 (TGF-ß1) strongly affect their cytotoxic potential, at least partially by reducing the expression of cytotoxic-related molecules. Notably, CD56+ ILC1-like cells are also present in the NK cell preparations used in NK transfer-based clinical trials. Overall, we identified an NK cell-related CD56+ ILC population involved in tumor immunosurveillance in humans, and we propose that restoring their functions with anti-NKG2A antibodies and/or small molecules inhibiting TGF-ß1 might represent a novel strategy for improving current immunotherapies.


Assuntos
Antígeno CD56/metabolismo , Imunidade Inata , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/metabolismo , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Biomarcadores/metabolismo , Citotoxicidade Imunológica , Perfilação da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Receptores de IgG/metabolismo , Transdução de Sinais , Transcriptoma
13.
Nature ; 572(7768): 254-259, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31316209

RESUMO

Patients with acute myeloid leukaemia (AML) often achieve remission after therapy, but subsequently die of relapse1 that is driven by chemotherapy-resistant leukaemic stem cells (LSCs)2,3. LSCs are defined by their capacity to initiate leukaemia in immunocompromised mice4. However, this precludes analyses of their interaction with lymphocytes as components of anti-tumour immunity5, which LSCs must escape to induce cancer. Here we demonstrate that stemness and immune evasion are closely intertwined in AML. Using xenografts of human AML as well as syngeneic mouse models of leukaemia, we show that ligands of the danger detector NKG2D-a critical mediator of anti-tumour immunity by cytotoxic lymphocytes, such as NK cells6-9-are generally expressed on bulk AML cells but not on LSCs. AML cells with LSC properties can be isolated by their lack of expression of NKG2D ligands (NKG2DLs) in both CD34-expressing and non-CD34-expressing cases of AML. AML cells that express NKG2DLs are cleared by NK cells, whereas NKG2DL-negative leukaemic cells isolated from the same individual escape cell killing by NK cells. These NKG2DL-negative AML cells show an immature morphology, display molecular and functional stemness characteristics, and can initiate serially re-transplantable leukaemia and survive chemotherapy in patient-derived xenotransplant models. Mechanistically, poly-ADP-ribose polymerase 1 (PARP1) represses expression of NKG2DLs. Genetic or pharmacologic inhibition of PARP1 induces NKG2DLs on the LSC surface but not on healthy or pre-leukaemic cells. Treatment with PARP1 inhibitors, followed by transfer of polyclonal NK cells, suppresses leukaemogenesis in patient-derived xenotransplant models. In summary, our data link the LSC concept to immune escape and provide a strong rationale for targeting therapy-resistant LSCs by PARP1 inhibition, which renders them amenable to control by NK cells in vivo.


Assuntos
Evasão da Resposta Imune , Leucemia Mieloide Aguda/patologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/patologia , Evasão Tumoral , Animais , Antígenos CD34/metabolismo , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Células Matadoras Naturais/imunologia , Leucemia Mieloide Aguda/imunologia , Ligantes , Masculino , Camundongos , Células-Tronco Neoplásicas/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Expert Opin Ther Targets ; 23(4): 281-294, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30732494

RESUMO

INTRODUCTION: The immunoreceptor NKG2D belongs to the best-characterized activating receptors of cytotoxic lymphocytes. NKG2D binds to a variety of cell surface glycoproteins distantly related to MHC class I molecules, termed NKG2D ligands (NKG2DL). NKG2DL are inducibly expressed upon cellular stress, viral infection or malignant transformation thus marking 'stressed' or 'harmful' cells for clearance through NKG2D+ lymphocytes. However, certain viruses and many tumors employ various strategies to escape from NKG2D-mediated immunosurveillance. Areas covered: Expression and regulation of both NKG2D and NKG2DL, especially at sites of immune responses or in the tumor microenvironment, as well as mechanisms of NKG2D escape strategies, as their understanding is key for harnessing the NKG2D/NKG2DL axis for immunotherapy. Studies documenting the importance of the NKG2D/NKG2DL axis for cancer immunosurveillance. Therapeutic approaches targeting the NKG2D/NKG2DL axis in cancer. Expert opinion: The selective expression of NKG2DL on malignant cells together with the strong activating potency of NKG2D renders the NKG2D/NKG2DL axis a prime target for immunotherapies. Based on a thorough understanding of the NKG2D/NKG2DL system as well as of the most relevant escape strategies of tumors, the diligent and thoughtful design of novel treatment modalities harnessing the NKG2D/NKG2DL axis holds great promise for the future therapy of cancer.


Assuntos
Imunoterapia/métodos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Neoplasias/terapia , Animais , Humanos , Linfócitos/imunologia , Terapia de Alvo Molecular , Neoplasias/imunologia , Neoplasias/patologia , Microambiente Tumoral/imunologia
15.
Oncoimmunology ; 7(10): e1475875, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30288342

RESUMO

NKp46 (CD335) is a surface receptor shared by both human and mouse natural killer (NK) cells and innate lymphoid cells (ILCs) that transduces activating signals necessary to eliminate virus-infected cells and tumors. Here, we describe a spontaneous point mutation of cysteine to arginine (C14R) in the signal peptide of the NKp46 protein in congenic Ly5.1 mice and the newly generated NCRB6C14R strain. Ly5.1C14R NK cells expressed similar levels of Ncr1 mRNA as C57BL/6, but showed impaired surface NKp46 and reduced ability to control melanoma tumors in vivo. Expression of the mutant NKp46C14R in 293T cells showed that NKp46 protein trafficking to the cell surface was compromised. Although Ly5.1C14R mice had normal number of NK cells, they showed an increased number of early maturation stage NK cells. CD49a+ILC1s were also increased but these cells lacked the expression of TRAIL. ILC3s that expressed NKp46 were not detectable and were not apparent when examined by T-bet expression. Thus, the C14R mutation reveals that NKp46 is important for NK cell and ILC differentiation, maturation and function. Significance Innate lymphoid cells (ILCs) play important roles in immune protection. Various subsets of ILCs express the activating receptor NKp46 which is capable of recognizing pathogen derived and tumor ligands and is necessary for immune protection. Here, we describe a spontaneous point mutation in the signal peptide of the NKp46 protein in congenic Ly5.1 mice which are widely used for tracking cells in vivo. This Ncr1 C14R mutation impairs NKp46 surface expression resulting in destabilization of Ncr1 and accumulation of NKp46 in the endoplasmic reticulum. Loss of stable NKp46 expression impaired the maturation of NKp46+ ILCs and altered the expression of TRAIL and T-bet in ILC1 and ILC3, respectively.

16.
J Immunol ; 201(4): 1275-1286, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29980609

RESUMO

AICL glycoproteins are cognate activation-induced ligands of the C-type lectin-like receptor NKp80, which is expressed on virtually all mature human NK cells, and NKp80-AICL interaction stimulates NK cell effector functions such as cytotoxicity and cytokine secretion. Notably, AICL and NKp80 are encoded by adjacent genes in the NK gene complex and are coexpressed by human NK cells. Whereas AICL is intracellularly retained in resting NK cells, exposure of NK cells to proinflammatory cytokines results in AICL surfacing and susceptibility to NKp80-mediated NK fratricide. In this study, we characterize molecular determinants of AICL glycoproteins that cause intracellular retention, thereby controlling AICL surface expression. Cys87 residing within the C-type lectin-like domain not only ensures stable homodimerization of AICL glycoproteins by disulfide bonding, but Cys87 is also required for efficient cell surface expression of AICL homodimers and essential for AICL-NKp80 interaction. In contrast, cytoplasmic lysines act as negative regulators targeting AICL for proteasomal degradation. One atypical and three conventional N-linked glycosylation sites in the AICL C-type lectin-like domain critically impact maturation and surfacing of AICL, which is strictly dependent on glycosylation of at least one conventional glycosylation site. However, although the extent of conventional N-linked glycosylation positively correlates with AICL surface expression, the atypical glycosylation site impairs AICL surfacing. Stringent control of AICL surface expression by glycosylation is reflected by the pronounced interaction of AICL with calnexin and the impaired AICL expression in calnexin-deficient cells. Collectively, our data demonstrate that AICL expression and surfacing are tightly controlled by several independent cellular posttranslational mechanisms.


