Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
2.
Front Genet ; 14: 1209138, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547463

RESUMO

Introduction: Fanconi anemia (FA) is a genome instability condition that drives somatic mosaicism in up to 25% of all patients, a phenomenon now acknowledged as a good prognostic factor. Herein, we describe the case of P1, a FA proband carrying a splicing variant, molecularly compensated by a de novo insertion. Methods and Results: Targeted next-generation sequencing on P1's peripheral blood DNA detected the known FANCA c.2778 + 83C > G intronic mutation and suggested the presence of a large deletion on the other allele, which was then assessed by MLPA and RT-PCR. To determine the c.2778 + 83C > G splicing effect, we performed a RT-PCR on P1's lymphoblastoid cell line (LCL) and on the LCL of another patient (P2) carrying the same variant. Although we confirmed the expected alternative spliced form with a partial intronic retention in P2, we detected no aberrant products in P1's sample. Sequencing of P1's LCL DNA allowed identification of the de novo c.2778 + 86insT variant, predicted to compensate 2778 + 83C > G impact. Albeit not found in P1's bone marrow (BM) DNA, c.2778 + 86insT was detected in a second P1's LCL established afterward, suggesting its occurrence at a low level in vivo. Minigene assay recapitulated the c.2778 + 83C > G effect on splicing and the compensatory role of c.2778 + 86insT in re-establishing the physiological mechanism. Accordingly, P1's LCL under mitomycin C selection preserved the FA pathway activity in terms of FANCD2 monoubiquitination and cell survival. Discussion: Our findings prove the role of c.2778 + 86insT as a second-site variant capable of rescuing c.2778 + 83C > G pathogenicity in vitro, which might contribute to a slow hematopoietic deterioration and a mild hematologic evolution.

3.
Haematologica ; 108(10): 2652-2663, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37021532

RESUMO

Clinical trials have shown that lentiviral-mediated gene therapy can ameliorate bone marrow failure (BMF) in nonconditioned Fanconi anemia (FA) patients resulting from the proliferative advantage of corrected FA hematopoietic stem and progenitor cells (HSPC). However, it is not yet known if gene therapy can revert affected molecular pathways in diseased HSPC. Single-cell RNA sequencing was performed in chimeric populations of corrected and uncorrected HSPC co-existing in the BM of gene therapy-treated FA patients. Our study demonstrates that gene therapy reverts the transcriptional signature of FA HSPC, which then resemble the transcriptional program of healthy donor HSPC. This includes a down-regulated expression of TGF-ß and p21, typically up-regulated in FA HSPC, and upregulation of DNA damage response and telomere maintenance pathways. Our results show for the first time the potential of gene therapy to rescue defects in the HSPC transcriptional program from patients with inherited diseases; in this case, in FA characterized by BMF and cancer predisposition.


Assuntos
Anemia de Fanconi , Pancitopenia , Humanos , Anemia de Fanconi/genética , Anemia de Fanconi/terapia , Anemia de Fanconi/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Terapia Genética/métodos , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima , Pancitopenia/metabolismo , Transtornos da Insuficiência da Medula Óssea/metabolismo
4.
Nature ; 612(7940): 495-502, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36450981

RESUMO

Fanconi anaemia (FA), a model syndrome of genome instability, is caused by a deficiency in DNA interstrand crosslink repair resulting in chromosome breakage1-3. The FA repair pathway protects against endogenous and exogenous carcinogenic aldehydes4-7. Individuals with FA are hundreds to thousands fold more likely to develop head and neck (HNSCC), oesophageal and anogenital squamous cell carcinomas8 (SCCs). Molecular studies of SCCs from individuals with FA (FA SCCs) are limited, and it is unclear how FA SCCs relate to sporadic HNSCCs primarily driven by tobacco and alcohol exposure or infection with human papillomavirus9 (HPV). Here, by sequencing genomes and exomes of FA SCCs, we demonstrate that the primary genomic signature of FA repair deficiency is the presence of high numbers of structural variants. Structural variants are enriched for small deletions, unbalanced translocations and fold-back inversions, and are often connected, thereby forming complex rearrangements. They arise in the context of TP53 loss, but not in the context of HPV infection, and lead to somatic copy-number alterations of HNSCC driver genes. We further show that FA pathway deficiency may lead to epithelial-to-mesenchymal transition and enhanced keratinocyte-intrinsic inflammatory signalling, which would contribute to the aggressive nature of FA SCCs. We propose that the genomic instability in sporadic HPV-negative HNSCC may arise as a result of the FA repair pathway being overwhelmed by DNA interstrand crosslink damage caused by alcohol and tobacco-derived aldehydes, making FA SCC a powerful model to study tumorigenesis resulting from DNA-crosslinking damage.


Assuntos
Reparo do DNA , Anemia de Fanconi , Genômica , Neoplasias de Cabeça e Pescoço , Humanos , Aldeídos/efeitos adversos , Aldeídos/metabolismo , Reparo do DNA/genética , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Anemia de Fanconi/patologia , Neoplasias de Cabeça e Pescoço/induzido quimicamente , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Infecções por Papillomavirus , Carcinoma de Células Escamosas de Cabeça e Pescoço/induzido quimicamente , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Dano ao DNA/efeitos dos fármacos
5.
Oral Oncol ; 134: 106184, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36191479

RESUMO

Fanconi anemia (FA) patients frequently develop oral squamous cell carcinoma (OSCC). This cancer in FA patients is diagnosed within the first 3-4 decades of life, very often preceded by lesions that suffer a malignant transformation. In addition, they respond poorly to current treatments due to toxicity or multiple recurrences. Translational research on new chemopreventive agents and therapeutic strategies has been unsuccessful partly due to scarcity of disease models or failure to fully reproduce the disease. Here we report that Fanca gene knockout mice (Fanca-/-) frequently display pre-malignant lesions in the oral cavity. Moreover, when these animals were crossed with animals having conditional deletion of Trp53 gene in oral mucosa (K14cre;Trp53F2-10/F2-10), they spontaneously developed OSCC with high penetrance and a median latency of less than ten months. Tumors were well differentiated and expressed markers of squamous differentiation, such as keratins K5 and K10. In conclusion, Fanca and Trp53 genes cooperate to suppress oral cancer in mice, and Fanca-/-;K14cre;Trp53F2-10/F2-10 mice constitute the first animal model of spontaneous OSCC in FA.


Assuntos
Carcinoma de Células Escamosas , Anemia de Fanconi , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Animais , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Modelos Animais de Doenças , Anemia de Fanconi/complicações , Anemia de Fanconi/genética , Anemia de Fanconi/patologia , Queratinas , Camundongos , Camundongos Knockout , Neoplasias Bucais/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço
6.
J Clin Invest ; 132(15)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35671096

RESUMO

Fanconi anemia (FA) is the most prevalent inherited bone marrow failure (BMF) syndrome. Nevertheless, the pathophysiological mechanisms of BMF in FA have not been fully elucidated. Since FA cells are defective in DNA repair, we hypothesized that FA hematopoietic stem and progenitor cells (HSPCs) might express DNA damage-associated stress molecules such as natural killer group 2 member D ligands (NKG2D-Ls). These ligands could then interact with the activating NKG2D receptor expressed in cytotoxic NK or CD8+ T cells, which may result in progressive HSPC depletion. Our results indeed demonstrated upregulated levels of NKG2D-Ls in cultured FA fibroblasts and T cells, and these levels were further exacerbated by mitomycin C or formaldehyde. Notably, a high proportion of BM CD34+ HSPCs from patients with FA also expressed increased levels of NKG2D-Ls, which correlated inversely with the percentage of CD34+ cells in BM. Remarkably, the reduced clonogenic potential characteristic of FA HSPCs was improved by blocking NKG2D-NKG2D-L interactions. Moreover, the in vivo blockage of these interactions in a BMF FA mouse model ameliorated the anemia in these animals. Our study demonstrates the involvement of NKG2D-NKG2D-L interactions in FA HSPC functionality, suggesting an unexpected role of the immune system in the progressive BMF that is characteristic of FA.


Assuntos
Anemia de Fanconi , Animais , Antígenos CD34 , Anemia de Fanconi/genética , Células-Tronco Hematopoéticas , Ligantes , Camundongos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Regulação para Cima
7.
Blood Adv ; 6(12): 3803-3811, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35500223

RESUMO

Fanconi anemia (FA), a genetic DNA repair disorder characterized by marrow failure and cancer susceptibility. In FA mice, metformin improves blood counts and delays tumor development. We conducted a single institution study of metformin in nondiabetic patients with FA to determine feasibility and tolerability of metformin treatment and to assess for improvement in blood counts. Fourteen of 15 patients with at least 1 cytopenia (hemoglobin < 10 g/dL; platelet count < 100 000 cells/µL; or an absolute neutrophil count < 1000 cells/µL) were eligible to receive metformin for 6 months. Median patient age was 9.4 years (range 6.0-26.5 ). Thirteen of 14 subjects (93%) tolerated maximal dosing for age; 1 subject had dose reduction for grade 2 gastrointestinal symptoms. No subjects developed hypoglycemia or metabolic acidosis. No subjects had dose interruptions caused by toxicity, and no grade 3 or higher adverse events attributed to metformin were observed. Hematologic response based on modified Myelodysplastic Syndrome International Working Group criteria was observed in 4 of 13 evaluable patients (30.8%; 90% confidence interval, 11.3-57.3). Median time to response was 84.5 days (range 71-128 days). Responses were noted in neutrophils (n = 3), platelets (n = 1), and red blood cells (n = 1). No subjects met criteria for disease progression or relapse during treatment. Correlative studies explored potential mechanisms of metformin activity in FA. Plasma proteomics showed reduction in inflammatory pathways with metformin. Metformin is safe and tolerable in nondiabetic patients with FA and may provide therapeutic benefit. This trial was registered at as #NCT03398824.


Assuntos
Anemia de Fanconi , Metformina , Criança , Anemia de Fanconi/tratamento farmacológico , Anemia de Fanconi/genética , Humanos , Metformina/uso terapêutico , Adulto Jovem
8.
Cancers (Basel) ; 14(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35053516

RESUMO

BRCA2 is essential for homologous recombination DNA repair. BRCA2 mutations lead to genome instability and increased risk of breast and ovarian cancer. Similarly, mutations in BRCA2-interacting proteins are also known to modulate sensitivity to DNA damage agents and are established cancer risk factors. Here we identify the tumor suppressor CDK5RAP3 as a novel BRCA2 helical domain-interacting protein. CDK5RAP3 depletion induced DNA damage resistance, homologous recombination and single-strand annealing upregulation, and reduced spontaneous and DNA damage-induced genomic instability, suggesting that CDK5RAP3 negatively regulates double-strand break repair in the S-phase. Consistent with this cellular phenotype, analysis of transcriptomic data revealed an association between low CDK5RAP3 tumor expression and poor survival of breast cancer patients. Finally, we identified common genetic variations in the CDK5RAP3 locus as potentially associated with breast and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. Our results uncover CDK5RAP3 as a critical player in DNA repair and breast cancer outcomes.

9.
Mol Ther Methods Clin Dev ; 22: 66-75, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34485595

RESUMO

Difficulties in the collection of hematopoietic stem and progenitor cells (HSPCs) from Fanconi anemia (FA) patients have limited the gene therapy in this disease. We have investigated (ClinicalTrials.gov, NCT02931071) the safety and efficacy of filgrastim and plerixafor for mobilization of HSPCs and collection by leukapheresis in FA patients. Nine of eleven enrolled patients mobilized beyond the threshold level of 5 CD34+ cells/µL required to initiate apheresis. A median of 21.8 CD34+ cells/µL was reached at the peak of mobilization. Significantly, the oldest patients (15 and 16 years old) were the only ones who did not reach that threshold. A median of 4.27 million CD34+ cells/kg was collected in 2 or 3 aphereses. These numbers were markedly decreased to 1.1 million CD34+ cells/kg after immunoselection, probably because of weak expression of the CD34 antigen. However, these numbers were sufficient to facilitate the engraftment of corrected HSPCs in non-conditioned patients. No procedure-associated serious adverse events were observed. Mobilization of CD34+ cells correlated with younger age, higher leukocyte counts and hemoglobin values, lower mean corpuscular volume, and higher proportion of CD34+ cells in bone marrow (BM). All these values offer crucial information for the enrollment of FA patients for gene therapy protocols.

10.
NPJ Breast Cancer ; 7(1): 117, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504103

RESUMO

The tumor suppressor FANCD1/BRCA2 is crucial for DNA homologous recombination repair (HRR). BRCA2 biallelic pathogenic variants result in a severe form of Fanconi anemia (FA) syndrome, whereas monoallelic pathogenic variants cause mainly hereditary breast and ovarian cancer predisposition. For decades, the co-occurrence in trans with a clearly pathogenic variant led to assume that the other allele was benign. However, here we show a patient with biallelic BRCA2 (c.1813dup and c.7796 A > G) diagnosed at age 33 with FA after a hypertoxic reaction to chemotherapy during breast cancer treatment. After DNA damage, patient cells displayed intermediate chromosome fragility, reduced survival, cell cycle defects, and significantly decreased RAD51 foci formation. With a newly developed cell-based flow cytometric assay, we measured single BRCA2 allele contributions to HRR, and found that expression of the missense allele in a BRCA2 KO cellular background partially recovered HRR activity. Our data suggest that a hypomorphic BRCA2 allele retaining 37-54% of normal HRR function can prevent FA clinical phenotype, but not the early onset of breast cancer and severe hypersensitivity to chemotherapy.

11.
Am J Hematol ; 96(8): 989-999, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33984160

RESUMO

Fanconi anemia (FA) is characterized by chromosome fragility, bone marrow failure (BMF) and predisposition to cancer. As reverse genetic mosaicism has been described as "natural gene therapy" in patients with FA, we sought to evaluate the clinical course of a cohort of FA mosaic patients followed at referral centers in Spain over a 30-year period. This cohort includes patients with a majority of T cells without chromosomal aberrations in the DEB-chromosomal breakage test. Relative to non-mosaic FA patients, we observed a higher proportion of adult patients in the cohort of mosaics, with a later age of hematologic onset and a milder evolution of (BMF). Consequently, the requirement for hematopoietic stem cell transplant (HSCT) was also lower. Additional studies allowed us to identify a sub-cohort of mosaic FA patients in whom the reversion was present in bone marrow (BM) progenitor cells leading to multilineage mosaicism. These multilineage mosaic patients are older, have a lower percentage of aberrant cells, have more stable hematology and none of them developed leukemia or myelodysplastic syndrome when compared to non-mosaics. In conclusion, our data indicate that reverse mosaicism is a good prognostic factor in FA and is associated with more favorable long-term clinical outcomes.


Assuntos
Anemia de Fanconi/terapia , Terapia Genética/métodos , Adolescente , Adulto , Criança , Anemia de Fanconi/genética , Humanos , Masculino , Mosaicismo , Adulto Jovem
12.
Genes (Basel) ; 12(4)2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918752

RESUMO

Fanconi anemia (FA) patients have an exacerbated risk of head and neck squamous cell carcinoma (HNSCC). Treatment is challenging as FA patients display enhanced toxicity to standard treatments, including radio/chemotherapy. Therefore, better therapies as well as new disease models are urgently needed. We have used CRISPR/Cas9 editing tools in order to interrupt the human FANCA gene by the generation of insertions/deletions (indels) in exon 4 in two cancer cell lines from sporadic HNSCC having no mutation in FA-genes: CAL27 and CAL33 cells. Our approach allowed efficient editing, subsequent purification of single-cell clones, and Sanger sequencing validation at the edited locus. Clones having frameshift indels in homozygosis did not express FANCA protein and were selected for further analysis. When compared with parental CAL27 and CAL33, FANCA-mutant cell clones displayed a FA-phenotype as they (i) are highly sensitive to DNA interstrand crosslink (ICL) agents such as mitomycin C (MMC) or cisplatin, (ii) do not monoubiquitinate FANCD2 upon MMC treatment and therefore (iii) do not form FANCD2 nuclear foci, and (iv) they display increased chromosome fragility and G2 arrest after diepoxybutane (DEB) treatment. These FANCA-mutant clones display similar growth rates as their parental cells. Interestingly, mutant cells acquire phenotypes associated with more aggressive disease, such as increased migration in wound healing assays. Therefore, CAL27 and CAL33 cells with FANCA mutations are phenocopies of FA-HNSCC cells.


Assuntos
Proteína do Grupo de Complementação A da Anemia de Fanconi/deficiência , Anemia de Fanconi/patologia , Edição de Genes , Neoplasias de Cabeça e Pescoço/patologia , Mutação , Fenótipo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Movimento Celular , Proliferação de Células , Dano ao DNA , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética , Neoplasias de Cabeça e Pescoço/genética , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Células Tumorais Cultivadas , Cicatrização
13.
Cancers (Basel) ; 13(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808217

RESUMO

Cancer is a complex disease resulting from the accumulation of genetic dysfunctions. Tumor heterogeneity causes the molecular variety that divergently controls responses to chemotherapy, leading to the recurrent problem of cancer reappearance. For many decades, efforts have focused on identifying essential tumoral genes and cancer driver mutations. More recently, prompted by the clinical success of the synthetic lethality (SL)-based therapy of the PARP inhibitors in homologous recombinant deficient tumors, scientists have centered their novel research on SL interactions (SLI). The state of the art to find new genetic interactions are currently large-scale forward genetic CRISPR screens. CRISPR technology has rapidly evolved to be a common tool in the vast majority of laboratories, as tools to implement CRISPR screen protocols are available to all researchers. Taking advantage of SLI, combinatorial therapies have become the ultimate model to treat cancer with lower toxicity, and therefore better efficiency. This review explores the CRISPR screen methodology, integrates the up-to-date published findings on CRISPR screens in the cancer field and proposes future directions to uncover cancer regulation and individual responses to chemotherapy.

14.
Hemasphere ; 5(4): e539, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33718801

RESUMO

Inherited bone marrow failure syndromes (IBMFSs) are a group of congenital rare diseases characterized by bone marrow failure, congenital anomalies, high genetic heterogeneity, and predisposition to cancer. Appropriate treatment and cancer surveillance ideally depend on the identification of the mutated gene. A next-generation sequencing (NGS) panel of genes could be 1 initial genetic screening test to be carried out in a comprehensive study of IBMFSs, allowing molecular detection in affected patients. We designed 2 NGS panels of IBMFS genes: version 1 included 129 genes and version 2 involved 145 genes. The cohort included a total of 204 patients with suspected IBMFSs without molecular diagnosis. Capture-based targeted sequencing covered > 99% of the target regions of 145 genes, with more than 20 independent reads. No differences were seen between the 2 versions of the panel. The NGS tool allowed a total of 91 patients to be diagnosed, with an overall molecular diagnostic rate of 44%. Among the 167 patients with classified IBMFSs, 81 patients (48%) were diagnosed. Unclassified IBMFSs involved a total of 37 patients, of whom 9 patients (24%) were diagnosed. The preexisting diagnosis of 6 clinically classified patients (6%) was amended, implying a change of therapy for some of them. Our NGS IBMFS gene panel assay is a useful tool in the molecular diagnosis of IBMFSs and a reasonable option as the first tier genetic test in these disorders.

15.
Front Genet ; 12: 610050, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679882

RESUMO

Populations in North Africa (NA) are characterized by a high rate of consanguinity. Consequently, the proportion of founder mutations might be higher than expected and could be a major cause for the high prevalence of recessive genetic disorders like Fanconi anemia (FA). We report clinical, cytogenetic, and molecular characterization of FANCA in 29 North African FA patients from Tunisia, Libya, and Algeria. Cytogenetic tests revealed high rates of spontaneous chromosome breakages for all patients except two of them. FANCA molecular analysis was performed using three different molecular approaches which allowed us to identify causal mutations as homozygous or compound heterozygous forms. It included a nonsense mutation (c.2749C > T; p.Arg917Ter), one reported missense mutation (c.1304G > A; p.Arg435His), a novel missense variant (c.1258G > A; p.Asp409Glu), and the FANCA most common reported mutation (c.3788_3790delTCT; p.Phe1263del). Furthermore, three founder mutations were identified in 86.7% of the 22 Tunisian patients: (1) a deletion of exon 15, in 36.4% patients (8/22); (2), a deletion of exons 4 and 5 in 23% (5/22) and (3) an intronic mutation c.2222 + 166G > A, in 27.3% (6/22). Despite the relatively small number of patients studied, our results depict the mutational landscape of FA among NA populations and it should be taken into consideration for appropriate genetic counseling.

16.
Cancers (Basel) ; 12(8)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796636

RESUMO

BACKGROUND: About 40% of RAS/BRAF wild-type metastatic colorectal cancer (mCRC) patients undergoing anti-EGFR-based therapy have poor outcomes. Treatment failure is not only associated with poorer prognosis but higher healthcare costs. Our aim was to identify novel somatic genetic variants in the primary tumor and assess their effect on anti-EGFR response. PATIENTS AND METHODS: Tumor (somatic) and blood (germline) DNA samples were obtained from two well-defined cohorts of mCRC patients, those sensitive and those resistant to EGFR blockade. Genetic variant screening of 43 EGFR-related genes was performed using targeted next-generation sequencing (NGS). Relevant clinical data were collected through chart review to assess genetic results. RESULTS: Among 61 patients, 38 were sensitive and 23 were resistant to treatment. We identified eight somatic variants that predicted non-response. Three were located in insulin-related genes (I668N and E1218K in IGF1R, T1156M in IRS2) and three in genes belonging to the LRIG family (T152T in LRIG1, S697L in LRIG2 and V812M in LRIG3). The remaining two variants were found in NRAS (G115Efs*46) and PDGFRA (T301T). We did not identify any somatic variants related to good response. CONCLUSIONS: This study provides evidence that novel somatic genetic variants along the EGFR-triggered pathway could modulate the response to anti-EGFR drugs in mCRC patients. It also highlights the influence of insulin-related genes and LRIG genes on anti-EGFR efficacy. Our findings could help characterize patients who are resistant to anti-EGFR blockade despite harboring RAS/BRAF wild-type tumors.

17.
Orphanet J Rare Dis ; 15(1): 170, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32605631

RESUMO

BACKGROUND: Fanconi anemia is a rare disease clinically characterized by malformations, bone marrow failure and an increased risk of solid tumors and hematologic malignancies. The only therapies available are hematopoietic stem cell transplantation for bone marrow failure or leukemia, and surgical resection for solid tumors. Therefore, there is still an urgent need for new therapeutic options. With this aim, we developed a novel high-content cell-based screening assay to identify drugs with therapeutic potential in FA. RESULTS: A TALEN-mediated FANCA-deficient U2OS cell line was stably transfected with YFP-FANCD2 fusion protein. These cells were unable to form fluorescent foci or to monoubiquitinate endogenous or exogenous FANCD2 upon DNA damage and were more sensitive to mitomycin C when compared to the parental wild type counterpart. FANCA correction by retroviral infection restored the cell line's ability to form FANCD2 foci and ubiquitinate FANCD2. The feasibility of this cell-based system was interrogated in a high content screening of 3802 compounds, including a Prestwick library of 1200 FDA-approved drugs. The potential hits identified were then individually tested for their ability to rescue FANCD2 foci and monoubiquitination, and chromosomal stability in the absence of FANCA. CONCLUSIONS: While, unfortunately, none of the compounds tested were able to restore cellular FANCA-deficiency, our study shows the potential capacity to screen large compound libraries in the context of Fanconi anemia therapeutics in an optimized and cost-effective platform.


Assuntos
Anemia de Fanconi , Dano ao DNA , Avaliação Pré-Clínica de Medicamentos , Anemia de Fanconi/tratamento farmacológico , Anemia de Fanconi/genética , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Humanos
18.
Sci Rep ; 10(1): 6997, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32332829

RESUMO

The promising ability to genetically modify hematopoietic stem and progenitor cells by precise gene editing remains challenging due to their sensitivity to in vitro manipulations and poor efficiencies of homologous recombination. This study represents the first evidence of implementing a gene editing strategy in a murine safe harbor locus site that phenotypically corrects primary cells from a mouse model of Fanconi anemia A. By means of the co-delivery of transcription activator-like effector nucleases and a donor therapeutic FANCA template to the Mbs85 locus, we achieved efficient gene targeting (23%) in mFA-A fibroblasts. This resulted in the phenotypic correction of these cells, as revealed by the reduced sensitivity of these cells to mitomycin C. Moreover, robust evidence of targeted integration was observed in murine wild type and FA-A hematopoietic progenitor cells, reaching mean targeted integration values of 21% and 16% respectively, that were associated with the phenotypic correction of these cells. Overall, our results demonstrate the feasibility of implementing a therapeutic targeted integration strategy into the mMbs85 locus, ortholog to the well-validated hAAVS1, constituting the first study of gene editing in mHSC with TALEN, that sets the basis for the use of a new safe harbor locus in mice.


Assuntos
Anemia de Fanconi/genética , Edição de Genes/métodos , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética , Animais , Western Blotting , Instabilidade Cromossômica/genética , Feminino , Citometria de Fluxo , Células HEK293 , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Hibridização in Situ Fluorescente , Camundongos Endogâmicos C57BL , Gravidez
19.
Ann Hematol ; 99(5): 913-924, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32065290

RESUMO

Fanconi anemia (FA) is a DNA repair disorder resulting from mutations in genes encoding for FA DNA repair complex components and is characterized by variable congenital abnormalities, bone marrow failure (BMF), and high incidences of malignancies. FA mosaicism arises from reversion or other compensatory mutations in hematopoietic cells and may be associated with BMF reversal and decreased blood cell sensitivity to DNA-damaging agents (clastogens); this sensitivity is a phenotypic and diagnostic hallmark of FA. Uncertainty regarding the clinical significance of FA mosaicism persists; in some cases, patients have survived multiple decades without BMF or hematologic malignancy, and in others hematologic failure occurred despite the presence of clastogen-resistant cell populations. Assessment of mosaicism is further complicated because clinical evaluation is frequently based on clastogen resistance in lymphocytes, which may arise from reversion events both in lymphoid-specific lineages and in more pluripotent hematopoietic stem/progenitor cells (HSPCs). In this review, we describe diagnostic methods and outcomes in published mosaicism series, including the substantial intervals (1-6 years) over which blood counts normalized, and the relatively favorable clinical course in cases where clastogen resistance was demonstrated in bone marrow progenitors. We also analyzed published FA mosaic cases with emphasis on long-term clinical outcomes when blood count normalization was identified. Blood count normalization in FA mosaicism likely arises from reversion events in long-term primitive HSPCs and is associated with low incidences of BMF or hematologic malignancy. These observations have ramifications for current investigational therapeutic programs in FA intended to enable gene correction in long-term repopulating HSPCs.


Assuntos
Células da Medula Óssea/metabolismo , Anemia de Fanconi , Neoplasias Hematológicas , Células-Tronco Hematopoéticas/metabolismo , Mosaicismo , Células da Medula Óssea/patologia , Anemia de Fanconi/sangue , Anemia de Fanconi/diagnóstico , Anemia de Fanconi/genética , Anemia de Fanconi/terapia , Neoplasias Hematológicas/sangue , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/terapia , Humanos
20.
Clin Cancer Res ; 26(12): 3044-3057, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32005748

RESUMO

PURPOSE: Fanconi anemia rare disease is characterized by bone marrow failure and a high predisposition to solid tumors, especially head and neck squamous cell carcinoma (HNSCC). Patients with Fanconi anemia with HNSCC are not eligible for conventional therapies due to high toxicity in healthy cells, predominantly hematotoxicity, and the only treatment currently available is surgical resection. In this work, we searched and validated two already approved drugs as new potential therapies for HNSCC in patients with Fanconi anemia. EXPERIMENTAL DESIGN: We conducted a high-content screening of 3,802 drugs in a FANCA-deficient tumor cell line to identify nongenotoxic drugs with cytotoxic/cytostatic activity. The best candidates were further studied in vitro and in vivo for efficacy and safety. RESULTS: Several FDA/European Medicines Agency (EMA)-approved anticancer drugs showed cancer-specific lethality or cell growth inhibition in Fanconi anemia HNSCC cell lines. The two best candidates, gefitinib and afatinib, EGFR inhibitors approved for non-small cell lung cancer (NSCLC), displayed nontumor/tumor IC50 ratios of approximately 400 and approximately 100 times, respectively. Neither gefitinib nor afatinib activated the Fanconi anemia signaling pathway or induced chromosomal fragility in Fanconi anemia cell lines. Importantly, both drugs inhibited tumor growth in xenograft experiments in immunodeficient mice using two Fanconi anemia patient-derived HNSCCs. Finally, in vivo toxicity studies in Fanca-deficient mice showed that administration of gefitinib or afatinib was well-tolerated, displayed manageable side effects, no toxicity to bone marrow progenitors, and did not alter any hematologic parameters. CONCLUSIONS: Our data present a complete preclinical analysis and promising therapeutic line of the first FDA/EMA-approved anticancer drugs exerting cancer-specific toxicity for HNSCC in patients with Fanconi anemia.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Anemia de Fanconi/complicações , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Afatinib/administração & dosagem , Animais , Apoptose , Proliferação de Células , Feminino , Gefitinibe/administração & dosagem , Neoplasias de Cabeça e Pescoço/etiologia , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Carcinoma de Células Escamosas de Cabeça e Pescoço/etiologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA