RESUMO
BACKGROUND: VEGFR-2 has emerged as a prominent positive regulator of cancer progression. AIM: Discovery of new anticancer agents and apoptotic inducers targeting VEGFR-2. METHODS: Design and synthesis of new thiazolidine-2,4-diones followed by extensive in vitro studies, including VEGFR-2 inhibition assay, MTT assay, apoptosis analysis, and cell migration assay. In silico investigations including docking, MD simulations, ADMET, toxicity, and DFT studies were performed. RESULTS: Compound 15 showed the strongest VEGFR-2 inhibitory activity with an IC50 value of 0.066 µM. Additionally, most of the synthesized compounds showed anti-proliferative activity against HepG2 and MCF-7 cancer cell lines at the micromolar range with IC50 values ranging from 0.04 to 4.71 µM, relative to sorafenib (IC50 = 2.24 ± 0.06 and 3.17 ± 0.01 µM against HepG2 and MCF-7, respectively). Also, compound 15 showed selectivity indices of 1.36 and 2.08 against HepG2 and MCF-7, respectively. Furthermore, compound 15 showed a significant apoptotic effect and arrested the cell cycle of MCF-7 cells at the S phase. Moreover, compound 15 had a significant inhibitory effect on the ability of MCF-7 cells to heal from. Docking studies revealed that the synthesized thiazolidine-2,4-diones have a binding pattern approaching sorafenib. MD simulations indicated the stability of compound 15 in the active pocket of VEGFR-2 for 200 ns. ADMET and toxicity studies indicated an acceptable pharmacokinetic profile. DFT studies confirmed the ability of compound 15 to interact with VEGFR-2. CONCLUSION: Compound 15 has promising anticancer activity targeting VEGFR-2 with significant activity as an apoptosis inducer.
Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Desenho de Fármacos , Simulação de Acoplamento Molecular , Tiazolidinedionas , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Tiazolidinedionas/química , Tiazolidinedionas/síntese química , Células MCF-7 , Células Hep G2 , Proliferação de Células/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Ensaios de Seleção de Medicamentos Antitumorais , Sorafenibe/farmacologia , Sorafenibe/química , Simulação de Dinâmica Molecular , Movimento Celular/efeitos dos fármacosRESUMO
In this study, a series of seven novel 2,4-dioxothiazolidine derivatives with potential anticancer and VEGFR-2 inhibiting abilities were designed and synthesized as VEGFR-2 inhibitors. The synthesized compounds were tested in vitro for their potential to inhibit VEGFR-2 and the growth of HepG2 and MCF-7 cancer cell lines. Among the compounds tested, compound 22 (IC50 = 0.079 µM) demonstrated the highest anti-VEGFR-2 efficacy. Furthermore, it demonstrated significant anti-proliferative activities against HepG2 (IC50 = 2.04 ± 0.06 µM) and MCF-7 (IC50 = 1.21 ± 0.04 M). Additionally, compound 22 also increased the total apoptotic rate of the MCF-7 cancer cell lines with cell cycle arrest at S phase. As well, computational methods were applied to study the VEGFR-2-22 complex at the molecular level. Molecular docking and molecular dynamics (MD) simulations were used to investigate the complex's structural and kinetic characteristics. The DFT calculations further revealed the structural and electronic properties of compound 22. Finally, computational ADMET and toxicity tests were performed indicating the likeness of the proposed compounds to be drugs. The results suggest that compound 22 displays promise as an effective anticancer treatment and can serve as a model for future structural modifications and biological investigations in this field.
RESUMO
Background: VEGFR-2 is a key regulator of cancer cell proliferation, migration and angiogenesis. Aim: Development of thieno[2,3-d]pyrimidine derivatives as potential anti-cancer agents targeting VEGFR-2. Methods: Seven in vitro and nine in silico studies were conducted. Results: Compound 10d demonstrated strong anticancer potential, boosting apoptosis based on VEGFR-2 inhibition. It arrested the S phase of the cell cycle and upregulated the apoptotic factors. Docking and molecular dynamics simulation studies confirm the stability of the VEGFR-2-10d complex and suggest that these compounds have good binding affinities to VEGFR-2. In addition, the drug-likeness was confirmed. Conclusion: Thieno[2,3-d]pyrimidines, particularly compound 10d, has good anticancer effects and may contribute to the development of new anticancer therapies.
RESUMO
In this study, novel VEGFR-2-targeting thiazolidine-2,4-dione derivatives with potential anticancer properties were designed and synthesized. The ability of the designed derivatives to inhibit VEGFR-2 and stop the growth of three different cancer cell types (HT-29, A-549, and HCT-116) was examined in vitro. The IC50 value of compound 15, 0.081 µM, demonstrated the best anti-VEGFR-2 potency. Additionally, compound 15 showed remarkable anti-proliferative activities against the tested cancer cell lines, with IC50 values ranging from 13.56 to 17.8 µM. Additional flow cytometric investigations showed that compound 15 increased apoptosis in HT-29 cancer cells (from 3.1% to 31.4%) arresting their growth in the S phase. Furthermore, compound 15's apoptosis induction in the same cell line was confirmed by increasing the levels of BAX (4.8-fold) and decreasing Bcl-2 (2.8-fold). Also, compound 15 noticeably increased caspase-8 and caspase-9 levels by 1.7 and 3.2-fold, respectively. Computational methods were used to perform molecular analysis of the VEGFR-2-15 complex. Molecular dynamics simulations and molecular docking were utilized to analyze the complex's kinetic and structural characteristics. Protein-ligand interaction profiler analysis (PLIP) determined the 3D interactions and binding conformation of the VEGFR-2-15 complex. DFT analyses also provided insights into the 3D geometry, reactivity, and electronic characteristics of compound 15. Computational ADMET and toxicity experiments were conducted to determine the potential of the synthesized compounds for therapeutic development. The study's findings suggest that compound 15 might be an effective anticancer lead compound and could guide future attempts to develop new drugs.
RESUMO
Novel thiazolidine-2,4-dione derivatives, 11a-g, were designed, and synthesized targeting the VEGFR-2 protein. The in vitro studies indicated the abilities of the synthesized derivatives to inhibit VEGFR-2 and prevent the growth of two different cancer cell types, HepG2 and MCF-7. Compound 11 f exhibited the strongest anti-VEGFR-2 activity (IC50 = 0.053 µM). As well, compound 11 f showed impressive anti-proliferative activity against the mentioned cancer cell lines with IC50 values of 0.64 ± 0.01 and 0.53 ± 0.04 µM, respectively. Additionally, compound 11 f arrested the MCF-7 cell cycle at the S phase and increased the overall apoptosis percentage. Furthermore, cell migration assay revealed that compound 11 f has a significant ability to prevent migration and healing potentialities of MCF-7. Moreover, computational studies were used to conduct the molecular investigation of the VEGFR-2-11 f complex. The kinetic and structural features of the complex were examined using molecular dynamics simulations and molecular docking. Besides, Principal component analysis (PCA) was used to explain the dynamics of the VEGFR-2-11 f complex at various spatial scales. The DFT calculations also provided further clarity regarding compound 11 f's structural and electronic features. To evaluate how closely the developed compounds might look like drugs, ADMET and toxicity experiments were computed. To conclude, the presented study demonstrates the potential of compound 11 f as a viable anti-cancer drug, which can serve as a prototype for future structural modifications and further biological investigations.
Assuntos
Antineoplásicos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Antineoplásicos/farmacologia , Apoptose , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Estrutura Molecular , Fosforilação , Inibidores de Proteínas Quinases , Relação Estrutura-Atividade , Tiazolidinas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidoresRESUMO
In this work, new thieno[2,3-d]pyrimidine-derived compounds possessing potential anticancer activities were designed and synthesized to target VEGFR-2. The thieno[2,3-d]pyrimidine derivatives were tested in vitro for their abilities to inhibit VEGFR-2 and to prevent cancer cell growth in two types of cancer cells, MCF-7 and HepG2. Compound 18 exhibited the strongest anti-VEGFR-2 potential with an IC50 value of 0.084 µM. Additionally, it displayed excellent proliferative effects against MCF-7 and HepG2 cancer cell lines, with IC50 values of 10.17 µM and 24.47 µM, respectively. Further studies revealed that compound 18 induced cell cycle arrest in G2/M phase and promoted apoptosis in MCF-7 cancer cells. Apoptosis was stimulated by compound 18 by increasing BAX (3.6-fold) and decreasing Bcl-2 (3.1-fold). Additionally, compound 18 significantly raised the levels of caspase-8 (2.6-fold) and caspase-9 (5.4-fold). Computational techniques were also used to investigate the VEGFR-2-18 complex at a molecular level. Molecular docking and molecular dynamics simulations were performed to assess the structural and energetic features of the complex. The protein-ligand interaction profiler analysis identified the 3D interactions and binding conformation of the VEGFR-2-18 complex. Essential dynamics (ED) study utilizing principal component analysis (PCA) described the protein dynamics of the VEGFR-2-18 complex at various spatial scales. Bi-dimensional projection analysis confirmed the proper binding of the VEGFR-2-18 complex. In addition, the DFT studies provided insights into the structural and electronic properties of compound 18. Finally, computational ADMET and toxicity studies were conducted to evaluate the potential of the thieno[2,3-d]pyrimidine derivatives for drug development. The results of the study suggested that compound 18 could be a promising anticancer agent that may provide effective treatment options for cancer patients. Furthermore, the computational techniques used in this research provided valuable insights into the molecular interactions of the VEGFR-2-18 complex, which may guide future drug design efforts. Overall, this study highlights the potential of thieno[2,3-d]pyrimidine derivatives as a new class of anticancer agents and provides a foundation for further research in this area.
RESUMO
Background: VEGFR-2 is one of the most effective targets in cancer treatment. Aim: The design and semi-synthesis of new theobromine derivatives as potential VEGFR-2 inhibitors. Methods: In vitro and in silico evaluation of the synthesized compounds. Results: Compound 5b demonstrated excellent antiproliferative and VEGFR-2 inhibitory effects with significant apoptotic activity. It modulated the immune response by increasing IL-2 and reducing TNF-α levels. Docking and molecular dynamics simulations revealed the compound's binding affinity with VEGFR-2. Lastly, computational absorption, distribution, metabolism, excretion and toxicity studies indicated the high potential of compound 5b for drug development. Conclusion: Compound 5b could be a promising anticancer agent targeting VEGFR-2.
Assuntos
Antineoplásicos , Simulação de Dinâmica Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Teobromina/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Inibidores de Proteínas Quinases/farmacologia , Proliferação de Células , Antineoplásicos/química , Simulação de Acoplamento Molecular , Desenho de FármacosRESUMO
In this study, new thieno[2,3-d]pyrimidine derivatives that could have potential anticancer activity by inhibiting the VEGFR-2 receptor have been designed, synthesized, and investigated. The thieno[2,3-d]pyrimidine derivatives showed strong in vitro abilities to inhibit VEGFR-2 and to prevent cancer cell growth in two different types of cancer cells, MCF-7 and HepG2. Particularly, compound 22 showed the most potent anti-VEGFR-2 activity with an IC50 value of 0.58 µM. Additionally, compound 22 exhibited good anti-proliferative activity against both MCF-7 and HepG2 cancer cell lines, with IC50 values of 11.32 ± 0.32 and 16.66 ± 1.22 µM, respectively. Further investigations revealed that compound 22 induced cell cycle arrest at the G2/M phase and promoted both early and late apoptosis in the MCF-7 cancer cells. Compound 22 also increased the level of BAX (2.8-fold), and reduced the level of Bcl-2 (2.2-fold), hence increasing the rate of apoptosis. Compound 22 also revealed 2.9-fold and 2.8-fold higher levels of caspase-8 and caspase-9, respectively, in the treated MCF-7 cancer cells compared to the control cell lines. The MD simulations showed that the VEGFR-2-22 complex was structurally and energytically stable over 100 ns, while the MM-GBSA study indicated its stable thermodynamic behavior. The bi-dimensional projection analysis confirmed the proper binding of the VEGFR-2-22 complex, while the DFT studies provided optimized geometry, charge distribution, FMO, ESP, the total density of state, and QTAIM maps of compound 22. Finally, computational ADMET studies were performed to assess the drug development potential of the thieno[2,3-d]pyrimidine derivatives. Overall, this study suggests that compound 22 has the potential as an anticancer lead compound by inhibiting VEGFR-2, which may be a guide for future drug design and development.
Assuntos
Antineoplásicos , Pirimidinas , Pirimidinas/farmacologia , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular , Desenho de FármacosRESUMO
Vascular endothelial cell proliferation and angiogenesis are all crucially impacted by Endothelial Growth Factor Receptor-2 (VEGFR-2). Its expression is significantly boosted throughout pathologic angiogenesis causing the development of tumors. Sothat, inhibition of VEGFR-2 has crucial role in cancer treatment. In this study, novel semisynthetic theobromine derivatives were rationally designed as VEGFR-2 inhibitors and subjected to in vitro testing for their ability to block VEGFR-2 activation. Furthermore, the antiproliferative effects of these derivatives were evaluated. Compound 7 g exhibited the most potent anti-VEGFR-2 activity, with an IC50 value of 0.072 µM, and demonstrated excellent dose-dependent inhibitory activity against both MCF-7 and HepG2 cancer cells with IC50 values of 19.35 and 27.89 µM, respectively. Notably, compound 7 g exhibited high selectivity indices of 2.6 and 1.8 against MCF-7 and HepG2 cells, respectively. Compound 7 g induced G2/M phase cell cycle arrest, promoted apoptosis, and boosted immunomodulation by downregulating TNF-α expression and upregulating IL-2 levels in MCF-7 cells. The molecular docking analysis revealed that compound 7 g could bind effectively to the active site of VEGFR-2, and molecular dynamic simulations confirmed the stability of the VEGFR-2/compound 7 g complex. Furthermore, ADME and toxicity profiling indicated the potential suitability of these compounds as drug candidates. In summary, compound 7 g hold promise as a VEGFR-2 inhibitor.Communicated by Ramaswamy H. Sarma.
RESUMO
Immunomodulatory medications like thalidomide and its analogs prevent the production of some proinflammatory cytokines linked to cancer. A new series of thalidomide analogs were designed and synthesized in order to develop potential antitumor immunomodulatory agents. The antiproliferative activities of the new candidates against a panel of three human cancer cell lines (HepG-2, PC3 and MCF-7) were assessed in comparison to thalidomide as a positive control. The obtained results showed the relative significant potency of 18f (IC50 = 11.91 ± 0.9, 9.27 ± 0.7, and 18.62 ± 1.5 µM) and 21b (IC50 = 10.48 ± 0.8, 22.56 ± 1.6, and 16.39 ± 1.4 µM) against the mentioned cell lines, respectively. These results were comparable to thalidomide (IC50 = 11.26 ± 0.54, 14.58 ± 0.57, and 16.87 ± 0.7 µM, respectively). To see to what extent the biological properties of the new candidates are relative to those of thalidomide, the effects of 18f and 21b on the expression levels of TNF-α, CASP8, VEGF, and NF-κB P65 were evaluated. Significant reductions in the proinflammatory TNF-α, VEGF, and NF-κB P65 levels in HepG-2 cells were observed after exposure to compounds 18f and 21b. Furthermore, a sharp increase in CASP8 levels was detected. The obtained results revealed that 21b is of greater significance than thalidomide in TNF-α and NF-κB P65 inhibition. The in silico ADMET and toxicity studies showed that most of tested candidates have a good profile of drug-likeness and low toxicity potential.
RESUMO
A new set of quinoline and isatine derivatives were synthesized as antiangiogenic VEGFR-2 inhibitors. On a biological level, the in vitro ability of the obtained candidates to inhibit VEGFR-2 was found to be strong with IC50 values in the range of 76.64-175.50 nM. To investigate the cytotoxicity and safety, all compounds were tested against a panel of four cancer cell lines (A549, Caco2, HepG2 and MDA) as well as two normal cell lines (Vero and WI-38). Interestingly, compound 12 exhibited noticeable cytotoxicity against A549, Caco2 and MDA with IC50 values of 5.40, 0.58 and 0.94 µM, respectively. These results were better and comparable to that of doxorubicin (0.70, 0.82 and 0.90 µM, respectively) with more than three folds higher selectivity index against the Caco2 cell lines. Compound 9 prevented the healing of the cancer cells at a low concentration. Also, the compound's potential to induce programmed cell death in Caco-2 was proved through the significant down regulating of the expression of Bcl2, Bcl-xl and Survivin in addition to the slight upregulation of the TGF-ß gene. The cell cycle analysis indicated that compound 9 arrested the Caco-2 cells in the G2/M phase. Interestingly, the molecular docking studies against VEGFR-2 revealed the correct binding of the targeted compounds similar to sorafenib. Furthermore, MD experiments validated the binding of compound 12 with VEGFR-2 over 100 ns, as well as MM-PBSA analysis that confirmed the precise binding with optimum energy. Finally, ADMET analysis showed the general drug-likeness and confirmed the safety of the tested compounds.Communicated by Ramaswamy H. Sarma.
Assuntos
Antineoplásicos , Quinolinas , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Antineoplásicos/farmacologia , Células CACO-2 , Proliferação de Células , Simulação por Computador , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases , Quinolinas/farmacologia , Relação Estrutura-Atividade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidoresRESUMO
Cancer is still a dangerous disease with a high mortality rate all over the world. In our attempt to develop potential anticancer candidates, new quinazoline and phthalazine based compounds were designed and synthesized. The new derivatives were built in line with the pharmacophoric features of thalidomide. The new derivatives as well as thalidomide were examined against three cancer cell lines, namely: hepatocellular carcinoma (HepG-2), breast cancer (MCF-7) and prostate cancer (PC3). Then the effects on the expression levels of caspase-8, VEGF, NF-κB P65, and TNF-α in HepG-2 cells were evaluated. The biological data revealed the high importance of phthalazine based compounds (24a-c), which were far better than thalidomide with regard to the antiproliferative activity. 24b showed IC50 of 2.51, 5.80 and 4.11 µg mL-1 compared to 11.26, 14.58, and 16.87 µg mL-1 for thalidomide against the three cell lines respectively. 24b raised caspase-8 level by about 7 folds, compared to 8 folds reported for thalidomide. Also, VEGF level in HepG-2 cells treated with 24b was 185.3 pg mL-1, compared to 432.5 pg mL-1 in control cells. Furthermore, the immunomodulatory properties were proven to 24b, which reduced TNF-α level by approximately half. At the same time, NF-κB P65 level in HepG-2 cells treated with 24b was 76.5 pg mL-1 compared to 278.1 and 110.5 pg mL-1 measured for control cells and thalidomide treated HepG-2 cells respectively. Moreover, an in vitro viability study against Vero non-cancerous cell line was investigated and the results reflected a high safety profile of all tested compounds. This work suggests 24b as a promising lead compound for development of new immunomodulatory anticancer agents.
RESUMO
We report herein, the design and synthesis of thiazolidine-2,4-diones derivatives as new inhibitors for VEGFR-2. The designed members were assessed for their in vitro anticancer activity against four cancer cell lines; A549, Caco-2, HepG-2 and MDA-MB-231. Compound 14a showed the most potent effects against Caco-2, and HepG-2 cell lines (IC50 = of 1.5 and 31.5 µM, respectively). Next, the in vitro VEGFR-2 inhibitory activity, safety profiles and selectivity indices were examined for all the synthesized members against the normal Vero cell line. Compound 14a (the safest member against Caco-2 cell line) was further investigated for its ability to inhibit Caco-2 cells migration and healing. Moreover, the apoptotic induction of compound 14a against Caco-2 cell line was investigated by assessing against four apoptotic genes (Bcl2, Bcl-xl, TGF, and Survivin). The results revealed that compound 14a can exert apoptosis through significant reduction of Bcl2, Survivin, and TGF gene expression levels. Finally, deep computational studies including molecular docking, ADMET, toxicity studies, and MD simulation were carried out. Also, the DFT calculations were performed and discussed, and the results confirmed the inhibitory reactivity of 14a against VEGFR-2. Compound 14a is expected to be used as a potential lead in the development of new VEGFR-2 inhibitors with increased potency.
Assuntos
Antineoplásicos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Antineoplásicos/farmacologia , Apoptose , Células CACO-2 , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Relação Estrutura-Atividade , Survivina/metabolismo , Tiazolidinas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismoRESUMO
This work is one of our efforts to discover potent anticancer agents. We modified the most promising derivative of our previous work concerned with the development of VEGFR-2 inhibitor candidates. Thirteen new compounds based on benzoxazole moiety were synthesized and evaluated against three human cancer cell lines, namely, breast cancer (MCF-7), colorectal carcinoma (HCT116), and hepatocellular carcinoma (HepG2). The synthesized compounds were also evaluated against VEGFR-2 kinase activity. The biological testing fallouts showed that compound 8d was more potent than standard sorafenib. Such compound showed IC50 values of 3.43, 2.79, and 2.43 µM against the aforementioned cancer cell lines, respectively, compared to IC50 values of 4.21, 5.30, and 3.40 µM reported for sorafenib. Compound 8d also was found to exert exceptional VEGFR-2 inhibition activity with an IC50 value of 0.0554 µM compared to sorafenib (0.0782 µM). In addition, compound 8h revealed excellent cytotoxic effects with IC50 values of 3.53, 2.94, and 2.76 µM against experienced cell lines, respectively. Furthermore, compounds 8a and 8e were found to inhibit VEGFR-2 kinase activity with IC50 values of 0.0579 and 0.0741 µM, exceeding that of sorafenib. Compound 8d showed a significant apoptotic effect and arrested the HepG2 cells at the pre-G1 phase. In addition, it exerted a significant inhibition for TNF-α (90.54%) and of IL-6 (92.19%) compared to dexamethasone (93.15%). The molecular docking studies showed that the binding pattern of the new compounds to VEGFR-2 kinase was similar to that of sorafenib.
Assuntos
Antineoplásicos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Antineoplásicos/química , Apoptose , Benzoxazóis/química , Proliferação de Células , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Sorafenibe/farmacologia , Relação Estrutura-AtividadeRESUMO
New quinoline and isatin derivatives having the main characteristics of VEGFR-2 inhibitors was synthesised. The antiproliferative effects of these compounds were estimated against A549, Caco-2, HepG2, and MDA-MB-231. Compounds 13 and 14 showed comparable activities with doxorubicin against the Caco-2 cells. These compounds strongly inhibited VEGFR-2 kinase activity. The cytotoxic activities were evaluated against Vero cells. Compound 7 showed the highest value of safety and selectivity. Cell migration assay displayed the ability of compound 7 to prevent healing and migration abilities in the cancer cells. Furthermore, compound 7 induced apoptosis in Caco-2 through the expressive down-regulation of the apoptotic genes, Bcl2, Bcl-xl, and Survivin, and the upregulation of the TGF gene. Molecular docking against VEGFR-2 emerged the interactions of the synthesised compounds in a similar way to sorafenib. Additionally, seven molecular dynamics simulations studies were applied and confirmed the stability of compound 13 in the active pocket of VEGFR-2 over 100 ns.
Assuntos
Antineoplásicos , Isatina , Quinolinas , Animais , Antineoplásicos/farmacologia , Células CACO-2 , Proliferação de Células , Chlorocebus aethiops , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Isatina/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/farmacologia , Quinolinas/farmacologia , Relação Estrutura-Atividade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Células VeroRESUMO
A thiazolidine-2,4-dione nucleus was molecularly hybridised with the effective antitumor moieties; 2-oxo-1,2-dihydroquinoline and 2-oxoindoline to obtain new hybrids with potential activity against VEGFR-2. The cytotoxic effects of the synthesised derivatives against Caco-2, HepG-2, and MDA-MB-231 cell lines were investigated. Compound 12a was found to be the most potent candidate against the investigated cell lines with IC50 values of 2, 10, and 40 µM, respectively. Furthermore, the synthesised derivatives were tested in vitro for their VEGFR-2 inhibitory activity showing strong inhibition. Moreover, an in vitro viability study against Vero non-cancerous cell line was investigated and the results reflected a high safety profile of all tested compounds. Compound 12a was further investigated for its apoptotic behaviour by assessing the gene expression of four genes (Bcl2, Bcl-xl, TGF, and Survivin). Molecular dynamic simulations authenticated the high affinity, accurate binding, and perfect dynamics of compound 12a against VEGFR-2.
Assuntos
Antineoplásicos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Antineoplásicos/química , Células CACO-2 , Proliferação de Células , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Oxindóis , Inibidores de Proteínas Quinases/farmacologia , Relação Estrutura-Atividade , Tiazolidinas/farmacologiaRESUMO
In this study, a set of novel benzoxazole derivatives were designed, synthesised, and biologically evaluated as potential VEGFR-2 inhibitors. Five compounds (12d, 12f, 12i, 12l, and 13a) displayed high growth inhibitory activities against HepG2 and MCF-7 cell lines and were further investigated for their VEGFR-2 inhibitory activities. The most potent anti-proliferative member 12 l (IC50 = 10.50 µM and 15.21 µM against HepG2 and MCF-7, respectively) had the most promising VEGFR-2 inhibitory activity (IC50 = 97.38 nM). A further biological evaluation revealed that compound 12l could arrest the HepG2 cell growth mainly at the Pre-G1 and G1 phases. Furthermore, compound 12l could induce apoptosis in HepG2 cells by 35.13%. likely, compound 12l exhibited a significant elevation in caspase-3 level (2.98-fold) and BAX (3.40-fold), and a significant reduction in Bcl-2 level (2.12-fold). Finally, docking studies indicated that 12l exhibited interactions with the key amino acids in a similar way to sorafenib.
Assuntos
Antineoplásicos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Antineoplásicos/química , Apoptose , Benzoxazóis , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases , Relação Estrutura-AtividadeRESUMO
Different 2,4-thiazolidinedione-tethered coumarins 5a-b, 10a-n and 11a-d were synthesised and evaluated for their inhibitory action against the cancer-associated hCAs IX and XII, as well as the physiologically dominant hCAs I and II to explore their selectivity. Un-substituted phenyl-bearing coumarins 10a, 10 h, and 2-thienyl/furyl-bearing coumarins 11a-c exhibited the best hCA IX (KIs between 0.48 and 0.93 µM) and hCA XII (KIs between 0.44 and 1.1 µM) inhibitory actions. Interestingly, none of the coumarins had any inhibitory effect on the off-target hCA I and II isoforms. The sub-micromolar compounds from the biochemical assay, coumarins 10a, 10 h and 11a-c, were assessed in an in vitro antiproliferative assay, and then the most potent antiproliferative agent 11a was tested to explore its impact on the cell cycle phases and apoptosis in MCF-7 breast cancer cells to provide more insights into the anticancer activity of these compounds.
Assuntos
Anidrase Carbônica IX/antagonistas & inibidores , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Cumarínicos/farmacologia , Descoberta de Drogas , Tiazolidinedionas/farmacologia , Antígenos de Neoplasias/metabolismo , Apoptose/efeitos dos fármacos , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cumarínicos/síntese química , Cumarínicos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células MCF-7 , Estrutura Molecular , Relação Estrutura-Atividade , Tiazolidinedionas/síntese química , Tiazolidinedionas/químicaRESUMO
A new series of benzoxazole derivatives were designed and synthesised to have the main essential pharmacophoric features of VEGFR-2 inhibitors. Cytotoxic activities were evaluated for all derivatives against two human cancer cell lines, MCF-7 and HepG2. Also, the effect of the most cytotoxic derivatives on VEGFR-2 protein concentration was assessed by ELISA. Compounds 14o, 14l, and 14b showed the highest activities with VEGFR-2 protein concentrations of 586.3, 636.2, and 705.7 pg/ml, respectively. Additionally, the anti-angiogenic property of compound 14b against human umbilical vascular endothelial cell (HUVEC) was performed using a wound healing migration assay. Compound 14b reduced proliferation and migratory potential of HUVEC cells. Furthermore, compound 14b was subjected to further biological investigations including cell cycle and apoptosis analyses. Compound 14b arrested the HepG2 cell growth at the Pre-G1 phase and induced apoptosis by 16.52%, compared to 0.67% in the control (HepG2) cells. The effect of apoptosis was buttressed by a 4.8-fold increase in caspase-3 level compared to the control cells. Besides, different in silico docking studies were also performed to get better insights into the possible binding mode of the target compounds with VEGFR-2 active sites.
Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Benzoxazóis/farmacologia , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Benzoxazóis/síntese química , Benzoxazóis/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismoRESUMO
Vascular endothelial growth factor receptor-2 (VEGFR-2) is critically involved in cancer angiogenesis. Blocking of VEGFR-2 signaling pathway proved effective suppression of tumor growth. Accordingly, two series of new triazoloquinoxaline-based derivatives were designed and synthesized as VEGFR-2 inhibitors. All in vitro cytotoxic activities of the synthesized compounds were evaluated against two human cancer cell lines (MCF-7 and HepG2). To confirm the potential mechanism of cytotoxicity, enzymatic assays against VEGFR-2 were estimated for all the target compounds. The results of VEGFR-2 inhibitory activity and cytotoxicity were in high correlation. Compound 22a exhibited the highest cytotoxic effect with IC50 values of 6.2 and 4.9 µM against MCF-7 and HepG2, respectively, comparing to sorafenib (IC50 = 3.53 and 2.18 µM). Such derivative showed the best VEGFR-2 inhibitory activity with an IC50 value of 3.9 nM, which is very close to that of sorafenib (IC50 = 3.13 nM). Moreover, compounds 22b, 23b, and 23e exhibited strong cytotoxic activity with IC50 values ranging from 11.7 to 15.3 µM. Also, these compounds showed promising VEGFR-2 inhibition with IC50 values of 4.2, 5.7, and 4.7 nM, respectively. In silico docking, ADMET, and toxicity studies were carried out for the synthesized compounds. The results revealed that some compounds have a good binding mode against VEGFR-2 and a high level of drug-likeness.