Assuntos
Células Matadoras Naturais/metabolismo , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/metabolismo , Transporte Proteico/fisiologia , Calnexina/metabolismo , Linhagem Celular , Glicosilação , Humanos , Ativação Linfocitária/fisiologia , Receptores de Células Matadoras Naturais/metabolismo
17.
Front Immunol ; 9: 620, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29651291

RESUMO

Stress-induced cell surface expression of MHC class I-related glycoproteins of the MIC and ULBP families allows for immune recognition of dangerous "self cells" by human cytotoxic lymphocytes via the NKG2D receptor. With two MIC molecules (MICA and MICB) and six ULBP molecules (ULBP1-6), there are a total of eight human NKG2D ligands (NKG2DL). Since the discovery of the NKG2D-NKG2DL system, the cause for both redundancy and diversity of NKG2DL has been a major and ongoing matter of debate. NKG2DL diversity has been attributed, among others, to the selective pressure by viral immunoevasins, to diverse regulation of expression, to differential tissue expression as well as to variations in receptor interactions. Here, we critically review the current state of knowledge on the poorly studied human NKG2DL ULBP4. Summarizing available facts and previous studies, we picture ULBP4 as a peculiar ULBP family member distinct from other ULBP family members by various aspects. In addition, we provide novel experimental evidence suggesting that cellular processing gives rise to mature ULBP4 glycoproteins different to previous reports. Finally, we report on the proteolytic release of soluble ULBP4 and discuss these results in the light of known mechanisms for generation of soluble NKG2DL.


Assuntos
Proteínas de Transporte/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Linfócitos/imunologia , Proteínas de Membrana/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Viroses/imunologia , Autoantígenos/imunologia , Citotoxicidade Imunológica , Humanos , Evasão da Resposta Imune , Especificidade de Órgãos , Processamento de Proteína Pós-Traducional
19.
Cancer Immunol Immunother ; 67(6): 935-947, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29556699

RESUMO

The first therapeutic proteasome inhibitor bortezomib has clinical efficacy in mantle cell lymphoma (MCL) which resulted in its incorporation in treatment algorithms for this disease. Impairment of proteasomal function by bortezomib is mediated via inhibition of the 20S core particle. However, proteasome function can also be modified by targeting upstream components of the ubiquitin-proteasome system. Recently, b-AP15 has been identified as a small molecule achieving proteasome inhibition by targeting the deubiquitinase (DUB) activity of the 19S regulatory subunit and was found to inhibit cancer cell growth in preclinical analyses. In the present study, both direct antitumor effects and the possibility to induce natural killer group 2 member D ligands (NKG2DL) to reinforce NK cell immunity with b-AP15 were investigated to provide a rational basis for clinical evaluation of this novel DUB inhibitor in MCL. Treatment with b-AP15 resulted in reduced viability as well as induction of apoptosis in a time- and dose-dependent manner, which could be attributed to caspase activation in MCL cells. In addition, treatment with b-AP15 differentially induced NKG2DL expression and subsequent NK cell lysis of MCL cells. These results indicate that the DUB inhibitor b-AP15 displays substantial antitumor activity in human MCL and suggest that b-AP15 might be a novel therapeutic option in the treatment of MCL that warrants clinical investigation.


Assuntos
Linfoma de Célula do Manto/genética , Piperidonas/uso terapêutico , Proteínas Secretadas Inibidoras de Proteinases/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Humanos , Células Matadoras Naturais/metabolismo , Linfoma de Célula do Manto/metabolismo , Linfoma de Célula do Manto/patologia , Piperidonas/farmacologia , Proteínas Secretadas Inibidoras de Proteinases/farmacologia
20.
Oncoimmunology ; 7(2): e1364827, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29308299

RESUMO

Platelets promote metastasis, among others by coating cancer cells traveling through the blood, which results in protection from NK cell immune-surveillance. The underlying mechanisms, however, remain to be fully elucidated. Here we report that platelet-coating reduces surface expression of NKG2D ligands, in particular MICA and MICB, on tumor cells, which was mirrored by enhanced release of their soluble ectodomains. Similar results were obtained upon exposure of tumor cells to platelet-releasate and can be attributed to the sheddases ADAM10 and ADAM17 that are detectable on the platelet surface and in releasate following activation and at higher levels on platelets of patients with metastasized lung cancer compared with healthy controls. Platelet-mediated NKG2DL-shedding in turn resulted in impaired "induced self" recognition by NK cells as revealed by diminished NKG2D-dependent lysis of tumor cells. Our results indicate that platelet-mediated NKG2DL-shedding may be involved in immune-evasion of (metastasizing) tumor cells from NK cell reactivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA