Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Microbes Environ ; 38(4)2023.
Artigo em Inglês | MEDLINE | ID: mdl-38092410

RESUMO

Nitrification is a key process in the biogeochemical nitrogen cycle and a major emission source of the greenhouse gas nitrous oxide (N2O). The periplasmic enzyme hydroxylamine oxidoreductase (HAO) is involved in the oxidation of hydroxylamine to nitric oxide in the second step of nitrification, producing N2O as a byproduct. Its three-dimensional structure demonstrates that slight differences in HAO active site residues have inhibitor effects. Therefore, a more detailed understanding of the diversity of HAO active site residues in soil microorganisms is important for the development of novel nitrification inhibitors using structure-guided drug design. However, this has not yet been examined. In the present study, we investigated hao gene diversity in beta-proteobacterial ammonia-oxidizing bacteria (ß-AOB) and complete ammonia-oxidizing (comammox; Nitrospira spp.) bacteria in agricultural fields using a clone library ana-lysis. A total of 1,949 hao gene sequences revealed that hao gene diversity in ß-AOB and comammox bacteria was affected by the fertilizer treatment and field type, respectively. Moreover, hao sequences showed the almost complete conservation of the six HAO active site residues in both ß-AOB and comammox bacteria. The diversity of nitrifying bacteria showed similarity between hao and amoA genes. The nxrB amplicon sequence revealed the dominance of Nitrospira cluster II in tea field soils. The present study is the first to reveal hao gene diversity in agricultural soils, which will accelerate the efficient screening of HAO inhibitors and evaluations of their suppressive effects on nitrification in agricultural soils.


Assuntos
Archaea , Betaproteobacteria , Archaea/genética , Solo/química , Amônia , Hidroxilamina , Domínio Catalítico , Bactérias/genética , Nitrificação , Oxirredução , Hidroxilaminas/farmacologia , Microbiologia do Solo , Filogenia
2.
Microorganisms ; 11(2)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36838234

RESUMO

The perennial gramineous grass Miscanthus condensatus functions as a major pioneer plant in colonizing acidic volcanic deposits on Miyake-jima, Japan, despite a lack of nitrogen nutrients. The nitrogen cycle in the rhizosphere is important for the vigorous growth of M. condensatus in this unfavorable environment. In the present study, we identified the nitrogen-cycling bacterial community in the M. condensatus rhizosphere on these volcanic deposits using a combination of metagenomics and culture-based analyses. Our results showed a large number of functional genes related to denitrification and dissimilatory nitrate reduction to ammonium (DNRA) in the rhizosphere, indicating that nitrate-transforming bacteria dominated the rhizosphere biome. Furthermore, nitrite reductase genes (i.e., nirK and nirS) related to the denitrification and those genes related to DNRA (i.e., nirB and nrfA) were mainly annotated to the classes Alpha-proteobacteria, Beta-proteobacteria, and Gamma-proteobacteria. A total of 304 nitrate-succinate-stimulated isolates were obtained from the M. condensatus rhizosphere and were classified into 34 operational taxonomic units according to amplified 16S rRNA gene restriction fragment pattern analysis. Additionally, two strains belonging to the genus Cupriavidus in the class Beta-proteobacteria showed a high in vitro denitrifying activity; however, metagenomic results indicated that the DNRA-related rhizobacteria appeared to take a major role in the nitrogen cycle of the M. condensatus rhizosphere in recent Miyake-jima volcanic deposits. This study elucidates the association between the Miscanthus rhizosphere and the nitrate-reducing bacterial community on newly placed volcanic deposits, which furthers our understanding of the transformation of nitrogen nutrition involved in the early development of vegetation.

3.
Microbes Environ ; 37(3)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35965097

RESUMO

Many stinkbugs in the superfamily Coreoidea (Hemiptera: Heteroptera) develop crypts in the posterior midgut, harboring Caballeronia (Burkholderia) symbionts. These symbionts form a monophyletic group in Burkholderia sensu lato, called the "stinkbug-associated beneficial and environmental (SBE)" group, recently reclassified as the new genus Caballeronia. SBE symbionts are separated into the subclades SBE-α and SBE-ß. Previous studies suggested a regional effect on the symbiont infection pattern; Japanese and American bug species are more likely to be associated with SBE-α, while European bug species are almost exclusively associated with SBE-ß. However, since only a few insect species have been investigated, it remains unclear whether region-specific infection is general. We herein investigated Caballeronia gut symbionts in diverse Japanese, European, and North American populations of a cosmopolitan species, the Western conifer seed bug Leptoglossus occidentalis (Coreoidea: Coreidae). A mole-cular phylogenetic ana-lysis of the 16S rRNA gene demonstrated that SBE-ß was the most dominant in all populations. Notably, SBE-α was rarely detected in any region, while a third clade, the "Coreoidea clade" occupied one fourth of the tested populations. Although aposymbiotic bugs showed high mortality, SBE-α- and SBE-ß-inoculated insects both showed high survival rates; however, a competition assay demonstrated that SBE-ß outcompeted SBE-α in the midgut crypts of L. occidentalis. These results strongly suggest that symbiont specificity in the Leptoglossus-Caballeronia symbiotic association is influenced by the host rather than geography, while the geographic distribution of symbionts may be more important in other bugs.


Assuntos
Burkholderia , Heterópteros , Traqueófitas , Animais , Burkholderia/genética , Filogenia , RNA Ribossômico 16S/genética , Traqueófitas/genética
4.
Nat Commun ; 12(1): 6432, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34741016

RESUMO

Insecticide resistance is one of the most serious problems in contemporary agriculture and public health. Although recent studies revealed that insect gut symbionts contribute to resistance, the symbiont-mediated detoxification process remains unclear. Here we report the in vivo detoxification process of an organophosphorus insecticide, fenitrothion, in the bean bug Riptortus pedestris. Using transcriptomics and reverse genetics, we reveal that gut symbiotic bacteria degrade this insecticide through a horizontally acquired insecticide-degrading enzyme into the non-insecticidal but bactericidal compound 3-methyl-4-nitrophenol, which is subsequently excreted by the host insect. This integrated "host-symbiont reciprocal detoxification relay" enables the simultaneous maintenance of symbiosis and efficient insecticide degradation. We also find that the symbiont-mediated detoxification process is analogous to the insect genome-encoded fenitrothion detoxification system present in other insects. Our findings highlight the capacity of symbiosis, combined with horizontal gene transfer in the environment, as a powerful strategy for an insect to instantly eliminate a toxic chemical compound, which could play a critical role in the human-pest arms race.


Assuntos
Inseticidas/farmacologia , Animais , Burkholderia/efeitos dos fármacos , Burkholderia/genética , Heterópteros/efeitos dos fármacos , Heterópteros/genética , Resistência a Inseticidas , Compostos Organofosforados/farmacologia , Simbiose/efeitos dos fármacos , Simbiose/genética
5.
Front Microbiol ; 11: 1737, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849373

RESUMO

In agricultural soils fertilized with a high amount of ammonium nitrogen, the pH decreases because of the oxidation of ammonia by nitrifiers. Molecular-based analyses have revealed that members of the genus Nitrospira dominate over other nitrifiers in some acidic soils. However, terrestrial Nitrospira are rarely cultivated and little is known about their ecophysiology. In addition, recent studies discovered a single microbe with the potential to oxidize both ammonia and nitrite (complete ammonia oxidizer; comammox) within Nitrospira, which had been previously recognized as a nitrite oxidizer. Despite their broad distribution, there are no enrichment samples of comammox from terrestrial or acidic environments. Here, we report the selective enrichment of both comammox and nitrite-oxidizing Nitrospira from the acidic soil of a heavily fertilized tea field. Long-term enrichment was performed with two individual continuous-feeding bioreactors capable of controlling ammonia or nitrite concentration and pH. We found that excessive ammonium supply was a key factor to enhance the growth of comammox Nitrospira under acidic conditions. Additionally, a low concentration of nitrite was fed to prevent the accumulation of free nitrous acid and inhibition of cell growth under low pH, resulting in the selective enrichment of nitrite-oxidizing Nitrospira. Based on 16S rRNA gene analysis, Nitrospira accounting for only 1.2% in an initial soil increased to approximately 80% of the total microorganisms in both ammonia- and nitrite-fed bioreactors. Furthermore, amoA amplicon sequencing revealed that two phylotypes belonging to comammox clade A were enriched in an ammonia-fed bioreactor. One group was closely related to previously cultivated strains, and the other was classified into a different cluster consisting of only uncultivated representatives. These two groups coexisted in the bioreactor controlled at pH 6.0, but the latter became dominant after the pH decreased to 5.5. Additionally, a physiological experiment revealed that the enrichment sample oxidizes ammonia at pH <4, which is in accordance with the strongly acidic tea field soil; this value is lower than the active pH range of isolated acid-adapted nitrifiers. In conclusion, we successfully enriched multiple phylotypes of comammox and nitrite-oxidizing Nitrospira and revealed that the pH and concentrations of protonated N-compounds were potential niche determinants.

6.
Sci Total Environ ; 713: 136677, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32019033

RESUMO

Crop residues are produced from agriculture in large amounts globally. Crop residues are known to be a source of nitrous oxide (N2O); however, contrasting results have been reported. Furthermore, the effect of crop residues on nitric oxide (NO) and methane (CH4) fluxes has not been well studied. We investigated N2O, NO, and CH4 fluxes after low C/N crop residue (cabbages and potatoes) inputs to lysimeter fields for two years using with automated flux monitoring system. Lysimeters were filled with two contrasting soil types, Andosol (total C: 33.1 g kg-1; clay: 18%) and Fluvisol (17.7 g kg-1; 36%). Nitrogen application rates were 250 kg N ha-1 of synthetic fertilizer and 272 kg N ha-1 of cow manure compost for cabbage, and 120 kg N ha-1 of synthetic fertilizer and 136 kg N ha-1 of cow manure compost for potato, respectively. Large N2O peaks were observed after crop residues were left on the surface of the soil for 1 to 2 weeks in summer, but not in winter. The annual N2O emission factors (EFs) for cabbage residues were 3.02% and 5.37% for Andosol and Fluvisol, respectively. Those for potatoes were 7.51% and 5.10% for Andosol and Fluvisol, respectively. The EFs were much higher than the mean EFs of synthetic fertilizers from Japan's agricultural fields (0.62%). Moreover, the EFs were much higher than the Intergovernmental Panel on Climate Change (IPCC) default N2O EFs for synthetic fertilizers and crop residues (1%). The annual NO EFs for potatoes were 1.35% and 2.44% for Andosol and Fluvisol, respectively, while no emission was observed after cabbage residue input. Crop residues did not affect CH4 uptake by soil. Our results suggest that low C/N crop residue input to soils can create a hotspot of N2O emission, when temperature and water conditions are not limiting factors for microbial activity.


Assuntos
Compostagem , Agricultura , Animais , Bovinos , Feminino , Fertilizantes , Japão , Metano , Óxido Nítrico , Nitrogênio , Óxido Nitroso , Solo
7.
Nat Prod Rep ; 35(5): 434-454, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29644346

RESUMO

Covering: up to 2018 Insects live in a world full of toxic compounds such as plant toxins and manmade pesticides. To overcome the effects of these toxins, herbivorous insects have evolved diverse, elaborate mechanisms of resistance, such as toxin avoidance, target-site alteration, and detoxification. These resistance mechanisms are thought to be encoded by the insects' own genomes, and in many cases, this holds true. However, recent omics analyses, in conjunction with classic culture-dependent analyses, have revealed that a number of insects possess specific gut microorganisms, some of which significantly contribute to resistance against phytotoxins and pesticides by degrading such chemical compounds. Here, we review recent advances in our understanding on the symbiont-mediated degradation of natural and artificial toxins, with a special emphasis on their underlying genetic basis, focus on the importance of environmental microbiota as a resource of toxin-degrading microorganisms, and discuss the ecological and evolutionary significance of these symbiotic associations.


Assuntos
Insetos/efeitos dos fármacos , Insetos/microbiologia , Praguicidas/farmacocinética , Simbiose/fisiologia , Toxinas Biológicas/farmacocinética , Animais , Evolução Biológica , Enzimas/genética , Enzimas/metabolismo , Inativação Metabólica/genética , Isotiocianatos/farmacocinética , Oxalatos/farmacocinética , Fenóis/farmacocinética , Simbiose/efeitos dos fármacos , Terpenos/farmacocinética
8.
ISME J ; 12(3): 909-920, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29343832

RESUMO

Insecticide resistance is a serious concern in modern agriculture, and an understanding of the underlying evolutionary processes is pivotal to prevent the problem. The bean bug Riptortus pedestris, a notorious pest of leguminous crops, acquires a specific Burkholderia symbiont from the environment every generation, and harbors the symbiont in the midgut crypts. The symbiont's natural role is to promote insect development but the insect host can also obtain resistance against the insecticide fenitrothion (MEP) by acquiring MEP-degrading Burkholderia from the environment. To understand the developing process of the symbiont-mediated MEP resistance in response to the application of the insecticide, we investigated here in parallel the soil bacterial dynamics and the infected gut symbionts under different MEP-spraying conditions by culture-dependent and culture-independent analyses, in conjunction with stinkbug rearing experiments. We demonstrate that MEP application did not affect the total bacterial soil population but significantly decreased its diversity while it dramatically increased the proportion of MEP-degrading bacteria, mostly Burkholderia. Moreover, we found that the infection of stinkbug hosts with MEP-degrading Burkholderia is highly specific and efficient, and is established after only a few times of insecticide spraying at least in a field soil with spraying history, suggesting that insecticide resistance could evolve in a pest bug population more quickly than was thought before.


Assuntos
Burkholderia/efeitos dos fármacos , Sistema Digestório/microbiologia , Fenitrotion/farmacologia , Heterópteros/microbiologia , Resistência a Inseticidas/fisiologia , Inseticidas/farmacologia , Microbiota/efeitos dos fármacos , Microbiologia do Solo , Animais , Evolução Biológica , Burkholderia/genética , Burkholderia/fisiologia , DNA Bacteriano/análise , Saccharum , Análise de Sequência de DNA , Simbiose/efeitos dos fármacos , Simbiose/fisiologia
9.
Front Microbiol ; 8: 2226, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29184545

RESUMO

Dicyandiamide, a routinely used commercial nitrification inhibitor (NI), inhibits ammonia oxidation catalyzed by ammonia monooxygenase (AMO). Phenylhydrazine hydrochloride has shown considerable potential for the development of next-generation NIs targeting hydroxylamine dehydrogenase (HAO). The effects of the AMO inhibitor and the HAO inhibitor on ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) present in agricultural soils have not been compared thus far. In the present study, the effects of the two inhibitors on soil nitrification and the abundance of AOA and AOB as well as their community structure were investigated in a soil microcosm using quantitative polymerase chain reaction and pyrosequencing. The net nitrification rates and the growth of AOA and AOB in this soil microcosm were inhibited by both NIs. Both NIs had limited effect on the community structure of AOB and no effect on that of AOA in this soil microcosm. The effects of phenylhydrazine hydrochloride were similar to those of dicyandiamide. These results indicated that organohydrazine-based NIs have potential for the development of next-generation NIs targeting HAO in the future.

10.
ISME J ; 11(5): 1130-1141, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28072419

RESUMO

Nitrification, the microbial oxidation of ammonia to nitrate via nitrite, occurs in a wide range of acidic soils. However, the ammonia-oxidizing bacteria (AOB) that have been isolated from soil to date are acid-sensitive. Here we report the isolation and characterization of an acid-adapted AOB from an acidic agricultural soil. The isolated AOB, strain TAO100, is classified within the Gammaproteobacteria based on phylogenetic characteristics. TAO100 can grow in the pH range of 5-7.5 and survive in highly acidic conditions until pH 2 by forming cell aggregates. Whereas all known gammaproteobacterial AOB (γ-AOB) species, which have been isolated from marine and saline aquatic environments, are halophiles, TAO100 is not phenotypically halophilic. Thus, TAO100 represents the first soil-originated and non-halophilic γ-AOB. The TAO100 genome is considerably smaller than those of other γ-AOB and lacks several genes associated with salt tolerance which are unnecessary for survival in soil. The ammonia monooxygenase subunit A gene of TAO100 and its transcript are higher in abundance than those of ammonia-oxidizing archaea and betaproteobacterial AOB in the strongly acidic soil. These results indicate that TAO100 plays an important role in the nitrification of acidic soils. Based on these results, we propose TAO100 as a novel species of a new genus, Candidatus Nitrosoglobus terrae.


Assuntos
Amônia/metabolismo , Gammaproteobacteria/metabolismo , Nitrificação , Microbiologia do Solo , Adaptação Fisiológica , Agricultura , Archaea/genética , Betaproteobacteria/genética , Gammaproteobacteria/classificação , Gammaproteobacteria/isolamento & purificação , Genoma Bacteriano , Concentração de Íons de Hidrogênio , Oxirredução , Oxirredutases/genética , Filogenia , Solo/química
11.
Microbes Environ ; 31(3): 349-56, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27600710

RESUMO

Elevated concentrations of atmospheric CO2 ([CO2]) enhance the production and emission of methane in paddy fields. In the present study, the effects of elevated [CO2], elevated temperature (ET), and no nitrogen fertilization (LN) on methanogenic archaeal and methane-oxidizing bacterial community structures in a free-air CO2 enrichment (FACE) experimental paddy field were investigated by PCR-DGGE and real-time quantitative PCR. Soil samples were collected from the upper and lower soil layers at the rice panicle initiation (PI) and mid-ripening (MR) stages. The composition of the methanogenic archaeal community in the upper and lower soil layers was not markedly affected by the elevated [CO2], ET, or LN condition. The abundance of the methanogenic archaeal community in the upper and lower soil layers was also not affected by elevated [CO2] or ET, but was significantly increased at the rice PI stage and significantly decreased by LN in the lower soil layer. In contrast, the composition of the methane-oxidizing bacterial community was affected by rice-growing stages in the upper soil layer. The abundance of methane-oxidizing bacteria was significantly decreased by elevated [CO2] and LN in both soil layers at the rice MR stage and by ET in the upper soil layer. The ratio of mcrA/pmoA genes correlated with methane emission from ambient and FACE paddy plots at the PI stage. These results indicate that the decrease observed in the abundance of methane-oxidizing bacteria was related to increased methane emission from the paddy field under the elevated [CO2], ET, and LN conditions.


Assuntos
Archaea/crescimento & desenvolvimento , Archaea/metabolismo , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Metano/metabolismo , Microbiologia do Solo , Agricultura/métodos , Archaea/efeitos dos fármacos , Archaea/efeitos da radiação , Bactérias/efeitos dos fármacos , Bactérias/efeitos da radiação , Biota/efeitos dos fármacos , Biota/efeitos da radiação , Eletroforese em Gel de Gradiente Desnaturante , Nitrogênio/metabolismo , Oryza/crescimento & desenvolvimento , Reação em Cadeia da Polimerase em Tempo Real , Solo/química , Temperatura
12.
Sci Rep ; 6: 32869, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27633524

RESUMO

Agricultural soil is the largest source of nitrous oxide (N2O), a greenhouse gas. Soybean is an important leguminous crop worldwide. Soybean hosts symbiotic nitrogen-fixing soil bacteria (rhizobia) in root nodules. In soybean ecosystems, N2O emissions often increase during decomposition of the root nodules. Our previous study showed that N2O reductase can be used to mitigate N2O emission from soybean fields during nodule decomposition by inoculation with nosZ++ strains [mutants with increased N2O reductase (N2OR) activity] of Bradyrhizobium diazoefficiens. Here, we show that N2O emission can be reduced at the field scale by inoculation with a mixed culture of indigenous nosZ+ strains of B. diazoefficiens USDA110 group isolated from Japanese agricultural fields. Our results also suggested that nodule nitrogen is the main source of N2O production during nodule decomposition. Isolating nosZ+ strains from local soybean fields would be more applicable and feasible for many soybean-producing countries than generating mutants.


Assuntos
Biodegradação Ambiental , Bradyrhizobium/metabolismo , Óxido Nitroso/análise , Solo/química , Ecossistema , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Mutação , Nitrogênio/análise , Fixação de Nitrogênio , Raízes de Plantas/microbiologia , Brotos de Planta/microbiologia , Microbiologia do Solo , Glycine max/microbiologia
13.
Proc Natl Acad Sci U S A ; 112(37): E5179-88, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26324935

RESUMO

Symbiosis has significantly contributed to organismal adaptation and diversification. For establishment and maintenance of such host-symbiont associations, host organisms must have evolved mechanisms for selective incorporation, accommodation, and maintenance of their specific microbial partners. Here we report the discovery of a previously unrecognized type of animal organ for symbiont sorting. In the bean bug Riptortus pedestris, the posterior midgut is morphologically differentiated for harboring specific symbiotic bacteria of a beneficial nature. The sorting organ lies in the middle of the intestine as a constricted region, which partitions the midgut into an anterior nonsymbiotic region and a posterior symbiotic region. Oral administration of GFP-labeled Burkholderia symbionts to nymphal stinkbugs showed that the symbionts pass through the constricted region and colonize the posterior midgut. However, administration of food colorings revealed that food fluid enters neither the constricted region nor the posterior midgut, indicating selective symbiont passage at the constricted region and functional isolation of the posterior midgut for symbiosis. Coadministration of the GFP-labeled symbiont and red fluorescent protein-labeled Escherichia coli unveiled selective passage of the symbiont and blockage of E. coli at the constricted region, demonstrating the organ's ability to discriminate the specific bacterial symbiont from nonsymbiotic bacteria. Transposon mutagenesis and screening revealed that symbiont mutants in flagella-related genes fail to pass through the constricted region, highlighting that both host's control and symbiont's motility are involved in the sorting process. The blocking of food flow at the constricted region is conserved among diverse stinkbug groups, suggesting the evolutionary origin of the intestinal organ in their common ancestor.


Assuntos
Burkholderia/fisiologia , Heterópteros/microbiologia , Intestinos/microbiologia , Simbiose/genética , Administração Oral , Animais , Corantes/química , Sistema Digestório/microbiologia , Escherichia coli/metabolismo , Evolução Molecular , Flagelos/fisiologia , Trato Gastrointestinal/microbiologia , Proteínas de Fluorescência Verde/metabolismo , Insetos , Proteínas Luminescentes/metabolismo , Microscopia Eletrônica de Transmissão , Mutagênese , Mutação , Filogenia , Plasmídeos/metabolismo , Proteína Vermelha Fluorescente
14.
Mol Ecol ; 24(14): 3766-78, 2015 07.
Artigo em Inglês | MEDLINE | ID: mdl-26059639

RESUMO

Some soil Burkholderia strains are capable of degrading the organophosphorus insecticide, fenitrothion, and establish symbiosis with stinkbugs, making the host insects fenitrothion-resistant. However, the ecology of the symbiotic degrading Burkholderia adapting to fenitrothion in the free-living environment is unknown. We hypothesized that fenitrothion applications affect the dynamics of fenitrothion-degrading Burkholderia, thereby controlling the transmission of symbiotic degrading Burkholderia from the soil to stinkbugs. We investigated changes in the density and diversity of culturable Burkholderia (i.e. symbiotic and nonsymbiotic fenitrothion degraders and nondegraders) in fenitrothion-treated soil using microcosms. During the incubation with five applications of pesticide, the density of the degraders increased from less than the detection limit to around 10(6)/g of soil. The number of dominant species among the degraders declined with the increasing density of degraders; eventually, one species predominated. This process can be explained according to the competitive exclusion principle using V(max) and K(m) values for fenitrothion metabolism by the degraders. We performed a phylogenetic analysis of representative strains isolated from the microcosms and evaluated their ability to establish symbiosis with the stinkbug Riptortus pedestris. The strains that established symbiosis with R. pedestris were assigned to a cluster including symbionts commonly isolated from stinkbugs. The strains outside the cluster could not necessarily associate with the host. The degraders in the cluster predominated during the initial phase of degrader dynamics in the soil. Therefore, only a few applications of fenitrothion could allow symbiotic degraders to associate with their hosts and may cause the emergence of symbiont-mediated insecticide resistance.


Assuntos
Burkholderia/genética , Heterópteros/microbiologia , Resistência a Inseticidas/genética , Microbiologia do Solo , Simbiose , Animais , Burkholderia/metabolismo , DNA Bacteriano/genética , Fenitrotion/metabolismo , Inseticidas , Modelos Teóricos , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Solo
15.
Microbes Environ ; 30(1): 51-62, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25740174

RESUMO

Rice shoot-associated bacterial communities at the panicle initiation stage were characterized and their responses to elevated surface water-soil temperature (ET), low nitrogen (LN), and free-air CO2 enrichment (FACE) were assessed by clone library analyses of the 16S rRNA gene. Principal coordinate analyses combining all sequence data for leaf blade- and leaf sheath-associated bacteria revealed that each bacterial community had a distinct structure, as supported by PC1 (61.5%), that was mainly attributed to the high abundance of Planctomycetes in leaf sheaths. Our results also indicated that the community structures of leaf blade-associated bacteria were more sensitive than those of leaf sheath-associated bacteria to the environmental factors examined. Among these environmental factors, LN strongly affected the community structures of leaf blade-associated bacteria by increasing the relative abundance of Bacilli. The most significant effect of FACE was also observed on leaf blade-associated bacteria under the LN condition, which was explained by decreases and increases in Agrobacterium and Pantoea, respectively. The community structures of leaf blade-associated bacteria under the combination of FACE and ET were more similar to those of the control than to those under ET or FACE. Thus, the combined effects of environmental factors need to be considered in order to realistically assess the effects of environmental changes on microbial community structures.


Assuntos
Bactérias/classificação , Biota/efeitos dos fármacos , Biota/efeitos da radiação , Dióxido de Carbono/análise , Nitrogênio/análise , Oryza/microbiologia , Folhas de Planta/microbiologia , Bactérias/genética , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Temperatura
16.
Microbes Environ ; 30(1): 21-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25736866

RESUMO

The effects of environmental factors such as pH and nutrient content on the ecology of ammonia-oxidizing bacteria (AOB) and archaea (AOA) in soil has been extensively studied using experimental fields. However, how these environmental factors intricately influence the community structure of AOB and AOA in soil from farmers' fields is unclear. In the present study, the abundance and diversity of AOB and AOA in soils collected from farmers' sugarcane fields were investigated using quantitative PCR and barcoded pyrosequencing targeting the ammonia monooxygenase alpha subunit (amoA) gene. The abundances of AOB and AOA amoA genes were estimated to be in the range of 1.8 × 10(5)-9.2 × 10(6) and 1.7 × 10(6)-5.3 × 10(7) gene copies g dry soil(-1), respectively. The abundance of both AOB and AOA positively correlated with the potential nitrification rate. The dominant sequence reads of AOB and AOA were placed in Nitrosospira-related and Nitrososphaera-related clusters in all soils, respectively, which varied at the level of their sub-clusters in each soil. The relationship between these ammonia-oxidizing community structures and soil pH was shown to be significant by the Mantel test. The relative abundances of the OTU1 of Nitrosospira cluster 3 and Nitrososphaera subcluster 7.1 negatively correlated with soil pH. These results indicated that soil pH was the most important factor shaping the AOB and AOA community structures, and that certain subclusters of AOB and AOA adapted to and dominated the acidic soil of agricultural sugarcane fields.


Assuntos
Amônia/metabolismo , Archaea/classificação , Bactérias/classificação , Biota , Microbiologia do Solo , Archaea/metabolismo , Bactérias/metabolismo , Análise por Conglomerados , Concentração de Íons de Hidrogênio , Oxirredução , Oxirredutases/genética , Filogenia , Reação em Cadeia da Polimerase , Saccharum/crescimento & desenvolvimento , Análise de Sequência de DNA , Solo/química
17.
Microbes Environ ; 30(1): 29-36, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25736865

RESUMO

The stinkbug Cavelerius saccharivorus, which harbors Burkholderia species capable of degrading the organophosphorus insecticide, fenitrothion, has been identified on a Japanese island in farmers' sugarcane fields that have been exposed to fenitrothion. A clearer understanding of the ecology of the symbiotic fenitrothion degraders of Burkholderia species in a free-living environment is vital for advancing our knowledge on the establishment of degrader-stinkbug symbiosis. In the present study, we analyzed the composition and abundance of degraders in sugarcane fields on the island. Degraders were recovered from field samples without an enrichment culture procedure. Degrader densities in the furrow soil in fields varied due to differences in insecticide treatment histories. Over 99% of the 659 isolated degraders belonged to the genus Burkholderia. The strains related to the stinkbug symbiotic group predominated among the degraders, indicating a selection for this group in response to fenitrothion. Degraders were also isolated from sugarcane stems, leaves, and rhizosphere in fields that were continuously exposed to fenitrothion. Their density was lower in the plant sections than in the rhizosphere. A phylogenetic analysis of 16S rRNA gene sequences demonstrated that most of the degraders from the plants and rhizosphere clustered with the stinkbug symbiotic group, and some were identical to the midgut symbionts of C. saccharivorus collected from the same field. Our results confirmed that plants and the rhizosphere constituted environmental reservoirs for stinkbug symbiotic degraders. To the best of our knowledge, this is the first study to investigate the composition and abundance of the symbiotic fenitrothion degraders of Burkholderia species in farmers' fields.


Assuntos
Burkholderia/classificação , Burkholderia/metabolismo , Heterópteros/microbiologia , Inseticidas/metabolismo , Simbiose , Animais , Biotransformação , Burkholderia/genética , Burkholderia/fisiologia , Carboidratos/análise , Análise por Conglomerados , Citosol/química , DNA Ribossômico/química , DNA Ribossômico/genética , Fenitrotion/metabolismo , Ilhas , Japão , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Saccharum/crescimento & desenvolvimento , Saccharum/microbiologia , Análise de Sequência de DNA , Microbiologia do Solo
18.
Front Microbiol ; 6: 136, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25750640

RESUMO

A number of studies have shown that elevated atmospheric CO2 ([CO2]) affects rice yields and grain quality. However, the responses of root-associated bacteria to [CO2] elevation have not been characterized in a large-scale field study. We conducted a free-air CO2 enrichment (FACE) experiment (ambient + 200 µmol.mol(-1)) using three rice cultivars (Akita 63, Takanari, and Koshihikari) and two experimental lines of Koshihikari [chromosome segment substitution and near-isogenic lines (NILs)] to determine the effects of [CO2] elevation on the community structure of rice root-associated bacteria. Microbial DNA was extracted from rice roots at the panicle formation stage and analyzed by pyrosequencing the bacterial 16S rRNA gene to characterize the members of the bacterial community. Principal coordinate analysis of a weighted UniFrac distance matrix revealed that the community structure was clearly affected by elevated [CO2]. The predominant community members at class level were Alpha-, Beta-, and Gamma-proteobacteria in the control (ambient) and FACE plots. The relative abundance of Methylocystaceae, the major methane-oxidizing bacteria in rice roots, tended to decrease with increasing [CO2] levels. Quantitative PCR revealed a decreased copy number of the methane monooxygenase (pmoA) gene and increased methyl coenzyme M reductase (mcrA) in elevated [CO2]. These results suggest elevated [CO2] suppresses methane oxidation and promotes methanogenesis in rice roots; this process affects the carbon cycle in rice paddy fields.

19.
Microbes Environ ; 29(4): 434-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25410730

RESUMO

The diversity and abundance of Burkholderia species in sugarcane field soils were investigated by a 16S rRNA gene-based approach using genus-specific primers. A total of 365,721 sequences generated by the Illumina MiSeq platform were assigned to the genus Burkholderia. Nearly 58% of these sequences were placed in a previously defined cluster, including stinkbug symbionts. Quantitative PCR analysis revealed a consistent number of 16S rRNA gene copies for Burkholderia species (10(7) g(-1) soil) across the sampled fields. C/N, pH, and nitrate concentrations were important factors shaping the Burkholderia community structure; however, their impacts were not significant considering the overall genus size.


Assuntos
Biota , Burkholderia/classificação , Burkholderia/genética , Filogenia , Saccharum/crescimento & desenvolvimento , Microbiologia do Solo , Carbono/análise , Análise por Conglomerados , Primers do DNA/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Nitratos/análise , Nitrogênio/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo/química
20.
Front Microbiol ; 5: 457, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25221549

RESUMO

Although microbial communities have varying degrees of exposure to environmental stresses such as chemical pollution, little is known on how these communities respond to environmental disturbances and how past disturbance history affects these community-level responses. To comprehensively understand the effect of organophosphorus insecticide application on microbiota in soils with or without insecticide-spraying history, we investigated the microbial succession in response to the addition of fenitrothion [O,O-dimethyl O-(3-methyl-p-nitrophenyl) phosphorothioate, abbreviated as MEP] by culture-dependent experiments and deep sequencing of 16S rRNA genes. Despite similar microbial composition at the initial stage, microbial response to MEP application was remarkably different between soils with and without MEP-spraying history. MEP-degrading microbes more rapidly increased in the soils with MEP-spraying history, suggesting that MEP-degrading bacteria might already exist at a certain level and could quickly respond to MEP re-treatment in the soil. Culture-dependent and -independent evaluations revealed that MEP-degrading Burkholderia bacteria are predominant in soils after MEP application, limited members of which might play a pivotal role in MEP-degradation in soils. Notably, deep sequencing also revealed that some methylotrophs dramatically increased after MEP application, strongly suggesting that these bacteria play a role in the consumption and removal of methanol, a harmful derivative from MEP-degradation, for better growth of MEP-degrading bacteria. This comprehensive study demonstrated the succession and adaptation processes of microbial communities under MEP application, which were critically affected by past experience of insecticide-spraying.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA