Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Biomater Sci ; 12(1): 116-133, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37921708

RESUMO

The dense stromal barrier in pancreatic cancer tissues blocks intratumoral delivery and distribution of chemotherapeutics and therapeutic antibodies, causing poor chemoimmunotherapy responses. We designed a multi-targeted pH-sensitive liposome which encapsulates cisplatin (Pt) in its water core (denoted as ATF@Pt Lps) and shows high affinity for uPAR receptors in pancreatic cancer cells, tumor-associated macrophages, and cancer-associated fibroblasts. Systemic administration of ATF@Pt Lps enabled overcoming the central stromal cellular barrier and effective drug delivery into tumor cells, resulting in a strong therapeutic response in a Panc02 cell derived transplanted tumor mouse model. More importantly, ATF@Pt Lps degradation of collagen contributes to the infiltration of CD8+ T cells into tumors as well as an enhanced accumulation of anti PD-1 monoclonal antibodies. Furthermore, the killing of tumor cells by Pt also leads to the release of tumor antigens, which promote the proliferation of immune cells, especially CD83+ cells, Th1 CD4+ cells, and CD8+ cytotoxic T cells, that converted an immunoscore "cold" pancreatic cancer into a pro-immune "hot" tumor. A further combination with an immune checkpoint agent, anti PD-1 antibodies that inhibit PD-1, can enhance tumor specific cytotoxic T cell response. Accordingly, ATF@Pt Lps displays multi-targeting, controlled drug release, stromal disruption, enhanced penetration, killing of cancer cells, modification of the immunosuppressive microenvironment, and enhancement of immunity. This study provides important mechanistic information for the further development of a combination of ATF@Pt Lps and anti PD-1 antibodies for the effective treatment of pancreatic cancer.


Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Camundongos , Animais , Cisplatino/farmacologia , Lipossomos/farmacologia , Linfócitos T CD8-Positivos , Lipopolissacarídeos/farmacologia , Neoplasias Pancreáticas/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Imunoterapia/métodos , Microambiente Tumoral , Linhagem Celular Tumoral
2.
Int J Pharm ; 644: 123316, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37586573

RESUMO

Pancreatic cancer treatment faces challenges due to drug resistance as well as liver metastasis. As a new strategy for treating pancreatic cancer, combination therapy is now available, but the dense mesenchymal barrier in the tumor tissue blocks drug delivery and impairs its therapeutic efficacy. To address this issue, we prepared an ATF peptide-decorated liposomal co-loaded with cisplatin and rapamycin (ATF@Pt/Rapa Lps), which targets both tumor cells and cancer-associated fibroblasts that express uPAR receptors. In tumor sphere penetration experiments, ATF peptide modified liposomes significantly enhanced deep penetration. More importantly, the ATF@Pt/Rapa Lps disrupted the stroma, as demonstrated by the downregulation of ɑ-SMA, I collagen, and fibronectin protein in vivo and in vitro. In this way, highly effective drug delivery to tumor cells can be achieved. As expected, there was a stronger inhibition of cell proliferation and migration by ATF@Pt/Rapa Lps in vitro compared to free Pt/Rapa and Pt/Rapa Lps. Furthermore, ATF@Pt/Rapa Lps showed greater therapeutic effects in PANC02 transplanted tumor mice and liver metastasis mice models. Ultimately, multi-targeting nanomedicines co-loaded with Rapa and cisplatin may provide a new approach to treating metastatic pancreatic cancer.


Assuntos
Neoplasias Hepáticas , Neoplasias Pancreáticas , Animais , Camundongos , Cisplatino/farmacologia , Lipossomos , Sirolimo/farmacologia , Lipopolissacarídeos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Peptídeos/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Linhagem Celular Tumoral , Neoplasias Pancreáticas
3.
Transl Stroke Res ; 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36913120

RESUMO

Intracerebral hemorrhage (ICH) is a severe cerebrovascular disease, which impairs patients' white matter even after timely clinical interventions. Indicated by studies in the past decade, ICH-induced white matter injury (WMI) is closely related to neurological deficits; however, its underlying mechanism and pertinent treatment are yet insufficient. We gathered two datasets (GSE24265 and GSE125512), and by taking an intersection among interesting genes identified by weighted gene co-expression networks analysis, we determined target genes after differentially expressing genes in two datasets. Additional single-cell RNA-seq analysis (GSE167593) helped locate the gene in cell types. Furthermore, we established ICH mice models induced by autologous blood or collagenase. Basic medical experiments and diffusion tensor imaging were applied to verify the function of target genes in WMI after ICH. Through intersection and enrichment analysis, gene SLC45A3 was identified as the target one, which plays a key role in the regulation of oligodendrocyte differentiation involving in fatty acid metabolic process, etc. after ICH, and single-cell RNA-seq analysis also shows that it mainly locates in oligodendrocytes. Further experiments verified overexpression of SLC45A3 ameliorated brain injury after ICH. Therefore, SLC45A3 might serve as a candidate therapeutic biomarker for ICH-induced WMI, and overexpression of it may be a potential approach for injury attenuation.

4.
Cell Mol Neurobiol ; 43(1): 59-67, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34981286

RESUMO

Intracerebral hemorrhage (ICH) is a common cerebrovascular disorder with high morbidity and mortality. Secondary brain injury after ICH, which is initiated by multiple hemolytic products during erythrolysis, has been identified as a critical factor accounting for the poor prognosis of ICH patients. Clot resolution and hematoma clearance occur immediately after ICH via erythrolysis and erythrophagocytosis. During this process, erythrolysis after ICH results in the release of hemoglobin and products of degradation along with rapid morphological changes in red blood cells (RBCs). Phagocytosis of deformed erythrocytes and products of degradation by microglia/macrophages accelerates hematoma clearance, which turns out to be neuroprotective. Thus, a better understanding of the mechanism of erythrolysis and the role of microglia/macrophages after ICH is urgently needed. In this review, the current research progresses on the underlying mechanism of erythrolysis and erythrophagocytosis, as well as several useful tools for the quantification of erythrolysis-induced brain injury, are summarized, providing potential intervention targets and possible treatment strategies for ICH patients.


Assuntos
Lesões Encefálicas , Microglia , Humanos , Microglia/metabolismo , Hemorragia Cerebral/metabolismo , Macrófagos/metabolismo , Lesões Encefálicas/metabolismo , Hematoma/complicações
5.
J Clin Med ; 11(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35807002

RESUMO

DJ-1 has been shown to play essential roles in neuronal protection and anti-inflammation in nervous system diseases. This study aimed to explore how DJ-1 regulates neuroinflammation after traumatic spinal cord injury (t-SCI). The rat model of spinal cord injury was established by the clamping method. The Basso, Beattie, Bresnahan (BBB) score and the inclined plane test (IPT) were used to evaluate neurological function. Western blot was then applied to test the levels of DJ-1, NLRP3, SOCS1, and related proinflammatory factors (cleaved caspase 1, IL-1ß and IL-18); ROS level was also examined. The distribution of DJ-1 was assessed by immunofluorescence staining (IF). BSCB integrity was assessed by the level of MMP-9 and tight junction proteins (Claudin-5, Occludin and ZO-1). We found that DJ-1 became significantly elevated after t-SCI and was mainly located in neurons. Knockdown of DJ-1 with specific siRNA aggravated NLRP3 inflammasome-related neuroinflammation and strengthened the disruption of BSCB integrity. However, the upregulation of DJ-1 by Sodium benzoate (SB) reversed these effects and improved neurological function. Furthermore, SOCS1-siRNA attenuated the neuroprotective effects of DJ-1 and increased the ROS, Rac1 and NLRP3. In conclusion, DJ-1 may alleviate neuroinflammation and the related BSCB destruction after t-SCI by suppressing NLRP3 inflammasome activation by SOCS1/Rac1/ROS pathways. DJ-1 shows potential as a feasible target for mediating neuroinflammation after t-SCI.

6.
J Stroke Cerebrovasc Dis ; 31(9): 106659, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35901587

RESUMO

BACKGROUND: Polarization of microglia/macrophages toward the pro-inflammatory phenotype is a crucial contributor to neuroinflammation after subarachnoid hemorrhage (SAH). Mer belongs to the TAM receptor tyrosine kinases family, which is known to play a significant role in the resolution of inflammation. However, the effect and mechanism of Mer after SAH remain unclear. In this study, we explored the effect of Mer on modulating the microglia/macrophage phenotype and neuroinflammation and possible potential mechanism after SAH. METHOD: Endovascular perforation model of SAH was performed. There are 3 parts in this study. Firstly, the time course of Mer expression was determined within 72 hours after SAH. Secondly, the effect of Mer downregulation on brain water content, neurological function, and microglial polarization was evaluated at 24 h after SAH. Thirdly, the neuroprotective effects of pharmacological Mer agonist were assessed. RESULT: The expression of Mer increased after SAH, and was prominently localized in microglia/macrophages. Treatment with Mer siRNA increased pro-inflammatory phenotype and decreased anti-inflammatory phenotype of microglia/macrophage, thus resulted in exacerbation of neurological deficits and brain edema after SAH. Mechanistically, the downregulation of Mer inhibited the downstream anti-inflammatory signals, SOCS1/SOCS3, by decreasing phosphorylated STATs. CONCLUSION: Mer is involved in the microglia/macrophage polarization and inflammation resolution after SAH, and that mechanism, at least in part, may contribute to the involvement of the STATs/SOCSs pathway.


Assuntos
Lesões Encefálicas , Hemorragia Subaracnóidea , Animais , Anti-Inflamatórios/farmacologia , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Macrófagos/metabolismo , Camundongos , Microglia/metabolismo , Fenótipo , Transdução de Sinais , Hemorragia Subaracnóidea/tratamento farmacológico
7.
Front Neurol ; 12: 671098, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149601

RESUMO

Aneurysmal subarachnoid hemorrhage (aSAH) is an important type of stroke with the highest rates of mortality and disability. Recent evidence indicates that neuroinflammation plays a critical role in both early brain injury and delayed neural deterioration after aSAH, contributing to unfavorable outcomes. The neutrophil-to-lymphocyte ratio (NLR) is a peripheral biomarker that conveys information about the inflammatory burden in terms of both innate and adaptive immunity. This review summarizes relevant studies that associate the NLR with aSAH to evaluate whether the NLR can predict outcomes and serve as an effective biomarker for clinical management. We found that increased NLR is valuable in predicting the clinical outcome of aSAH patients and is related to the risk of complications such as delayed cerebral ischemia (DCI) or rebleeding. Combined with other indicators, the NLR provides improved accuracy for predicting prognosis to stratify patients into different risk categories. The underlying pathophysiology is highlighted to identify new potential targets for neuroprotection and to develop novel therapeutic strategies.

8.
Biomolecules ; 11(5)2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946699

RESUMO

The choroid plexus (CP) is the primary source of cerebrospinal fluid in the central nervous system. Recent evidence indicates that inflammatory pathways at the CP may be involved in hydrocephalus development. Peroxiredoxin 2 (Prx2) is a major component of red blood cells. Extracellular Prx2 is proinflammatory, and its release after red blood cell lysis may contribute to hydrocephalus after intraventricular hemorrhage. This study aimed to identify alterations in CP macrophages and dendritic cells following intracerebroventricular Prx2 injection and investigate the relationship between macrophages/dendritic cells and hydrocephalus. There were two parts to this study. In the first part, adult male Sprague-Dawley rats received an intracerebroventricular injection of Prx2 or saline. In the second part, Prx2 was co-injected with clodronate liposomes or control liposomes. All animals were euthanized at 24 h after magnetic resonance imaging. Immunohistochemistry was used to evaluate macrophages in CP, magnetic resonance imaging to quantify hydrocephalus, and histology to assess ventricular wall damage. The intracerebroventricular injection of Prx2 not only increased the OX-6 positive cells, but it also altered their location in the CP and immunophenotype. Co-injecting clodronate liposomes with Prx2 decreased the number of macrophages and simultaneously attenuated Prx2-induced hydrocephalus and ventricular wall damage. These results suggest that CP macrophages play an essential role in CP inflammation-induced hydrocephalus. These macrophages may be a potential therapeutic target in post-hemorrhagic hydrocephalus.


Assuntos
Plexo Corióideo/imunologia , Ácido Clodrônico/administração & dosagem , Hidrocefalia/patologia , Peroxirredoxinas/efeitos adversos , Animais , Anticorpos Monoclonais/metabolismo , Modelos Animais de Doenças , Hidrocefalia/induzido quimicamente , Hidrocefalia/imunologia , Infusões Intraventriculares , Lipossomos , Macrófagos/metabolismo , Imageamento por Ressonância Magnética , Masculino , Ratos , Ratos Sprague-Dawley
9.
World Neurosurg ; 146: e955-e960, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33217589

RESUMO

OBJECTIVE: The best management of asymptomatic moyamoya disease (MMD) remains controversial. In this study, the authors aimed to explore an experience for treatment modality for asymptomatic MMD. METHODS: The authors retrospectively reviewed a total of 23 patients (age range 30-58 years) with asymptomatic MMD during the past 5 years at their institutions. The patients were divided into 2 groups: The surgical group included 11 patients, and the conservative group included 12 patients. The demographic, radiologic, and clinical findings of the patients were evaluated. At follow-up over 13-65 months, the future clinical and radiologic progression events were evaluated. RESULTS: During the follow-up period, 3 patients suffered from future clinical progression events in the conservative group: 1 experienced stroke, and 2 experienced transient ischemic attack. Among the patients in the surgical group, only 1 experienced transient ischemic attack. Kaplan-Meier analysis showed that patients undergoing surgeries had longer clinical progression-free survival times compared with patients in the conservative group (P = 0.002). CONCLUSIONS: Surgical treatment may be an alternative choice for patients with asymptomatic MMD. However, the best strategy for asymptomatic MMD in order to reduce future cerebrovascular risks still needs to be further explored.


Assuntos
Revascularização Cerebral/métodos , Tratamento Conservador , Ataque Isquêmico Transitório/epidemiologia , Doença de Moyamoya/terapia , Acidente Vascular Cerebral/epidemiologia , Adulto , Angiografia Digital , Doenças Assintomáticas , Angiografia Cerebral , Progressão da Doença , Feminino , Humanos , Ataque Isquêmico Transitório/etiologia , Angiografia por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Doença de Moyamoya/complicações , Intervalo Livre de Progressão , Estudos Retrospectivos , Acidente Vascular Cerebral/etiologia
10.
Stroke ; 51(5): 1578-1586, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32279622

RESUMO

Background and Purpose- Our recent study demonstrated that release of Prx2 (peroxiredoxin 2) from red blood cells (RBCs) is involved in the inflammatory response and brain injury after intracerebral hemorrhage. The current study investigated the role of extracellular Prx2 in hydrocephalus development after experimental intraventricular hemorrhage. Methods- There were 4 parts in this study. First, Sprague-Dawley rats received an intraventricular injection of lysed RBC or saline and were euthanized at 1 hour for Prx2 measurements. Second, rats received an intraventricular injection of Prx2, deactivated Prx2, or saline. Third, lysed RBC was coinjected with conoidin A, a Prx2 inhibitor, or vehicle. Fourth, rats received Prx2 injection and were treated with minocycline or saline (i.p.). The effects of Prx2 and the inhibitors were examined using magnetic resonance imaging assessing ventriculomegaly, histology assessing ventricular wall damage, and immunohistochemistry to assess inflammation, particularly at the choroid plexus. Results- Intraventricular injection of lysed RBC resulted in increased brain Prx2 and hydrocephalus. Intraventricular injection of Prx2 alone caused hydrocephalus, ventricular wall damage, activation of choroid plexus epiplexus cells (macrophages), and an accumulation of neutrophils. Conoidin A attenuated lysed RBC-induced injury. Systemic minocycline treatment reduced the epiplexus cell activation and hydrocephalus induced by Prx2. Conclusions- Prx2 contributed to the intraventricular hemorrhage-induced hydrocephalus, probably by inducing inflammatory responses in choroid plexus and ventricular wall damage.


Assuntos
Hemorragia Cerebral Intraventricular/metabolismo , Plexo Corióideo/metabolismo , Hidrocefalia/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Peroxirredoxinas/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Hemorragia Cerebral Intraventricular/complicações , Plexo Corióideo/efeitos dos fármacos , Plexo Corióideo/patologia , Modelos Animais de Doenças , Epêndima/efeitos dos fármacos , Epêndima/patologia , Feminino , Hidrocefalia/etiologia , Hylobatidae , Inflamação/patologia , Injeções Intraventriculares , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Masculino , Minociclina/farmacologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/patologia , Peroxirredoxinas/antagonistas & inibidores , Peroxirredoxinas/farmacologia , Quinoxalinas/farmacologia , Ratos , Ratos Sprague-Dawley
11.
Eur J Pharm Sci ; 124: 127-136, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30153524

RESUMO

Naphthalimide platinum(IV) antitumor complexes with potential dual DNA damage mechanism were designed, synthesized and evaluated for antitumor activities. The incorporation of DNA targeted naphthalimide group to the platinum(IV) system exerts much positive impacts on their antitumor efficacy. The mechanism research reveals that the title compounds could interact with dsDNA in platinum(IV) form via the naphthalimide group and cause DNA lesion. The further reduction would release platinum(II) complexes and naphthalimide acids which would induce remarkable secondary damage to DNA. Furthermore, the naphthalimide platinum(IV) compounds could combine with human serum albumin via electrostatic force, which are favourable for their storage and transport in blood. Moreover, the title compounds exhibit higher accumulation in tumor cells, and exert lower toxic and higher safe properties than oxaliplatin in vivo.


Assuntos
Antineoplásicos/farmacologia , Naftalimidas/farmacologia , Compostos Organoplatínicos/farmacologia , Linhagem Celular Tumoral , Dano ao DNA , Humanos
12.
J Control Release ; 277: 77-88, 2018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29526740

RESUMO

Recently, ultrasmall gadolinium oxide (Gd2O3) nanoparticles with high longitudinal relaxation rate have received enormous attention. However, it can't be concentrated in tumor site through intravenous administration due to its ultrasmall size. In this project, we coated ultrasmall Gd2O3 nanoparticles with a near-infrared (NIR) light-absorbing polymer polypyrrole (PPy), modifying with hyaluronic acid (HA) and loaded aluminum phthalocyanine (AlPc), the Gd2O3@PPy/AlPc-HA nanoparticles could be used for fluorescence (FL)/magnetic resonance (MR)/photoacoustic (PA) imaging guided as well as remotely controlled PTT/PDT combined anti-tumor therapy. Polymerized PPy with high photothermal conversion efficiency was introduced to assemble the ultrasmall Gd2O3 nanoparticles which have high longitudinal relaxation rate and signal-to-noise ratio, thus obtaining Gd2O3@PPy nanoparticles which possess a larger particle size and can be more suitable for tumor targeting based on the EPR effect. HA and AlPc were adsorbed on PPy for HA-mediated tumor targeting and photodynamic therapy respectively. The in vivo triple-modal imaging revealed that Gd2O3@PPy/AlPc-HA nanoparticles possess enhanced tumor uptake effect after intravenous injection. More importantly, the nanoparticles exhibited an obvious photothermal effect, which can trigger the release and de-quench of AlPc. The anti-tumor efficiency further corroborated that the combined therapy achieved an excellent tumor inhibition therapeutic effect which was much better than any other mono-therapy. Consequently, our work encouraged further exploration of polymer-based multifunctional theranostic nanoparticles for cancer combination therapy under remote near-infrared (NIR) light controls.


Assuntos
Antineoplásicos/administração & dosagem , Gadolínio/administração & dosagem , Nanocompostos/administração & dosagem , Imagem Óptica/métodos , Fotoquimioterapia/métodos , Polímeros/administração & dosagem , Animais , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Terapia Combinada , Feminino , Gadolínio/metabolismo , Humanos , Camundongos , Camundongos Nus , Imagem Óptica/tendências , Fotoquimioterapia/tendências , Fototerapia/métodos , Fototerapia/tendências , Polímeros/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
13.
Exp Neurol ; 297: 92-100, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28756200

RESUMO

Neuronal apoptosis is a central pathological process in subarachnoid hemorrhage (SAH)-induced early brain injury. Previous studies indicated that ErbB4 (EGFR family member v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 4) is essential for normal development and maintenance of the nervous system. In this study, we explored the neuroprotective effects of ErbB4 and its downstream YAP (yes-associated protein)/PIK3CB signaling pathway in early brain injury after SAH in a rat model using the endovascular perforation method. Rats were neurologically evaluated with the Modified Garcia Scale and beam balance test at 24h and 72h after SAH. An ErbB4 activator Neuregulin 1ß1 (Nrg 1ß1), ErbB4 siRNA and YAP siRNA were used to explore this pathway. The expression of p-ErbB4 and YAP was significantly increased after SAH. Multiple immunofluorescence labeling experiments demonstrated that ErbB4 is mainly expressed in neurons. Activation of ErbB4 and its downstream signals improved the neurological deficits after SAH and significantly reduced neuronal cell death. Inhibition of ErbB4 reduced YAP and PIK3CB expression, and aggravated cell apoptosis. YAP knockdown reduced the PIK3CB level and eliminated the anti-apoptotic effects of ErbB4 activation. These findings indicated that ErbB4 plays a neuroprotective role in early brain injury after SAH, possibly via the YAP/PIK3CB signaling pathway.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Modelos Animais de Doenças , Neurônios/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptor ErbB-4/biossíntese , Hemorragia Subaracnóidea/metabolismo , Animais , Apoptose/fisiologia , Relação Dose-Resposta a Droga , Masculino , Fármacos Neuroprotetores/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Hemorragia Subaracnóidea/prevenção & controle , Proteínas de Sinalização YAP
14.
Adv Healthc Mater ; 6(13)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28464525

RESUMO

High absorption in the near-infrared (NIR) region is essential for a photoabsorbing agents to realize efficient photothermal therapy (PTT) for cancer. Here, a novel hollow Au-Cu nanocomposite (HGCNs) is developed, which displays a significantly enhanced NIR surface plasmon resonance absorption and photothermal transduction efficiency. Besides, fluorescent polymer dots poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (PFBT) and chemotherapeutic mammalian target of rapamycin (mTOR) inhibitor agent rapamycin (RAPA) are attached onto the HGCNs (RAPA/PFBT-HGCNs) for real-time NIR fluorescence tracing and combined PTT/antiangiogenesis therapy. In particular, due to the fluorescence resonance energy transfer effect, RAPA/PFBT-HGCNs can act as NIR-activatable on/off probe system for real-time tracing of tumor tissues. A standard in vitro cellular uptake study, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, dual-staining study, and flow cytometry assay reveal that the RAPA/PFBT-HGCNs combined with NIR laser exhibit higher drug accumulation and cytotoxicity in both tumor cells and epithelial cells. Moreover, the margins of tumor and normal tissue can be accurately indicated by NIR-stimulated dequenched PFBT after 24 h intravenous administration. Further, tumor growth can be considerably hampered by the optimal formulation plus laser treatment with relatively lower side effects. Consequently, the work highlights the real-time tracing and enhanced PTT/antiangiogenesis therapy prospects of the established HGCNs with tremendous potential for treatment of cancer.


Assuntos
Inibidores da Angiogênese , Ouro , Hipertermia Induzida , Nanocompostos , Neoplasias Experimentais/terapia , Neovascularização Patológica/terapia , Fototerapia , Prata , Sirolimo , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Animais , Linhagem Celular Tumoral , Feminino , Fluorenos/química , Fluorenos/farmacologia , Transferência Ressonante de Energia de Fluorescência , Ouro/química , Ouro/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanocompostos/química , Nanocompostos/uso terapêutico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Prata/química , Prata/farmacologia , Sirolimo/química , Sirolimo/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Nanoscale ; 9(17): 5551-5564, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28405657

RESUMO

In this study, we report a strategy for integrating hyaluronic acid (HA), polyaniline (PANI), WS2 nanodots (WS2), and chlorin e6 (Ce6) into a single nanoplatform (HA-WS2@PANI/Ce6) for fluorescence, photoacoustic, and computed tomography multi-modality imaging-guided trimodal photothermal/radiation/photodynamic combination therapy of tumors. The WS2 nanodot core is used as the radiosensitizer with the PANI shell as the hyperthermal agent and the photosensitizer reservoir. HA and Ce6 were adsorbed on the outer shell for tumor targeting and photodynamic therapy, respectively. The in vivo trimodal imaging uncovered that HA-WS2@PANI/Ce6 nanoparticles showed enhanced tumor uptake and diagnosis effects after intravenous injection. More importantly, in the in vitro and in vivo experiments, the nanoparticles exhibited an evident near-infrared induced photothermal effect, which remarkably improved the radiation and photodynamic therapy efficiency by accelerating the blood flow and subsequently increasing oxygen supply in the tumor. The nanohybrids were found to be safe to cells in vitro and organs in vivo. Taken together, our current work demonstrates a nanoplatform for multimodal imaging guided targeted triple-therapy, which reveals a potential strategy for tumor treatment.

16.
Biomaterials ; 122: 188-200, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28131043

RESUMO

Rod-shape nanocarriers have attracted great interest because of their better cell internalization capacity and higher drug loading properties. Besides, the combination of photodynamic therapy (PDT) and photothermal therapy (PTT) holds great promise to overcome respective limitations of the anti-cancer treatment. In this work, we first report Au nanorods-capped and Ce6-doped mesoporous silica nanorods (AuNRs-Ce6-MSNRs) for the single wavelength of near infrared (NIR) light triggered combined phototherapy. AuNRs-Ce6-MSNRs are not only able to generate hyperthermia to perform PTT effect based on the AuNRs, but also can produce singlet oxygen (1O2) for PDT effect based on Ce6 after uncapping of AuNRs under the single NIR wavelength irradiation. In addition, the combined therapy can be dual-imaging guided by taking the photoacoustic (PA) and NIR fluorescence (NIRF) imaging of AuNRs and Ce6, respectively. What's more, by utilizing the special structure of MSNRs, this nanocarrier can serve as a drug delivery platform with high drug loading capacity and enhanced cellular uptake efficiency. The multi-functional nanocomposite is designed to integrate photothermal and photodynamic therapy, in vivo dual-imaging into one system, achieving synergistic anti-tumor effects both in vitro and in vivo.


Assuntos
Nanopartículas Metálicas/química , Nanocápsulas/química , Nanotubos/química , Neoplasias Experimentais/terapia , Fotoquimioterapia/métodos , Fototerapia/métodos , Porfirinas/administração & dosagem , Animais , Linhagem Celular Tumoral , Clorofilídeos , Terapia Combinada/métodos , Feminino , Ouro/química , Hipertermia Induzida/métodos , Luz , Nanopartículas Metálicas/efeitos da radiação , Camundongos , Camundongos Nus , Nanocápsulas/administração & dosagem , Nanocápsulas/efeitos da radiação , Nanoporos/ultraestrutura , Nanotubos/efeitos da radiação , Neoplasias Experimentais/patologia , Fármacos Fotossensibilizantes/administração & dosagem , Dióxido de Silício/química , Dióxido de Silício/efeitos da radiação
17.
Nanoscale ; 9(11): 3784-3796, 2017 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-28067380

RESUMO

Near-infrared (NIR)-responsive drug delivery systems have received enormous attention because of their good biocompatibility and high biological penetration. In this work, we report a novel 1-tetradecanol (TD)-controlled and indocyanine green (ICG)-loaded CuS@mSiO2 phototherapy nanoplatform (CuS@mSiO2-TD/ICG). The CuS@mSiO2 nanoparticles prepared by a facile one-pot approach can serve as drug-delivery vehicles to transport the NIR absorbing phototherapeutic agent (ICG) within the mesoporous cavities. Meanwhile a phase-change molecule (PCM), TD, is introduced as a thermosensitive gatekeeper to avoid the premature release of loaded ICG. Noticeably, the combined therapy is irradiated at an 808 nm single-light wavelength, thus performing the photothermal therapy (PTT) based on CuS@mSiO2 as well as simultaneously triggering the photodynamic (PDT)/PTT effect based on ICG. Furthermore, ICG also has the function of dual in vivo fluorescence imaging and photoacoustic (PA) imaging. This dual imaging-guided and gatekeeper-controlled nanoplatform for the single-light triggered PTT/PDT treatment holds significant promise for future cancer therapy due to their markedly improved therapeutic efficacy and decreased systemic toxicity.

18.
J Mater Chem B ; 5(12): 2286-2296, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32263619

RESUMO

In this study, we developed X-ray computed tomography (CT)/near-infrared fluorescence (NIRF) imaging for visually guiding the photothermal therapy (PTT)/photodynamic therapy (PDT) of antitumor nanocomposites (PEG-MoS2-Au-Ce6), by adsorbing chlorin e6 (Ce6) to the gold nanoparticle (AuNPs)-decorated molybdenum disulfide (PEG-MoS2) nanosheets. The NIR photosensitizer Ce6 was adsorbed onto the PEG-MoS2-Au hybrids viaπ-π stacking and hydrophobic interactions, where Ce6 remained in its quenched state due to the surface plasmon resonance (SPR) capacity of AuNPs, as well as the coupling interaction with PEG-MoS2 nanosheets. However, Ce6 was dequenched and boosted strong NIR fluorescence signals after being released from the surface of PEG-MoS2-Au hybrids upon heat generation, thus producing the PDT effect for anti-tumor therapy. Moreover, the PEG-MoS2 nanosheets and Ce6 in the PEG-MoS2-Au-Ce6 nanocomposites could be further used for CT and NIRF dual-modal imaging, respectively. In vitro NIR-triggered drug release studies indicated that the PEG-MoS2-Au-Ce6 nanocomposites rapidly release the drug around the tumor site under the photothermal effect. Therefore, this dual-modality nanosystem simultaneously enables precise cancer diagnosis and therapy.

19.
ACS Appl Mater Interfaces ; 8(51): 34991-35003, 2016 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-27957854

RESUMO

Photoacoustic (PA)/near-infrared fluorescence (NIRF) dual-modal imaging-guided phototherapy has been wide explored very recently. However, the development of high-efficiency and simplified-performed theranostic system for amplifying imaging-guided photothermal therapy/photodynamic therapy (PTT/PDT) is still a great challenge. Herein, a single-light-triggered indocyanine green (ICG)-loaded PEGylation silver nanoparticle core/polyaniline shell (Ag@PANI) nanocomposites (ICG-Ag@PANI) for PA/NIRF imaging-guided enhanced PTT/PDT synergistic effect has been successfully constructed. In this study, the synthesized Ag@PANI nanocomposites are utilized not only as the promising photothermal agent but also as potential nanovehicles for loading photosensitizer ICG via π-π stacking and hydrophobic interaction. The as-prepared ICG-Ag@PANI possesses many superior properties such as strong optical absorption in the near-infrared (NIR) region, enhanced photostability of ICG, as well as outstanding NIR laser-induced local hyperthermia and reactive oxygen species (ROS) generation. In the in vivo study, PA/NIRF dual-modal imaging confirms the accumulation and distribution of ICG-Ag@PANI in the tumor region via enhanced permeability and retention (EPR) effect. Moreover, the PTT effect of ICG-Ag@PANI rapidly raised the tumor temperature to 56.8 °C within 5 min. It is also demonstrated that the cytotoxic ROS generation ability of ICG is well maintained after being loaded onto Ag@PANI nanocomposites. Remarkably, in comparison with PTT or PDT alone, the single 808 nm NIR laser-triggered combined PTT/PDT therapy exhibits enhanced HeLa cells lethality in vitro and tumor growth inhibition in vivo.


Assuntos
Nanopartículas Metálicas , Compostos de Anilina , Fluorescência , Células HeLa , Humanos , Verde de Indocianina , Nanocompostos , Fotoquimioterapia , Fototerapia , Prata , Nanomedicina Teranóstica
20.
ACS Appl Mater Interfaces ; 8(37): 24331-8, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27595856

RESUMO

In this study, we introduce a versatile nanomaterial based on MoS2 quantum dot@polyaniline (MoS2@PANI) inorganic-organic nanohybrids, which exhibit good potential to not only enhance photoaccoustic (PA) imaging/X-ray computed tomography (CT) signal but also perform efficient radiotherapy (RT)/photothermal therapy (PTT) of cancer. Upon the intravenous injection of MoS2@PANI hybrid nanoparticles, the in vivo tumor could be precisely positioned and thoroughly eliminated under the PA/CT image-guided combination therapy of PTT/RT. This versatile nanohybrid could show good potential to facilitate simultaneously dual-modal imaging and synergetic PTT/RT to realize better anticancer efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA