RESUMO
Introduction: CD39 plays an important role in the immunoregulation and inhibition of effector cells. It is expressed on immune cells, including Tregs, and on extracellular vesicles (EVs) budding from the plasma membrane. Platelet transfusion may induce alloimmunization against HLA-I antigens, leading to refractoriness to platelet transfusion with severe consequences for patients. Tregs may play a key role in determining whether alloimmunization occurs in patients with hematologic disorders. We hypothesized that CD39+ EVs might play an immunoregulatory role, particularly in the context of platelet transfusions in patients with hematologic disorders. Such alloimmunization leads to the production of alloantibodies and is sensitive to the regulatory action of CD39. Methods: We characterized CD39+ EVs in platelet concentrates by flow cytometry. The absolute numbers and cellular origins of CD39+ EVs were evaluated. We also performed functional tests to evaluate interactions with immune cells and their functions. Results: We found that CD39+ EVs from platelet concentrates had an inhibitory phenotype that could be transferred to the immune cells with which they interacted: CD4+ and CD8+ T lymphocytes (TLs), dendritic cells, monocytes, and B lymphocytes (BLs). Moreover, the concentration of CD39+ EVs in platelet concentrates varied and was very high in 10% of concentrates. The number of these EVs present was determinant for EV-cell interactions. Finally, functional interactions were observed with BLs, CD4+ TLs and CD39+ EVs for immunoglobulin production and lymphoproliferation, with potential implications for the immunological management of patients.
Assuntos
Plaquetas , Vesículas Extracelulares , Tetraspanina 29 , Humanos , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/metabolismo , Plaquetas/imunologia , Plaquetas/metabolismo , Tetraspanina 29/metabolismo , Comunicação Celular/imunologia , Transfusão de Plaquetas , Feminino , Linfócitos B/imunologia , Linfócitos B/metabolismo , Masculino , Apirase/metabolismo , Apirase/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Antígenos CDRESUMO
Introduction: People living with HIV (PLWH) now benefit from combined antiviral treatments that durably control viral replication. These antiretroviral treatments decrease mortality and improve quality of life in PLWH, but do not completely control the excessive non-specific activation of the immune system in PLWH. This chronic immune activation is a key element of HIV immunopathology that contributes to the pathophysiology of inflammatory comorbid conditions, such as cardiovascular disorders, cancer and autoimmune diseases. Circulating non-exosomal extracellular vesicles, also known as microparticles (MPs) are detected in these diseases and have been linked to immune activation. The objective of this study was to characterize the MPs present in PLWH and to assess their association with chronic immune activation. Methods: We performed flow cytometry for the complete phenotypic characterization of MPs from fresh plasma from PLWH and from people without HIV as the control group. The absolute number, size and cellular origin of MPs were evaluated. The immunoregulatory profile was determined by cell origin, for MPs derived from platelets (PMPs), monocytes (MMPs) and T lymphocytes (LMPs). Results: PLWH had significantly more circulating MPs than controls, for MPs of all sizes originating from T lymphocytes, red blood cells, neutrophils, dendritic cells, B lymphocytes and endothelial cells. PMPs and MMPs were not more numerous in PLWH, but the immunoregulatory phenotypes of these MPs differed between PLWH and controls. These differences in immunoregulatory molecule expression profile were also observed for LMPs. PDL1, ICOSL, CCR5, TGFß1, MHC classes I and II, TRAIL, CXCR4, OX40, DC-SIGN, CTLA4 and PDL2 were more strongly expressed on the surface of MPs from PLWH than on those from controls. Conclusion: MPs are an important element in intercellular communication, making it possible to transfer phenotypes and functions to immune cells. The significantly higher numbers of MPs expressing diverse immunomodulatory molecules in PLWH may make a major contribution to the maintenance and/or the development of immune-cell activation in these individuals.
Assuntos
Células Endoteliais , Infecções por HIV , Humanos , Qualidade de Vida , Linfócitos T , PlaquetasRESUMO
Introduction: Acute myeloid leukemia (AML) is one of the commonest hematologic disorders. Due to the high frequency of disease- or treatment-related thrombocytopenia, AML requires treatment with multiple platelet transfusions, which can trigger a humoral response directed against platelets. Some, but not all, AML patients develop an anti-HLA immune response after multiple transfusions. We therefore hypothesized that different immune activation profiles might be associated with anti-HLA alloimmunization status. Methods: We tested this hypothesis, by analyzing CD4+ T lymphocyte (TL) subsets and their immune control molecules in flow cytometry and single-cell multi-omics. Results: A comparison of immunological status between anti-HLA alloimmunized and non-alloimmunized AML patients identified differences in the phenotype and function of CD4+ TLs. CD4+ TLs from alloimmunized patients displayed features of immune activation, with higher levels of CD40 and OX40 than the cells of healthy donors. However, the most notable differences were observed in non-alloimmunized patients. These patients had lower levels of CD40 and OX40 than alloimmunized patients and higher levels of PD1. Moreover, the Treg compartment of non-alloimmunized patients was larger and more functional than that in alloimmunized patients. These results were supported by a multi-omics analysis of immune response molecules in conventional CD4+ TLs, Tfh circulating cells, and Tregs. Discussion: Our results thus reveal divergent CD4+ TL characteristics correlated with anti-HLA alloimmunization status in transfused AML patients. These differences, characterizing CD4+ TLs independently of any specific antigen, should be taken into account when considering the immune responses of patients to infections, vaccinations, or transplantations.
Assuntos
Anemia Hemolítica Autoimune , Leucemia Mieloide Aguda , Trombocitopenia , Humanos , Plaquetas , Linfócitos T Auxiliares-Indutores , Linfócitos T CD4-Positivos , Antígenos CD40 , Leucemia Mieloide Aguda/terapiaRESUMO
Introduction: Aplasia and hematological malignancies are treated with platelet transfusions, which can have major immunomodulatory effects. Platelet concentrates (PCs) contain many immunomodulatory elements, including the platelets themselves, residual leukocytes, extracellular vesicles, such as microparticles (MPs), cytokines and other soluble elements. Two of these components, MPs and a soluble form of CD27 (sCD27), have been shown to play a particularly important role in immune system modulation. The loss of CD27 expression is an irreversible marker of terminal effector CD3+ T-lymphocyte (TL) differentiation, and the CD27+ MPs present in PCs may maintain CD27 expression on the surface of TLs, and, thus, the activation of these cells. Methods: In this study, we phenotyped the CD27-expressing MPs present in PCs by microscale flow cytometry and investigated the interaction of these particles with CD4+ TLs. We cocultured MPs and PBMCs and determined the origin of the CD27 expressed on the surface of CD4+ TLs with the aid of two fluorochromes (BV510 for CD27 originating from MPs and BV786 for cellular CD27). Results: We showed that the binding of CD27- expressing MPs involved the CD70 molecule, which was also present on these MPs. Finally, the maintenance of CD27 expression on the surface of TLs by sorted CD27+ MPs led to activation levels lower than those observed with other types of MPs. Discussion: These results for CD27-expressing MPs and their CD70-mediated targeting open up new possibilities for immunotherapy based on the use of MPs to maintain a phenotype or to target immune cells, for example. Moreover, decreasing the levels of CD27-expressing MPs in transfused platelets might also increase the chances of success for anti-CD27 monoclonal immunotherapy.
Assuntos
Citocinas , Linfócitos T , Citocinas/metabolismo , Ativação Linfocitária , Fenótipo , Linfócitos T CD4-PositivosRESUMO
Extracellular vesicles (EVs), which are generated by cell membrane budding in diverse cells, are present in variable numbers in the blood. An immunoregulatory role has been demonstrated principally for heterologous EVs, but the function of the EVs present naturally in blood remains unknown. We hypothesize that these autologous EVs might also modulate the phenotype and function of immune system cells, especially CD4+ T lymphocytes (TLs), as previously described for heterologous EVs. Several membranes and soluble immunoregulatory molecules were studied after the treatment of CD4+ TLs with autologous EVs. No direct activation was detected with autologous EVs, contrasting with the findings for heterologous EVs. However, following treatment with autologous EVs, a soluble form of CD27 (sCD27) was detected. sCD27 is strongly associated with lymphoproliferation. Autologous EVs have been shown to increase TL proliferation only after T-cell receptor (TcR) engagement due to polyclonal or specific-antigen stimulation. Our results therefore suggest that the EVs present in the blood have an immunomodulatory role different from that of heterologous EVs. These findings should be taken into account in future studies, particularly those focusing on infectious diseases, autotransfusion or doping practices.
Assuntos
Vesículas Extracelulares , Linfócitos T CD4-Positivos , Vesículas Extracelulares/metabolismo , Imunomodulação , Ativação Linfocitária , Linfócitos TRESUMO
In addition to their hemostatic role, platelets play a significant role in immunity. Once activated, platelets release extracellular vesicles (EVs) formed by the budding of their cytoplasmic membranes. Because of their heterogeneity, platelet EVs (PEVs) are thought to perform diverse functions. It is unknown, however, whether the proteasome is transferred from platelets to PEVs or whether its function is retained. We hypothesized that functional protein processing and antigen presentation machinery are transferred to PEVs by activated platelets. Using molecular and functional assays, we found that the active 20S proteasome was enriched in PEVs, along with major histocompatibility complex class I (MHC-I) and lymphocyte costimulatory molecules (CD40L and OX40L). Proteasome-containing PEVs were identified in healthy donor blood, but did not increase in platelet concentrates that caused adverse transfusion reactions. They were augmented, however, after immune complex injections in mice. The complete biodistribution of murine PEVs after injection into mice revealed that they principally reached lymphoid organs, such as spleen and lymph nodes, in addition to the bone marrow, and to a lesser extent, liver and lungs. The PEV proteasome processed exogenous ovalbumin (OVA) and loaded its antigenic peptide onto MHC-I molecules, which promoted OVA-specific CD8+ T-lymphocyte proliferation. These results suggest that PEVs contribute to adaptive immunity through cross-presentation of antigens and have privileged access to immune cells through the lymphatic system, a tissue location that is inaccessible to platelets.
Assuntos
Plaquetas/imunologia , Vesículas Extracelulares/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Complexo de Endopeptidases do Proteassoma/imunologia , Animais , Apresentação de Antígeno , Plaquetas/química , Vesículas Extracelulares/química , Antígenos de Histocompatibilidade Classe I/análise , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Complexo de Endopeptidases do Proteassoma/análiseRESUMO
It is essential to limit hemolytic transfusion reactions in polytransfused individuals, and the prevention of alloimmunization is a key solution. CD4+ T lymphocyte (TL) markers, particularly follicular T helper (Tfh) cells, may differentiate between responder and nonresponder alloimmunization statuses. We tested this hypothesis by studying the phenotype of CXCR5+PD1+ TLs in whole blood. Our results suggest that high levels of CXCR5+PD1+CD4+ TLs in whole blood may be a characteristic of nonalloimmunized patients. However, these cells did not display the phenotypic characteristics of active Tfh cells. Instead, a decrease in blood quiescent Tfh-cell levels was observed in nonalloimmunized polytransfused patients. High levels of CXCR5+PD1+CD4+ TLs may be associated with inhibitory signaling functions of T cells, as reflected by the low levels of PD1+ICOS+ cells in the nonalloimmunized polytransfused group. The description of these particular phenotypes, and their comparison among groups of patients, responders, and nonresponders, suggests that new immunological components should be considered when trying to understand posttransfusion alloimmunization.
Assuntos
Anemia Falciforme , Linfócitos T Auxiliares-Indutores , Anemia Falciforme/terapia , Linfócitos T CD4-Positivos , Humanos , Fenótipo , Receptores CXCR5RESUMO
BACKGROUND: Platelet (PLT) transfusions are an essential treatment for bleeding disorders. However, immunologic complications can occur, including alloantibody production against Class I HLA molecules. The principal source of HLA molecules in PLT concentrates (PCs) is the PLTs themselves. However, extracellular microparticles (MPs) present in PCs may express HLA molecules. STUDY DESIGN AND METHODS: We used nanoscale flow cytometry to explore the expression of HLA-A2, HLA-B7, and HLA-B57 on the surface of cells, PLT-derived MPs (PMPs), lymphocyte-derived MPs (LMPs), and monocyte-derived MPs (MMPs) present in PCs. Expression was studied during 7 days of storage. RESULTS: Platelets were not the only source of HLA molecules in PCs. HLA molecules were present on PMPs, LMPs, and MMPs. The level of HLA Class I molecule expression varied between haplotypes and MPs of different origins and during storage. CONCLUSION: Platelets or residual cells remaining after leukoreduction are not the only source of HLA Class I molecules in PCs, highlighting the contribution of MPs to alloimmunization mechanisms. These data may be relevant for the development of new transfusion guidelines.
Assuntos
Hemorragia/terapia , Isoanticorpos/imunologia , Fosfoproteínas/imunologia , Transfusão de Plaquetas/efeitos adversos , Transfusão de Plaquetas/métodos , Doadores de Sangue , Plaquetas/imunologia , Plaquetas/metabolismo , Micropartículas Derivadas de Células/metabolismo , Citometria de Fluxo/métodos , Antígeno HLA-A2/metabolismo , Antígenos HLA-B/metabolismo , Antígeno HLA-B7/metabolismo , Voluntários Saudáveis , Humanos , Linfócitos/imunologia , Linfócitos/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Fosfoproteínas/classificação , Fosfoproteínas/metabolismoRESUMO
BACKGROUND: Patients with hematologic malignancies require prophylactic or curative platelet transfusions to prevent or treat bleeding. Treatments such as chemotherapy, radiotherapy, and hematopoietic stem cell transplantation cause persistent thrombocytopenia, necessitating platelet transfusions. However, class I HLA antibodies can cause a serious complication: immune-mediated platelet refractoriness. The mechanisms of alloimmunization are incompletely understood. We explored the immunogenicity of HLA molecules and the phenotype of the HLA-specific CD4+ T cells involved in alloimmunization. STUDY DESIGN AND METHODS: We investigated the role of HLA molecules in platelet transfusion immunogenicity in a retrospective cohort study on men with specific anti-HLA who had undergone transfusion. We investigated the presence and phenotypic profile of HLA-specific CD4+ T cells in alloimmunized patients included in long-term platelet transfusion programs for hematologic malignancies. RESULTS: More than 50% of the transfused subjects displayed an antibody response against HLA-B57 or -B58. HLA-B57-specific CD4+ T-cell responses were observed in patients alloimmunized against HLA-B57. Following specific stimulation, the patients presented HLA-specific CD4+ T cells producing tumor necrosis factor-α, interleukin (IL)-13, IL-17A, IL-2, IL-10, and IL-21. CONCLUSION: These results shed light on posttransfusion class I anti-HLA alloimmunization mechanisms and constitute a first step toward developing new strategies for reducing refractoriness.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Antígenos HLA-B/imunologia , Hemorragia , Isoanticorpos/imunologia , Transfusão de Plaquetas/efeitos adversos , Reação Transfusional/imunologia , Adulto , Hemorragia/imunologia , Hemorragia/terapia , Humanos , Masculino , Pessoa de Meia-Idade , Estudos RetrospectivosRESUMO
Patients may display alloimmunization following transfusion. Microparticles (MPs) released into the blood are present in transfusion products. We show that MPs can modulate the immune system, CD4+ T-cell, and humoral responses, through their concentration, cellular origin and phenotype, and should therefore be considered to reduce the immune impact of transfusion.
Assuntos
Micropartículas Derivadas de Células/fisiologia , Transfusão de Eritrócitos , Eritrócitos/imunologia , Imunomodulação , Animais , Citocinas/fisiologia , Humanos , CamundongosRESUMO
Generation of de novo donor-specific antibodies (dnDSAs) after renal transplant is recognized as the leading cause of late transplant failure. Hence, the optimal immunosuppressive strategies to limit dnDSA development need to be defined. Recent clinical trials using the novel costimulatory blockade agent CTLA4-Ig (Belatacept) have shown that kidney transplant recipients (KTRs) treated with Belatacept have better graft survival and function and a lower proportion of dnDSAs than control-treated KTRs. Mechanisms involved in the control of humoral responses by Belatacept remain to be investigated. Here, we analyzed the effect of Belatacept on different steps of the B cell-mediated response in humans. In vitro, Belatacept reduced plasmablast differentiation, Ig production, and the expression of the major transcription factor involved in plasma cell function, Blimp-1, in a T cell-independent manner. Moreover, Belatacept induced activation of the STAT3 transcription factor in stimulated B cells and reduced the expression of CD86. Additionally, Belatacept blocked CD28-mediated activation of T follicular helper cells (Tfhs) in an autologous Tfh-memory B cells model. We then validated these observations in KTRs treated with Belatacept, who had a reduced proportion of blood effector B cells and activated Tfh (PD1+ICOS+) compared with control-treated KTRs. Our in vitro and in vivo results suggest that Belatacept modulates B cell function directly and at the level of B cell-Tfh interaction. These mechanisms likely account for the optimal control of humoral responses observed in KTRs treated with Belatacept.
Assuntos
Abatacepte/farmacologia , Linfócitos B/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Imunossupressores/farmacologia , Abatacepte/uso terapêutico , Idoso , Aloenxertos/imunologia , Linfócitos B/fisiologia , Antígeno B7-2/metabolismo , Antígenos CD28/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Feminino , Humanos , Imunoglobulina G/biossíntese , Imunossupressores/uso terapêutico , Transplante de Rim , Masculino , Pessoa de Meia-Idade , Plasmócitos/fisiologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/fisiologiaAssuntos
Anemia Hemolítica Autoimune/diagnóstico , Anemia Hemolítica Autoimune/imunologia , Especificidade de Anticorpos/imunologia , Autoanticorpos/imunologia , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Anemia Hemolítica Autoimune/terapia , Autoantígenos/imunologia , Biomarcadores , Gerenciamento Clínico , Membrana Eritrocítica/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fagocitose/imunologia , Índice de Gravidade de DoençaRESUMO
Alloimmunization against RBCs can cause life-threatening delayed hemolytic transfusion reactions. Anti-CD20 Ab has recently been used to prevent alloimmunization. However, its effects remain unclear, particularly in lymphoid organs. We investigated the impact of murine anti-CD20 Ab in the blood and spleen. We assessed protocols for preventing primary alloimmunization and for abolishing established alloimmunization. Prophylactic protocols prevented alloimmunization. However, anti-CD20 treatment could only limit the further amplification of established alloimmunization. Residual B cell subtype distribution was disrupted in the spleen, but adoptive transfer studies indicated that these cells were neither plasma nor memory cells. Anti-CD20 Ab had a major effect on alloreactive CD4+ T cells, increasing the expansion of this population and its CD40 expression, while lowering its CD134 expression, thereby confirming its role in alloimmunization. In conclusion, this study shows that anti-CD20 immunotherapy can prevent RBC Ab development. However, this immunotherapy is limited by the increase in alloreactive CD4+ T lymphocytes. Nevertheless, treatment with anti-CD20 Abs should be considered for patients requiring transfusion with a very high risk of alloimmunization and life-threatening complications.
Assuntos
Anticorpos Monoclonais/administração & dosagem , Linfócitos B/imunologia , Transfusão de Sangue , Linfócitos T CD4-Positivos/imunologia , Eritrócitos/imunologia , Imunoterapia/métodos , Reação Transfusional/terapia , Animais , Formação de Anticorpos , Antígenos CD20/imunologia , Proliferação de Células , Células Cultivadas , Hemólise , Humanos , Imunização , Isoantígenos/imunologia , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , Risco , Reação Transfusional/imunologiaRESUMO
Murine models of red blood cell transfusion show that inflammation associated with viruses or methylated DNA promotes red blood cell alloimmunization. In vaccination studies, the intensity of antigen-specific responses depends on the delay between antigen and adjuvant administration, with a short delay limiting immune responses. In mouse models of alloimmunization, the delay between the injection of Toll-like receptor agonists and transfusion is usually short. In this study, we hypothesized that the timing of Toll-like receptor 3 agonist administration affects red blood cell alloimmunization. Poly(I:C), a Toll-like receptor 3 agonist, was administered to B10BR mice at various time points before the transfusion of HEL-expressing red blood cells. For each time point, we measured the activation of splenic HEL-presenting dendritic cells, HEL-specific CD4(+) T cells and anti-HEL antibodies in serum. The phenotype of activated immune cells depended on the delay between transfusion and Toll-like receptor-dependent inflammation. The production of anti-HEL antibodies was highest when transfusion occurred 7 days after agonist injection. The proportion of HEL-presenting CD8α(+) dendritic cells producing interleukin-12 was highest in mice injected with poly(I:C) 3 days before transfusion. Although the number of early-induced HEL-specific CD4(+) T cells was similar between groups, a high proportion of these cells expressed CD134, CD40 and CD44 in mice injected with poly(I:C) 7 days before transfusion. This study clearly shows that the delay between transfusion and Toll-like receptor-induced inflammation influences the immune response to transfused red blood cells.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Eritrócitos/imunologia , Imunização , Muramidase/imunologia , Receptor 3 Toll-Like/agonistas , Animais , Anticorpos/metabolismo , Apresentação de Antígeno , Antígenos CD/genética , Antígenos CD/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Transfusão de Eritrócitos , Eritrócitos/química , Eritrócitos/efeitos dos fármacos , Expressão Gênica , Humanos , Imunidade Humoral , Interleucina-12/imunologia , Interleucina-12/metabolismo , Camundongos , Camundongos Transgênicos , Muramidase/administração & dosagem , Muramidase/genética , Peptídeos/administração & dosagem , Peptídeos/genética , Peptídeos/imunologia , Poli I-C/farmacologia , Baço/imunologia , Fatores de Tempo , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/imunologia , TransgenesRESUMO
Alloimmunization against red blood cells (RBCs) is the main immunological risk associated with transfusion in patients with sickle cell disease (SCD). However, about 50-70% of SCD patients never get immunized despite frequent transfusion. In murine models, CD4(+) T cells play a key role in RBC alloimmunization. We therefore explored and compared the CD4(+) T-cell phenotypes and functions between a group of SCD patients (n = 11) who never became immunized despite a high transfusion regimen and a group of SCD patients (n = 10) who had become immunized (at least against Kidd antigen b) after a low transfusion regimen. We studied markers of CD4(+) T-cell function, including TLR, that directly control lymphocyte function, and their spontaneous cytokine production. We also tested responders for the cytokine profile in response to Kidd antigen b peptides. Low TLR2/TLR3 expression and, unexpectedly, strong expression of CD40 on CD4(+) T cells were associated with the nonresponder status, whereas spontaneous expression of IL-10 by CD4(+) T cells and weak Tbet expression were associated with the responder status. A Th17 profile was predominant in responders when stimulated by Jb(k) . These findings implicate CD4(+) T cells in alloimmunization in humans and suggest that they may be exploited to differentiate responders from nonresponders.
Assuntos
Anemia Falciforme/imunologia , Anemia Falciforme/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Eritrócitos/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Adolescente , Adulto , Anemia Falciforme/terapia , Autoimunidade , Linfócitos T CD4-Positivos/citologia , Estudos de Casos e Controles , Diferenciação Celular/imunologia , Citocinas/biossíntese , Feminino , Humanos , Imunização , Memória Imunológica , Imunofenotipagem , Ativação Linfocitária/imunologia , Masculino , Pessoa de Meia-Idade , Fenótipo , Subpopulações de Linfócitos T/citologia , Receptores Toll-Like/metabolismo , Reação Transfusional , Adulto JovemRESUMO
Sickle cell disease (SCD) is a chronic inflammatory disease associated with multiple organ damage, chronic anemia, and infections. SCD patients have a high rate of alloimmunization against red blood cells (RBCs) following transfusion and may develop autoimmune diseases. Studies in mouse models have suggested that regulatory T cells (Treg) play a role in alloimmunization against RBC antigens. We characterized the phenotype and function of the Treg cell population in a homogeneous cohort of transfused SCD patients. We found that the distribution of Treg subpopulations differed significantly between SCD patients and healthy blood donors. SCD patients have a particular Treg phenotype, with strong CTLA-4 and CD39 expression and weak HLA-DR and CCR7 expression. Finally, we show that this particular phenotype is related to SCD rather than alloimmunization status. Indeed, we observed no difference in Treg phenotype or function in vitro using autologous feeder cells between strong and weak responders to alloimmunization.