Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Pathol ; 250(1): 95-106, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31595971

RESUMO

Prekallikrein (PKK, also known as Fletcher factor and encoded by the gene KLKB1 in humans) is a component of the contact system. Activation of the contact system has been implicated in lethality in fulminant sepsis models. Pneumonia is the most frequent cause of sepsis. We sought to determine the role of PKK in host defense during pneumosepsis. To this end, mice were infected with the common human pathogen Klebsiella pneumoniae via the airways, causing an initially localized infection of the lungs with subsequent bacterial dissemination and sepsis. Mice were treated with a selective PKK-directed antisense oligonucleotide (ASO) or a scrambled control ASO for 3 weeks prior to infection. Host response readouts were determined at 12 or 36 h post-infection, including genome-wide messenger RNA profiling of lungs, or mice were followed for survival. PKK ASO treatment inhibited constitutive hepatic Klkb1 mRNA expression by >80% and almost completely abolished plasma PKK activity. Klkb1 mRNA could not be detected in lungs. Pneumonia was associated with a progressive decline in PKK expression in mice treated with control ASO. PKK ASO administration was associated with a delayed mortality, reduced bacterial burdens, and diminished distant organ injury. While PKK depletion did not influence lung pathology or neutrophil recruitment, it was associated with an upregulation of multiple innate immune signaling pathways in the lungs already prior to infection. Activation of the contact system could not be detected, either during infection in vivo or at the surface of Klebsiella in vitro. These data suggest that circulating PKK confines pro-inflammatory signaling in the lung by a mechanism that does not involve contact system activation, which in the case of respiratory tract infection may impede early protective innate immunity. © 2019 Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Imunidade Inata , Infecções por Klebsiella/enzimologia , Klebsiella pneumoniae/patogenicidade , Pulmão/enzimologia , Pneumonia Bacteriana/enzimologia , Pré-Calicreína/metabolismo , Sepse/enzimologia , Animais , Modelos Animais de Doenças , Infecções por Klebsiella/imunologia , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/prevenção & controle , Klebsiella pneumoniae/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Masculino , Camundongos Endogâmicos C57BL , Oligonucleotídeos Antissenso/administração & dosagem , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/prevenção & controle , Pré-Calicreína/genética , Sepse/imunologia , Sepse/microbiologia , Sepse/prevenção & controle , Transdução de Sinais
2.
J Thromb Haemost ; 17(12): 2047-2055, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31519061

RESUMO

BACKGROUND: Factor XI (FXI) is a zymogen in the coagulation pathway that, once activated, promotes haemostasis by activating factor IX (FIX). Substitution studies using apple domains of the homologous protein prekallikrein have identified that FIX binds to the apple 3 domain of FXI. However, the molecular changes upon activation of FXI or binding of FIX to FXIa have remained largely unresolved. OBJECTIVES: This study aimed to gain more insight in the FXI activation mechanism by identifying the molecular differences between FXI and FXIa, and in the conformational changes in FXIa induced by binding of FIX. METHODS: Hydrogen-deuterium exchange mass spectrometry was performed on FXI, FXIa, and FXIa in complex with FIX. RESULTS: Both activation and binding to FIX induced conformational changes at the interface between the catalytic domain and the apple domains of FXI(a)-more specifically at the loops connecting the apple domains. Moreover, introduction of FIX uniquely induced a reduction of deuterium uptake in the beginning of the apple 3 domain. CONCLUSIONS: We propose that the conformational changes of the catalytic domain upon activation increase the accessibility to the apple 3 domain to enable FIX binding. Moreover, our HDX MS results support the location of the proposed FIX binding site at the beginning of the apple 3 domain and suggest a mediating role in FIX binding for both loops adjacent to the apple 3 domain.


Assuntos
Fator IX/metabolismo , Fator XI/metabolismo , Fator XIa/metabolismo , Hemostasia , Espectrometria de Massa com Troca Hidrogênio-Deutério , Ativação Enzimática , Fator IX/química , Fator XI/química , Fator XI/genética , Fator XIa/química , Fator XIa/genética , Células HEK293 , Humanos , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade
3.
Am J Physiol Lung Cell Mol Physiol ; 315(5): L799-L809, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30136609

RESUMO

Pneumonia is the most frequent cause of sepsis, and Klebsiella pneumoniae is a common pathogen in pneumonia and sepsis. Infection is associated with activation of the coagulation system. Coagulation can be activated by the extrinsic and intrinsic routes, mediated by factor VII (FVII) and factor XII (FXII), respectively. To determine the role of FVII and FXII in the host response during pneumonia-derived sepsis, mice were treated with specific antisense oligonucleotide (ASO) directed at FVII or FXII for 3 wk before infection with K. pneumoniae via the airways. FVII ASO treatment strongly inhibited hepatic FVII mRNA expression, reduced plasma FVII to ~25% of control, and selectively prolonged the prothrombin time. FXII ASO treatment strongly suppressed hepatic FXII mRNA expression, reduced plasma FXII to ~20% of control, and selectively prolonged the activated partial thromboplastin time. Lungs also expressed FVII mRNA, which was not altered by FVII ASO administration. Very low FXII mRNA levels were detected in lungs, which were not modified by FXII ASO treatment. FVII ASO attenuated systemic activation of coagulation but did not influence fibrin deposition in lung tissue. FVII ASO enhanced bacterial loads in lungs and mitigated sepsis-induced distant organ injury. FXII inhibition did not affect any of the host response parameters measured. These results suggest that partial inhibition of FVII, but not of FXII, modifies the host response to gram-negative pneumonia-derived sepsis.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Oligonucleotídeos Antissenso/farmacologia , Pneumonia Bacteriana/tratamento farmacológico , Sepse/tratamento farmacológico , Animais , Fator XII/metabolismo , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/metabolismo , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia Bacteriana/metabolismo , Pneumonia Bacteriana/microbiologia , RNA Mensageiro/metabolismo , Sepse/metabolismo
4.
BMC Nephrol ; 19(1): 78, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29609537

RESUMO

BACKGROUND: Chronic kidney disease (CKD) is characterized by sustained tissue damage and ongoing tubulo-interstitial inflammation and fibrosis. Pattern recognition receptors (PRRs) including Toll-like receptors (TLRs) and NOD-like receptors (NLRs) can sense endogenous ligands released upon tissue damage, leading to sterile inflammation and eventually irreversible kidney disease. It is known that NOD1 and NOD2 contribute to the pathogenesis of various inflammatory diseases, including acute kidney injury. However their role in chronic kidney disease is largely unknown. The aim of this study was therefore to investigate the contribution of NOD1 and NOD2 in renal interstitial fibrosis and obstructive nephropathy. METHODS: To do so, we performed unilateral ureteral obstruction (UUO) in wild type (WT) and NOD1/NOD2 double deficient (DKO) mice and analysed renal damage, fibrosis and inflammation. Data were analysed using the non-parametric Mann-Whitney U-test. RESULTS: Minor changes in inflammatory response were observed in NOD1/2 DKO mice, while no effects were observed on renal injury and the development of fibrosis. CONCLUSION: No difference in renal injury and fibrosis between WT and NOD1/NOD2 DKO mice following obstructive nephropathy induced by ureteral obstruction.


Assuntos
Injúria Renal Aguda/metabolismo , Proteína Adaptadora de Sinalização NOD1/deficiência , Proteína Adaptadora de Sinalização NOD2/deficiência , Insuficiência Renal Crônica/metabolismo , Obstrução Ureteral/metabolismo , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/genética , Animais , Feminino , Fibrose/etiologia , Fibrose/genética , Fibrose/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD2/genética , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/genética , Obstrução Ureteral/complicações , Obstrução Ureteral/genética
5.
Thromb Haemost ; 118(2): 340-350, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29378358

RESUMO

Coagulation factor XI is activated by thrombin or factor XIIa resulting in a conformational change that converts the catalytic domain into its active form and exposing exosites for factor IX on the apple domains. Although crystal structures of the zymogen factor XI and the catalytic domain of the protease are available, the structure of the apple domains and hence the interactions with the catalytic domain in factor XIa are unknown. We now used chemical footprinting to identify lysine residue containing regions that undergo a conformational change following activation of factor XI. To this end, we employed tandem mass tag in conjunction with mass spectrometry. Fifty-two unique peptides were identified, covering 37 of the 41 lysine residues present in factor XI. Two identified lysine residues that showed altered flexibility upon activation were mutated to study their contribution in factor XI stability or enzymatic activity. Lys357, part of the connecting loop between A4 and the catalytic domain, was more reactive in factor XIa but mutation of this lysine residue did not impact on factor XIa activity. Lys516 and its possible interactor Glu380 are located in the catalytic domain and are covered by the activation loop of factor XIa. Mutating Glu380 enhanced Arg369 cleavage and thrombin generation in plasma. In conclusion, we have identified novel regions that undergo a conformational change following activation. This information improves knowledge about factor XI and will contribute to development of novel inhibitors or activators for this coagulation protein.


Assuntos
Fator XI/química , Fator XIa/química , Lisina/química , Arginina/química , Sítios de Ligação , Coagulação Sanguínea , Testes de Coagulação Sanguínea , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Humanos , Isoleucina/química , Espectrometria de Massas , Peptídeos/química , Conformação Proteica , Proteínas Recombinantes/química
6.
PLoS One ; 12(10): e0186652, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29036225

RESUMO

C1 esterase inhibitor (C1-INH) can inhibit multiple pathways (complement, contact-kinin, coagulation, and fibrinolysis) that are all implicated in the pathophysiology of asthma. We explored the effect of human plasma-derived C1-INH on allergic lung inflammation in a house dust mite (HDM) induced asthma mouse model by daily administration of C1-INH (15 U) during the challenge phase. NaCl and HDM exposed mice had comparable plasma C1-INH levels, while bronchoalveolar lavage fluid (BALF) levels were increased in HDM exposed mice coinciding with slightly reduced activation of complement (C5a). C1-INH treatment reduced Th2 response and enhanced HDM-specific IgG1. Influx of eosinophils in BALF or lung, pulmonary damage, mucus production, procoagulant response or plasma leakage in BALF was similar in both groups. In conclusion, C1-INH dampens Th2 responses during HDM induced allergic lung inflammation.


Assuntos
Asma/tratamento farmacológico , Asma/imunologia , Proteína Inibidora do Complemento C1/farmacologia , Pyroglyphidae/imunologia , Animais , Proteína Inibidora do Complemento C1/uso terapêutico , Feminino , Humanos , Imunoglobulina G/imunologia , Camundongos , Células Th2/efeitos dos fármacos , Células Th2/imunologia
7.
Mediators Inflamm ; 2017: 4137563, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28694562

RESUMO

Escherichia (E.) coli is the most common causative pathogen in peritonitis, the second most common cause of sepsis. Granzymes (gzms) are serine proteases traditionally implicated in cytotoxicity and, more recently, in the inflammatory response. We here sought to investigate the role of gzms in the host response to E. coli-induced peritonitis and sepsis in vivo. For this purpose, we used a murine model of E. coli intraperitoneal infection, resembling the clinical condition commonly associated with septic peritonitis by this bacterium, in wild-type and gzmA-deficient (gzmA-/- ), gzmB-/- , and gzmAxB-/- mice. GzmA and gzmB were predominantly expressed by natural killer cells, and during abdominal sepsis, the percentage of these cells expressing gzms in peritoneal lavage fluid decreased, while the amount of expression in the gzm+ cells increased. Deficiency of gzmA and/or gzmB was associated with increased bacterial loads, especially in the case of gzmB at the primary site of infection at late stage sepsis. While gzm deficiency did not impact neutrophil recruitment into the abdominal cavity, it was accompanied by enhanced nucleosome release at the primary site of infection, earlier hepatic necrosis, and more renal dysfunction. These results suggest that gzms influence bacterial growth and the host inflammatory response during abdominal sepsis caused by E. coli.


Assuntos
Escherichia coli/patogenicidade , Granzimas/metabolismo , Peritonite/metabolismo , Sepse/metabolismo , Animais , Feminino , Granzimas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos/genética , Infiltração de Neutrófilos/fisiologia , Nucleossomos/metabolismo , Peritonite/genética , Sepse/genética
8.
Thromb Haemost ; 117(8): 1601-1614, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28492700

RESUMO

Bacterial pneumonia, the most common cause of sepsis, is associated with activation of coagulation. Factor XI (FXI), the key component of the intrinsic pathway, can be activated via factor XII (FXII), part of the contact system, or via thrombin. To determine whether intrinsic coagulation is involved in host defence during pneumonia and whether this is dependent on FXII activation, we infected in parallel wild-type (WT), FXI knockout (KO) and FXII KO mice with two different clinically relevant pathogens, the Gram-positive bacterium Streptococcus pneumoniae and the Gram-negative bacterium Klebsiella pneumoniae, via the airways. FXI deficiency worsened survival and enhanced bacterial outgrowth in both pneumonia models. This was accompanied with enhanced inflammatory responses in FXI KO mice. FXII KO mice were comparable with WT mice in Streptococcus pneumoniae pneumonia. On the contrary, FXII deficiency improved survival and reduced bacterial outgrowth following infection with Klebsiella pneumoniae. In both pneumonia models, local coagulation was not impaired in either FXI KO or FXII KO mice. The capacity to phagocytose bacteria was impaired in FXI KO neutrophils and in human neutrophils where activation of FXI was inhibited. Deficiency for FXII or blocking activation of FXI via FXIIa had no effect on phagocytosis. Taken together, these data suggest that FXI protects against sepsis derived from Streptococcus pneumoniae or Klebsiella pneumoniae pneumonia at least in part by enhancing the phagocytic capacity of neutrophils by a mechanism that is independent of activation via FXIIa.


Assuntos
Fator XII/metabolismo , Fator XI/metabolismo , Infecções por Klebsiella/sangue , Neutrófilos/metabolismo , Fagocitose , Infecções Pneumocócicas/sangue , Pneumonia Bacteriana/sangue , Sepse/sangue , Animais , Coagulação Sanguínea , Células Cultivadas , Citocinas/sangue , Modelos Animais de Doenças , Fator XI/genética , Fator XII/genética , Fator XIIa/metabolismo , Predisposição Genética para Doença , Interações Hospedeiro-Patógeno , Humanos , Mediadores da Inflamação/sangue , Infecções por Klebsiella/genética , Infecções por Klebsiella/imunologia , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/patogenicidade , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/microbiologia , Fenótipo , Infecções Pneumocócicas/genética , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/microbiologia , Pneumonia Bacteriana/genética , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/microbiologia , Sepse/genética , Sepse/imunologia , Sepse/microbiologia , Streptococcus pneumoniae/patogenicidade
10.
Am J Physiol Lung Cell Mol Physiol ; 312(2): L163-L171, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27913422

RESUMO

Asthma is associated with activation of coagulation in the airways. The coagulation system can be initiated via the extrinsic tissue factor-dependent pathway or via the intrinsic pathway, in which the central player factor XI (FXI) can be either activated via active factor XII (FXIIa) or via thrombin. We aimed to determine the role of the intrinsic coagulation system and its possible route of activation in allergic lung inflammation induced by the clinically relevant human allergen house dust mite (HDM). Wild-type (WT), FXI knockout (KO), and FXII KO mice were subjected to repeated exposure to HDM via the airways, and inflammatory responses were compared. FXI KO mice showed increased influx of eosinophils into lung tissue, accompanied by elevated local levels of the main eosinophil chemoattractant eotaxin. Although gross lung pathology and airway mucus production did not differ between groups, FXI KO mice displayed an impaired endothelial/epithelial barrier function, as reflected by elevated levels of total protein and IgM in bronchoalveolar lavage fluid. FXI KO mice had a stronger systemic IgE response with an almost completely absent HDM-specific IgG1 response. The phenotype of FXII KO mice was, except for a higher HDM-specific IgG1 response, similar to that of WT mice. In conclusion, FXI attenuates part of the allergic response to repeated administration of HDM in the airways by a mechanism that is independent of activation via FXII.


Assuntos
Deficiência do Fator XI/patologia , Deficiência do Fator XI/parasitologia , Fator XII/metabolismo , Hipersensibilidade/patologia , Hipersensibilidade/parasitologia , Pyroglyphidae/fisiologia , Animais , Coagulação Sanguínea , Líquido da Lavagem Broncoalveolar , Eosinófilos/metabolismo , Deficiência do Fator XI/sangue , Deficiência do Fator XI/complicações , Fibrinólise , Hipersensibilidade/sangue , Hipersensibilidade/complicações , Pulmão/parasitologia , Pulmão/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Muco/metabolismo
11.
J Am Soc Nephrol ; 28(5): 1450-1461, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27927779

RESUMO

An accumulating body of evidence shows that gut microbiota fulfill an important role in health and disease by modulating local and systemic immunity. The importance of the microbiome in the development of kidney disease, however, is largely unknown. To study this concept, we depleted gut microbiota with broad-spectrum antibiotics and performed renal ischemia-reperfusion (I/R) injury in mice. Depletion of the microbiota significantly attenuated renal damage, dysfunction, and remote organ injury and maintained tubular integrity after renal I/R injury. Gut flora-depleted mice expressed lower levels of F4/80 and chemokine receptors CX3CR1 and CCR2 in the F4/80+ renal resident macrophage population and bone marrow (BM) monocytes than did control mice. Additionally, compared with control BM monocytes, BM monocytes from gut flora-depleted mice had decreased migratory capacity toward CX3CL1 and CCL2 ligands. To study whether these effects were driven by depletion of the microbiota, we performed fecal transplants in antibiotic-treated mice and found that transplant of fecal material from an untreated mouse abolished the protective effect of microbiota depletion upon renal I/R injury. In conclusion, we show that depletion of gut microbiota profoundly protects against renal I/R injury by reducing maturation status of F4/80+ renal resident macrophages and BM monocytes. Therefore, dampening the inflammatory response by targeting microbiota-derived mediators might be a promising therapy against I/R injury.


Assuntos
Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Microbioma Gastrointestinal/efeitos dos fármacos , Rim/irrigação sanguínea , Traumatismo por Reperfusão/microbiologia , Traumatismo por Reperfusão/prevenção & controle , Animais , Receptor 1 de Quimiocina CX3C , Fator de Crescimento Epidérmico/fisiologia , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Quimiocinas/fisiologia
12.
Sci Rep ; 6: 38275, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27928159

RESUMO

Renal ischemia reperfusion (IR)-injury induces activation of innate immune response which sustains renal injury and contributes to the development of delayed graft function (DGF). Triggering receptor expressed on myeloid cells-1 (TREM-1) is a pro-inflammatory evolutionary conserved pattern recognition receptor expressed on a variety of innate immune cells. TREM-1 expression increases following acute and chronic renal injury. However, the function of TREM-1 in renal IR is still unclear. Here, we investigated expression and function of TREM-1 in a murine model of renal IR using different TREM-1 inhibitors: LP17, LR12 and TREM-1 fusion protein. In a human study, we analyzed the association of non-synonymous single nucleotide variants in the TREM1 gene in a cohort comprising 1263 matching donors and recipients with post-transplant outcomes, including DGF. Our findings demonstrated that, following murine IR, renal TREM-1 expression increased due to the influx of Trem1 mRNA expressing cells detected by in situ hybridization. However, TREM-1 interventions by means of LP17, LR12 and TREM-1 fusion protein did not ameliorate IR-induced injury. In the human renal transplant cohort, donor and recipient TREM1 gene variant p.Thr25Ser was not associated with DGF, nor with biopsy-proven rejection or death-censored graft failure. We conclude that TREM-1 does not play a major role during experimental renal IR and after kidney transplantation.


Assuntos
Função Retardada do Enxerto/genética , Inflamação/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Receptor Gatilho 1 Expresso em Células Mieloides/genética , Animais , Função Retardada do Enxerto/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/genética , Inflamação/patologia , Rim/efeitos dos fármacos , Rim/lesões , Rim/metabolismo , Rim/patologia , Transplante de Rim/efeitos adversos , Ácidos Láuricos/administração & dosagem , Camundongos , Oligopeptídeos , Polimorfismo de Nucleotídeo Único/genética , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , Rodaminas/administração & dosagem , Receptor Gatilho 1 Expresso em Células Mieloides/antagonistas & inibidores
13.
J Innate Immun ; 8(3): 258-68, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26894590

RESUMO

Klebsiella pneumoniae is a common cause of hospital-acquired pneumonia. Granzymes (gzms), mainly found in cytotoxic lymphocytes, have been implicated as mediators of infection and inflammation. We here sought to investigate the role of gzmA and gzmB in the host response to K. pneumoniae-induced airway infection and sepsis. For this purpose, pneumonia was induced in wild-type (WT) and gzmA-deficient (gzmA-/-), gzmB-/- and gzmAxB-/- mice by intranasal infection with K. pneumoniae. In WT mice, gzmA and gzmB were mainly expressed by natural killer cells. Pneumonia was associated with reduced intracellular gzmA and increased intracellular gzmB levels. Gzm deficiency had little impact on antibacterial defence: gzmA-/- and gzmAxB-/- mice transiently showed modestly higher bacterial loads in the lungs but not in distant organs. GzmB-/- and, to a larger extent, gzmAxB-/- mice displayed transiently increased lung inflammation, reflected in the semi-quantitative histology scores and levels of pro-inflammatory cytokines and chemokines. Most differences between gzm-deficient and WT mice had disappeared during late-stage pneumonia. Gzm deficiency did not impact on distant organ injury or survival. These results suggest that gzmA and gzmB partly regulate local inflammation during early pneumonia but eventually play an insignificant role during pneumosepsis by the common human pathogen K. pneumoniae.


Assuntos
Granzimas/metabolismo , Células Matadoras Naturais/imunologia , Infecções por Klebsiella/imunologia , Klebsiella pneumoniae/fisiologia , Pneumonia/imunologia , Animais , Bacteriólise , Células Cultivadas , Citocinas/metabolismo , Granzimas/genética , Humanos , Imunomodulação , Mediadores da Inflamação/metabolismo , Células Matadoras Naturais/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
14.
PLoS One ; 10(4): e0123203, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25875776

RESUMO

Temporal expression of chemokines is a crucial factor in the regulation of renal ischemia/reperfusion (I/R) injury and repair. Beside their role in the migration and activation of inflammatory cells to sites of injury, chemokines are also involved in other processes such as angiogenesis, development and migration of stem cells. In the present study we investigated the role of the chemokine MCP-1 (monocyte chemoattractant protein-1 or CCL2), the main chemoattractant for monocytes, during renal I/R injury. MCP-1 expression peaks several days after inducing renal I/R injury coinciding with macrophage accumulation. However, MCP-1 deficient mice had a significant decreased survival and increased renal damage within the first two days, i.e. the acute inflammatory response, after renal I/R injury with no evidence of altered macrophage accumulation. Kidneys and primary tubular epithelial cells from MCP-1 deficient mice showed increased apoptosis after ischemia. Taken together, MCP-1 protects the kidney during the acute inflammatory response following renal I/R injury.


Assuntos
Quimiocina CCL2/genética , Túbulos Renais/metabolismo , Traumatismo por Reperfusão/genética , Animais , Apoptose/genética , Quimiocina CCL2/deficiência , Quimiocina CCL2/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Genes Letais , Túbulos Renais/patologia , Leucócitos/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Peroxidase/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Fatores de Tempo , Regulação para Cima
15.
Eur Respir J ; 46(2): 464-73, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25792636

RESUMO

Staphylococcus aureus has evolved as an important cause of pneumonia in both hospital and community settings. Staphylococcal lung infection can lead to overwhelming pulmonary inflammation. During infection, neutrophils release complexes of myeloid-related protein (MRP)8 and MRP14 (MRP8/14). MRP8/14 has been shown to exert pro-inflammatory and chemotactic activity, and to assist in the killing of S. aureus. In the current study we sought to determine the role of MRP8/14 in the host response during S. aureus pneumonia.Pneumonia was induced in wildtype and MRP14-deficient mice (mice unable to form MRP8/14) by intranasal inoculation of 1×10(7) CFU of S. aureus USA300. Mice were sacrificed at 6, 24, 48 or 72 h after infection for analyses.S. aureus pneumonia was associated with a strong rise in MRP8/14 in bronchoalveolar lavage fluid and lung tissue. Surprisingly, MRP14 deficiency had a limited effect on bacterial clearance and was associated with increased cytokine levels in bronchoalveolar lavage fluid and aggravated lung histopathology. MRP14 deficiency in addition was associated with a diminished transmigration of neutrophils into bronchoalveolar lavage fluid at late time-points after infection together with reduced release of nucleosomes.MRP8/14 serves in an unexpected protective role for the lung in staphylococcal pneumonia.


Assuntos
Calgranulina B/metabolismo , Inflamação/microbiologia , Neutrófilos/metabolismo , Pneumonia Estafilocócica/patologia , Animais , Líquido da Lavagem Broncoalveolar , Calgranulina A/metabolismo , Calgranulina B/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Staphylococcus aureus
16.
Crit Care Med ; 42(3): e221-30, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24399241

RESUMO

OBJECTIVE: Thrombomodulin is a multidomain receptor primarily expressed by vascular endothelium. The lectin-like domain of thrombomodulin has anti-inflammatory properties. In this study, we investigated the role of the thrombomodulin lectin-like domain in the host response to Gram-negative sepsis caused by Burkholderia pseudomallei, a "Tier 1" biothreat agent and the causative agent of melioidosis, a common form of community-acquired sepsis in Southeast Asia. DESIGN: Animal study. SETTING: University research laboratory. SUBJECTS: Wild-type mice and mice lacking the lectin-like domain of thrombomodulin. INTERVENTIONS: Mice were intranasally infected with live B. pseudomallei and killed after 24, 48, or 72 hours for harvesting of lungs, liver, spleen, and blood. Additionally, survival studies were performed. MEASUREMENTS AND MAIN RESULTS: Following exposure to B. pseudomallei, mice lacking the lectin-like domain of thrombomodulin showed a survival advantage, accompanied by decreased bacterial loads in the blood, lungs, liver, and spleen. Although lung histopathology did not differ between groups, mice lacking the lectin-like domain of thrombomodulin displayed strongly attenuated systemic inflammation, as reflected by lower plasma cytokine levels, maintenance of normal kidney and liver function, histologic evidence of reduced organ damage, and damage to the spleen. CONCLUSIONS: This study reveals for the first time a detrimental role for the thrombomodulin lectin-like domain in the host response to sepsis caused by a clinically relevant Gram-negative pathogen.


Assuntos
Pulmão/patologia , Melioidose/patologia , Melioidose/prevenção & controle , Pneumonia Bacteriana/prevenção & controle , Trombomodulina/metabolismo , Animais , Carga Bacteriana , Biópsia por Agulha , Líquido da Lavagem Broncoalveolar/microbiologia , Burkholderia pseudomallei/patogenicidade , Citocinas/metabolismo , Modelos Animais de Doenças , Imuno-Histoquímica , Mediadores da Inflamação/metabolismo , Estimativa de Kaplan-Meier , Lectinas/metabolismo , Pulmão/microbiologia , Masculino , Melioidose/mortalidade , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia Bacteriana/fisiopatologia , Distribuição Aleatória , Estatísticas não Paramétricas , Taxa de Sobrevida , Trombomodulina/deficiência
17.
Innate Immun ; 20(6): 618-25, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24048772

RESUMO

Protease-activated receptor-2 (PAR2) is abundantly expressed in the pulmonary compartment. House dust mite (HDM) is a common cause of allergic asthma and contains multiple PAR2 agonistic proteases. The aim of this study was to determine the role of PAR2 in HDM-induced allergic lung inflammation. For this, the extent of allergic lung inflammation was studied in wild type (Wt) and PAR2 knockout (KO) mice after repeated airway exposure to HDM. HDM exposure of Wt mice resulted in a profound influx of eosinophils in bronchoalveolar lavage fluid (BALF) and accumulation of eosinophils in lung tissue, which both were strongly reduced in PAR2 KO mice. PAR2 KO mice demonstrated attenuated lung pathology and protein leak in the bronchoalveolar space, accompanied by lower BALF levels of the anaphylatoxins C3a and C5a. This study reveals, for the first time, an important role for PAR2 in allergic lung inflammation induced by the clinically relevant allergens contained in HDM.


Assuntos
Alveolite Alérgica Extrínseca/imunologia , Dermatophagoides farinae/imunologia , Pulmão/imunologia , Pneumonia/imunologia , Receptor PAR-2/deficiência , Receptor PAR-2/genética , Alveolite Alérgica Extrínseca/patologia , Animais , Asma/genética , Asma/imunologia , Líquido da Lavagem Broncoalveolar , Complemento C3a/genética , Complemento C3a/imunologia , Complemento C5a/genética , Complemento C5a/imunologia , Eosinófilos/imunologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pneumonia/patologia
18.
PLoS One ; 8(12): e82498, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24358193

RESUMO

Tubulo-interstitial damage is a common finding in the chronically diseased kidney and is characterized by ongoing inflammation and fibrosis leading to renal dysfunction and end-stage renal disease. Upon kidney injury, endogenous ligands can be released which are recognized by innate immune sensors to alarm innate immune system. A new family of innate sensors is the family of TREM (triggering receptor expressed on myeloid cell). TREM1 is an activating receptor and requires association with transmembrane adapter molecule DAP12 (DNAX-associated protein 12) for cell signaling. TREM1-DAP12 pathway has a cross-talk with intracellular signaling pathways of several Toll-like receptors (TLRs) and is able to amplify TLR signaling and thereby contributes to the magnitude of inflammation. So far, several studies have shown that TLRs play a role in obstructive nephropathy but the contribution of TREM1-DAP12 herein is unknown. Therefore, we studied TREM1 expression in human and murine progressive renal diseases and further investigated the role for TREM1-DAP12 by subjecting wild-type (WT), TREM1/3 double KO and DAP12 KO mice to murine unilateral ureter obstruction (UUO) model. In patients with hydronephrosis, TREM1 positive cells were observed in renal tissue. We showed that in kidneys from WT mice, DAP12 mRNA and TREM1 mRNA and protein levels were elevated upon UUO. Compared to WT mice, DAP12 KO mice displayed less renal MCP-1, KC and TGF-ß1 levels and less influx of macrophages during progression of UUO, whereas TREM1/3 double KO mice displayed less renal MCP-1 level. Renal fibrosis was comparable in WT, TREM1/3 double KO and DAP12 KO mice. We conclude that DAP12, partly through TREM1/3, is involved in renal inflammation during progression of UUO.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Hidronefrose/metabolismo , Rim/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo , Obstrução Ureteral/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Progressão da Doença , Feminino , Humanos , Hidronefrose/patologia , Inflamação/metabolismo , Inflamação/patologia , Rim/patologia , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Imunológicos/genética , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Receptor Gatilho 1 Expresso em Células Mieloides , Obstrução Ureteral/patologia
19.
Am J Respir Cell Mol Biol ; 48(3): 382-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23239494

RESUMO

The complex biology of asthma compels the use of more relevant human allergens, such as house dust mite (HDM), to improve the translation of animal models into human asthma. LPS exposure is associated with aggravations of asthma, but the mechanisms remain unclear. Here, we studied the effects of increasing LPS doses on HDM-evoked allergic lung inflammation. To this end, mice were intranasally sensitized and challenged with HDM with or without increasing doses of LPS (0.001-10 µg). LPS dose-dependently inhibited HDM-induced eosinophil recruitment into the lungs and mucus production in the airways. LPS attenuated the production of Th2 cytokines (IL-4, IL-5, IL-10, and IL-13) in HDM-challenged lungs, while enhancing the HDM-induced release of IL-17, IL-33, IFN-γ, and TNF-α. The shift toward a Th1 inflammatory response was further illustrated by predominant neutrophilic lung inflammation after LPS administration at higher doses. LPS did not influence HDM-induced plasma IgE concentrations. Although LPS did not significantly affect the activation of coagulation or complement in HDM-challenged lungs, it reduced HDM-initiated endothelial cell activation. This study is the first to provide insights into the effects of LPS in an allergic lung inflammation model making use of a clinically relevant allergen without a systemic adjuvant, revealing that LPS dose-dependently inhibits HDM-induced pulmonary Th2 responses.


Assuntos
Antígenos de Dermatophagoides/imunologia , Lipopolissacarídeos/farmacologia , Pulmão/imunologia , Pneumonia/imunologia , Pyroglyphidae/imunologia , Células Th2/efeitos dos fármacos , Células Th2/imunologia , Animais , Asma/imunologia , Ativação do Complemento/imunologia , Citocinas/imunologia , Modelos Animais de Doenças , Células Endoteliais/imunologia , Eosinófilos/imunologia , Imunoglobulina E/imunologia , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Muco/imunologia , Mucosa Respiratória/imunologia , Células Th1/imunologia
20.
Biol Open ; 1(12): 1239-47, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23259058

RESUMO

It is indispensable to thoroughly characterize each animal model in order to distinguish between primary and secondary effects of genetic changes. The present study analyzed Nod1 and Nod2 double deficient (Nod1/2 DKO) mice under physiological and inflammatory conditions. Nod1 and Nod2 are members of the Nucleotide-binding domain and Leucine-rich repeat containing Receptor (NLR) family. Several inflammatory disorders, such as Crohn's disease and asthma, are linked to genetic changes in either Nod1 or Nod2. These associations suggest that Nod1 and Nod2 play important roles in regulating the immune system.Three-month-old wildtype (Wt) and Nod1/2 DKO mice were sacrificed, body and organ weight were determined, and blood was drawn. Except for lower liver weight in Nod1/2 DKO mice, no differences were found in body/organ weight between both strains. Leukocyte count and composition was comparable. No significant changes in analyzed plasma biochemical markers were found. Additionally, intestinal and vascular permeability was determined. Nod1/2 DKO mice show increased susceptibility for intestinal permeability while vascular permeability was not affected. Next we induced septic shock and organ damage by administering LPS+PGN intraperitoneally to Wt and Nod1/2 DKO mice and sacrificed animals after 2 and 24 hours. The systemic inflammatory and metabolic response was comparable between both strains. However, renal response was different as indicated by partly preserved kidney function and tubular epithelial cell damage in Nod1/2 DKO at 24 hours. Remarkably, renal inflammatory mediators Tnfα, KC and Il-10 were significantly increased in Nod1/2 DKO compared with Wt mice at 2 hours.Systematic analysis of Nod1/2 DKO mice revealed a possible role of Nod1/2 in the development of renal disease during systemic inflammation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA