Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Med Chem ; 66(17): 11855-11868, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37669317

RESUMO

Despite the essential roles of Frizzled receptors (FZDs) in mediating Wnt signaling in embryonic development and tissue homeostasis, ligands targeting FZDs are rare. A few antibodies and peptide modulators have been developed that mainly bind to the family-conserved extracellular cysteine-rich domain of FZDs, while the canonical binding sites in the transmembrane domain (TMD) are far from sufficiently addressed. Based on the recent structures of FZDs, we explored small-molecule ligand discovery by targeting TMD. From the ChemDiv library with ∼1.6 million compounds, we identified compound F7H as an antagonist of FZD7 with an IC50 at 1.25 ± 0.38 µM. Focusing on this hit, the structural dissection study, together with computing studies such as molecular docking, molecular dynamics simulation, and free energy perturbation calculations, defined the binding pocket with key residue recognition. Our results revealed the structural basis of ligand recognition and demonstrated the feasibility of structure-guided ligand discovery for FZD7-TMD.


Assuntos
Anticorpos , Receptores Frizzled , Feminino , Gravidez , Humanos , Ligantes , Simulação de Acoplamento Molecular , Sítios de Ligação
2.
Bioorg Chem ; 133: 106377, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36731294

RESUMO

Cannabinoid receptors (CBs), including CB1 and CB2, are the key components of a lipid signaling endocannabinoid system (ECS). Development of synthetic cannabinoids has been attractive to modulate ECS functions. CB1 and CB2 are structurally closely related subtypes but with distinct functions. While most efforts focus on the development of selective ligands for single subtype to circumvent the undesired off-target effect, Yin-Yang ligands with opposite pharmacological activities simultaneously on two subtypes, offer unique therapeutic potential. Herein we report the development of a new Yin-Yang ligand which functions as an antagonist for CB1 and concurrently an agonist for CB2. We found that in the pyrazole-cored scaffold, the arm of N1-phenyl group could be a switch, modification of which yielded various ligands with distinct activities. As such, the ortho-morpholine substitution exerted the desired Yin-Yang bifunctionality which, based on the docking study and molecular dynamic simulation, was proposed to be resulted from the hydrogen bonding with S173 and S285 in CB1 and CB2, respectively. Our results demonstrated the feasibility of structure guided ligand evolution for challenging Yin-Yang ligand.


Assuntos
Canabinoides , Pirazóis , Receptor CB1 de Canabinoide , Canabinoides/farmacologia , Canabinoides/química , Endocanabinoides , Ligantes , Pirazóis/química , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/química , Receptor CB1 de Canabinoide/metabolismo , Receptores de Canabinoides/química , Receptores de Canabinoides/metabolismo , Yin-Yang
3.
Chemistry ; 28(69): e202202242, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36053145

RESUMO

It is a pressing need, but still challenging to explore the structure and function of membrane proteins (MPs). One of the main obstacles is the limited availability of matched detergents for the handling of specific MPs. We describe herein the design of new detergents by incorporation of a transition linker between the hydrophilic head and the hydrophobic tail. This design allows a gradual change of hydrophobicity between the outside and inside of micelles, in contrast to the abrupt switch in conventional detergents. Notably, many of these detergents assembled into micelles in while retaining low critical micelle concentrations. Meanwhile, thermal stabilizing evaluation identified superior detergents for representative MPs, including G protein-coupled receptors and a transporter protein. Among them, further improved the NMR study of MPs. We anticipate these that results will encourage future detergent expansion through new remodeling on the traditional detergent scaffold.


Assuntos
Detergentes , Proteínas de Membrana , Detergentes/química , Proteínas de Membrana/química , Micelas , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética
4.
Chemistry ; 28(44): e202201388, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35608006

RESUMO

Detergents are the most frequently applied reagents in membrane protein (MP) studies. The limited diversity of one-head-one-tailed traditional detergents, however, is far from sufficient for structurally distinct MPs. Expansion of detergent repertoire has a continuous momentum. In line with the speculation that detergent pre-assembly exerts superiority, herein we report for the first time cross-conjugation of two series of monomeric detergents for constructing a two-dimensional library of dimeric detergents. Optimum detergents stood out with unique preferences in the systematic evaluation of individual MPs. Furthermore, unprecedented hybrid detergents 14M8G and 14M9G enabled high-quality EM study of transporter MsbA and NMR study of G protein-coupled receptor A2A AR, respectively. Given the abundance of cross-coupling chemistries, comprehensive diversity could be readily covered that would facilitate the finding of new detergents for the manipulation of thorny MPs and innovation of the functional and structural study in future.


Assuntos
Detergentes , Proteínas de Membrana , Detergentes/química , Espectroscopia de Ressonância Magnética , Proteínas de Membrana/química , Micelas
5.
Chem Asian J ; 17(15): e202200372, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35575910

RESUMO

Despite the continuous efforts, the current repertoire of detergents is still far from sufficient for the biophysics studies of membrane proteins (MPs). Toward the rapid expansion of detergent diversity, we herein report a new strategy based on Ugi reaction mediated modular assembly. Structural varieties, including hydrophobic tails and hydrophilic heads, could be conveniently introduced from the multiple reaction components. New detergents then were comprehensively evaluated in the physical properties and preliminarily screened by the thermal stabilization for a transporter MsbA and a spectrum of G protein-coupled receptors (GPCRs). For the glucagon-like peptide-1 receptor (GLP-1R), a class B GPCR, detergent M-23-M finally stood out in a second evaluation for the maintenance of homogeneity and was further illustrated its application in the improvement of NMR study. Besides the promising utility in the MP study, the current results exhibit intriguing structural-physical relationship that would allow the guidance in the tuning of detergent properties in the future.


Assuntos
Detergentes , Proteínas de Membrana , Detergentes/química , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/química , Micelas , Receptores Acoplados a Proteínas G/química
6.
ChemistryOpen ; 10(10): 1028-1032, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34648230

RESUMO

An underside binding site was recently identified in the transmembrane domain of smoothened receptor (SMO). Herein, we report efforts in the exploration of new insights into the interactions between the ligand and SMO. The hydantoin core in the middle of the parent compound was found to be highly conservative in chirality, ring size, and substituents. On each benzene at two ends, a plethora of variations, particularly halogen substitutions, were introduced and investigated. Analysis of the structure-activity relationship revealed miscellaneous halogen effects. The ligands with double halogen substituents exhibit remarkably enhanced potency, providing promising candidates that potentially overcome the common drug resistance and useful heavy-atom labeled chemical tools for co-crystallization studies of SMO.


Assuntos
Hidantoínas , Sítios de Ligação , Hidantoínas/farmacologia , Ligantes , Receptor Smoothened , Relação Estrutura-Atividade
7.
J Am Chem Soc ; 143(40): 16320-16325, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34596399

RESUMO

Due to the lack of genetically encoded probes for fluorine-19 nuclear magnetic resonance spectroscopy (19F NMR), its utility for probing eukaryotic membrane protein dynamics is limited. Here we report an efficient method for the genetic incorporation of an unnatural amino acid (UAA), 3'-trifluoromenthyl-phenylalanine (mtfF), into cannabinoid receptor 1 (CB1) in the Baculovirus Expression System. The probe can be inserted at any environmentally sensitive site, while causing minimal structural perturbation to the target protein. Using 19F NMR and X-ray crystallography methods, we discovered that the allosteric modulator Org27569 and agonists synergistically stabilize a previously unrecognized pre-active state. An allosteric modulation model is proposed to explain Org27569's distinct behavior. We demonstrate that our site-specific 19F NMR labeling method is a powerful tool in decoding the mechanism of GPCR allosteric modulation. This new method should be broadly applicable for uncovering conformational states for many important eukaryotic membrane proteins.


Assuntos
Indóis , Piperidinas
8.
J Med Chem ; 64(18): 13752-13765, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34477367

RESUMO

Azobenzene-embedded photoswitchable ligands are the widely used chemical tools in photopharmacological studies. Current approaches to azobenzene introduction rely mainly on the isosteric replacement of typical azologable groups. However, atypical scaffolds may offer more opportunities for photoswitch remodeling, which are chemically in an overwhelming majority. Herein, we investigate the rational remodeling of atypical scaffolds for azobenzene introduction, as exemplified in the development of photoswitchable ligands for the cannabinoid receptor 2 (CB2). Based on the analysis of residue-type clusters surrounding the binding pocket, we conclude that among the three representative atypical arms of the CB2 antagonist, AM10257, the adamantyl arm is the most appropriate for azobenzene remodeling. The optimizing spacer length and attachment position revealed AzoLig 9 with excellent thermal bistability, decent photopharmacological switchability between its two configurations, and high subtype selectivity. This structure-guided approach gave new impetus in the extension of new chemical spaces for tool customization for increasingly diversified photo-pharmacological studies and beyond.


Assuntos
Compostos Azo/farmacologia , Receptor CB2 de Canabinoide/metabolismo , Animais , Compostos Azo/síntese química , Compostos Azo/metabolismo , Compostos Azo/efeitos da radiação , Células CHO , Cricetulus , Desenho de Fármacos , Humanos , Ligantes , Luz , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Receptor CB2 de Canabinoide/química
9.
Chem Commun (Camb) ; 57(74): 9394-9397, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34528982

RESUMO

An efficient kinetic resolution of N-aryl ß-amino alcohols has been developed via asymmetric para-aminations of anilines with azodicarboxylates enabled by chiral phosphoric acid catalysis. Broad substrate scope and high kinetic resolution performances were afforded with this method. Control experiments supported the critical roles of the NH and OH group in these reactions.


Assuntos
Amino Álcoois/química , Compostos de Anilina/síntese química , Aminação , Compostos de Anilina/química , Cinética , Estrutura Molecular , Estereoisomerismo
10.
J Med Chem ; 64(18): 13830-13840, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34492176

RESUMO

Class F G protein-coupled receptors are characterized by a large extracellular domain (ECD) in addition to the common transmembrane domain (TMD) with seven α-helixes. For smoothened receptor (SMO), structural studies revealed dissected ECD and TMD, and their integrated assemblies. However, distinct assemblies were reported under different circumstances. Using an unbiased approach based on four series of cross-conjugated bitopic ligands, we explore the relationship between the active status and receptor assembly. Different activity dependency on the linker length for these bitopic ligands corroborates the various occurrences of SMO assembly. These results reveal a rigid "near" assembly for active SMO, which is in contrast to previous results. Conversely, inactive SMO adopts a free ECD, which would be remotely captured at "far" assembly by cholesterol. Altogether, we propose a mechanism of cholesterol flow-caused SMO activation involving an erection of ECD from far to near assembly.


Assuntos
Hidroxicolesteróis/metabolismo , Receptor Smoothened/metabolismo , Anilidas/síntese química , Anilidas/metabolismo , Animais , Sítios de Ligação , Células HEK293 , Humanos , Hidroxicolesteróis/síntese química , Ligantes , Camundongos , Células NIH 3T3 , Polietilenoglicóis/síntese química , Polietilenoglicóis/metabolismo , Domínios Proteicos , Piridinas/síntese química , Piridinas/metabolismo , Receptor Smoothened/agonistas , Receptor Smoothened/antagonistas & inibidores , Receptor Smoothened/química
11.
ACS Omega ; 6(32): 21087-21093, 2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34423216

RESUMO

Throughout the in vitro studies of membrane proteins (MPs), proper detergents are essential for the preparation of stable aqueous samples. To date, universally applicable detergents have not yet been reported to accommodate the distinct requirements for the highly diversified MPs and at the different stages of MP manipulation. Detergent exchange often has to be performed. We report herein the catalytically cleavable detergents (CatCDs) that can be efficiently removed to facilitate a complete exchange. To this end, functional groups, like propargyl and allyl, are introduced as branched chains or built in the hydrophobic chain close to the hydrophilic head. The representative CatCDs can be used as usual detergents in the extraction and purification of MPs and later be removed upon the addition of catalytic palladium. Mediated by CatCD-1, reconstitution of a transporter protein MsbA into a series of detergents was achieved. The extension of these designs could facilitate the future optimization of other biophysics studies.

12.
Org Lett ; 23(11): 4104-4108, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-33998803

RESUMO

A novel kinetic resolution of 2,2-disubstituted dihydroquinolines was achieved by regioselective asymmetric halogenations enabled by chiral phosphoric acid catalysis. A series of dihydroquinolines bearing 2,2-disubstitutions were well-tolerated in these reactions, generating both the recovered dihydroquinolines and C-6-brominated products with high enantioselectivities, with s-factors up to 149. In addition, this kinetic resolution protocol is also applicable for 2,2-disubstituted tetrahydroquinoline and asymmetric iodonation reaction.

13.
Signal Transduct Target Ther ; 6(1): 7, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33414387

RESUMO

As one of the most successful therapeutic target families, G protein-coupled receptors (GPCRs) have experienced a transformation from random ligand screening to knowledge-driven drug design. We are eye-witnessing tremendous progresses made recently in the understanding of their structure-function relationships that facilitated drug development at an unprecedented pace. This article intends to provide a comprehensive overview of this important field to a broader readership that shares some common interests in drug discovery.


Assuntos
Desenho de Fármacos , Descoberta de Drogas , Receptores Acoplados a Proteínas G , Animais , Humanos , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/química , Relação Estrutura-Atividade
14.
Cell Rep ; 29(10): 2936-2943.e4, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31801061

RESUMO

Adrenergic G-protein-coupled receptors (GPCRs) mediate different cellular signaling pathways in the presence of endogenous catecholamines and play important roles in both physiological and pathological conditions. Extensive studies have been carried out to investigate the structure and function of ß adrenergic receptors (ßARs). However, the structure of α adrenergic receptors (αARs) remains to be determined. Here, we report the structure of the human α2C adrenergic receptor (α2CAR) with the non-selective antagonist, RS79948, at 2.8 Å. Our structure, mutations, modeling, and functional experiments indicate that a α2CAR-specific D206ECL2-R409ECL3-Y4056.58 network plays a role in determining α2 adrenergic subtype selectivity. Furthermore, our results show that a specific loosened helix at the top of TM4 in α2CAR is involved in receptor activation. Together, our structure of human α2CAR-RS79948 provides key insight into the mechanism underlying the α2 adrenergic receptor activation and subtype selectivity.


Assuntos
Receptores Adrenérgicos alfa 2/metabolismo , Animais , Células CHO , Linhagem Celular , Cricetulus , Células HEK293 , Humanos , Isoquinolinas/farmacologia , Ligantes , Naftiridinas/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
IUCrJ ; 6(Pt 6): 996-1006, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31709055

RESUMO

The class B family of G-protein-coupled receptors (GPCRs) has long been a paradigm for peptide hormone recognition and signal transduction. One class B GPCR, the glucagon-like peptide-1 receptor (GLP-1R), has been considered as an anti-diabetes drug target and there are several peptidic drugs available for the treatment of this overwhelming disease. The previously determined structures of inactive GLP-1R in complex with two negative allosteric modulators include ten thermal-stabilizing mutations that were selected from a total of 98 designed mutations. Here we systematically summarize all 98 mutations we have tested and the results suggest that the mutagenesis strategy that strengthens inter-helical hydro-phobic interactions shows the highest success rate. We further investigate four back mutations by thermal-shift assay, crystallization and molecular dynamic simulations, and conclude that mutation I1962.66bF increases thermal stability intrinsically and that mutation S2714.47bA decreases crystal packing entropy extrinsically, while mutations S1932.63bC and M2333.36bC may be dispensable since these two cysteines are not di-sulfide-linked. Our results indicate intrinsic connections between different regions of GPCR transmembrane helices and the current data suggest a general mutagenesis principle for structural determination of GPCRs and other membrane proteins.

16.
J Med Chem ; 62(21): 9983-9989, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31408335

RESUMO

We unveiled an underside binding site on smoothened receptor (SMO) by a colocalization strategy using two structurally complementary photoaffinity probes derived from a known ligand Allo-1. Docking study and structural dissection identified key interactions within the site, including hydrogen bonding, π-π interactions, and hydrophobic interactions between Allo-1 and its contacting residues. Taken together, our results reveal the molecular base of Allo-1 binding and provide a basis for the design of new-generation ligands to overcome drug resistance.


Assuntos
Membrana Celular/metabolismo , Receptor Smoothened/química , Receptor Smoothened/metabolismo , Sítios de Ligação , Desenho de Fármacos , Modelos Moleculares , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Domínios Proteicos , Transporte Proteico , Relação Estrutura-Atividade
17.
Chemistry ; 25(50): 11635-11640, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31368214

RESUMO

Disulfide-containing detergents (DCDs) are introduced, which contain a disulfide bond in the hydrophobic tail. DCDs form smaller micelles than corresponding detergents with linear hydrocarbon chains, while providing good solubilization and reconstitution of membrane proteins. The use of this new class of detergents in structural biology is illustrated with solution NMR spectra of the human G protein-coupled receptor A2A AR, which is an α-helical protein, and the ß-barrel protein OmpX from E. coli.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Detergentes/química , Proteínas de Escherichia coli/química , Hidrolases/química , Receptor A2A de Adenosina/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Dissulfetos/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Humanos , Hidrolases/metabolismo , Micelas , Ressonância Magnética Nuclear Biomolecular , Estabilidade Proteica , Receptor A2A de Adenosina/metabolismo
18.
Org Biomol Chem ; 17(25): 6136-6142, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31180094

RESUMO

The smoothened receptor (SMO) mediates the hedgehog (Hh) signaling pathway and plays a vital role in embryonic development and tumorigenesis. The visualization of SMO has the potential to provide new insights into its enigmatic mechanisms and associated disease pathogenesis. Based on recent progress in structural studies of SMO, we have designed and characterized a group of affinity probes to facilitate the turn-on fluorescence labeling of SMO at the ε-amine of K395. These chemical probes were derived from a potent SMO antagonist skeleton by the conjugation of a small non-fluorescent unit, O-nitrobenzoxadiazole (O-NBD). In this context, optimal probes were developed to be capable of efficiently and selectively lighting up SMO regardless of whether it is in micelles or in native membranes. More importantly, the resulting labeled SMO only bears a very small fluorophore and allows for the recovery of the unoccupied pocket by dissociation of the residual ligand module. These advantages should allow the probe to serve as a potential tool for monitoring SMO trafficking, understanding Hh activation mechanisms, and even the diagnosis of tumorigenesis in the future.

19.
Langmuir ; 35(12): 4319-4327, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30781953

RESUMO

Membrane mimics are indispensable tools in the structural and functional understanding of membrane proteins (MPs). Given stringent requirements of integral MP manipulations, amphiphile replacement is often required in sample preparation for various biophysical purposes. Current protocols generally rely on physical methodologies and rarely reach complete replacement. In comparison, we report herein a chemical alternative that facilitates the exhaustive exchange of membrane-mimicking systems for MP reconstitution. This method, named sacrifice-replacement strategy, was enabled by a class of chemically cleavable detergents (CCDs), derived from the disulfide incorporation in the traditional detergent n-dodecyl-ß-d-maltopyranoside. The representative CCD behaved well in both solubilizing the diverse α-helical human G protein-coupled receptors and refolding of the ß-barrel bacterial outer membrane protein X, and more importantly, it could also be readily degraded under mild conditions. By this means, the A2A adenosine receptor was successfully reconstituted into a series of commercial detergents for stabilization screening and nanodiscs for electron microscopy analysis. Featured by the simplicity and compatibility, this CCD-mediated strategy would later find more applications when being integrated in other biophysics studies.


Assuntos
Proteínas de Membrana/química , Tensoativos/química , Detergentes/química , Humanos , Tamanho da Partícula , Propriedades de Superfície
20.
Nat Commun ; 8: 15383, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28513578

RESUMO

The Smoothened receptor (SMO) belongs to the Class Frizzled of the G protein-coupled receptor (GPCR) superfamily, constituting a key component of the Hedgehog signalling pathway. Here we report the crystal structure of the multi-domain human SMO, bound and stabilized by a designed tool ligand TC114, using an X-ray free-electron laser source at 2.9 Å. The structure reveals a precise arrangement of three distinct domains: a seven-transmembrane helices domain (TMD), a hinge domain (HD) and an intact extracellular cysteine-rich domain (CRD). This architecture enables allosteric interactions between the domains that are important for ligand recognition and receptor activation. By combining the structural data, molecular dynamics simulation, and hydrogen-deuterium-exchange analysis, we demonstrate that transmembrane helix VI, extracellular loop 3 and the HD play a central role in transmitting the signal employing a unique GPCR activation mechanism, distinct from other multi-domain GPCRs.


Assuntos
Proteínas Hedgehog/metabolismo , Domínios Proteicos , Transdução de Sinais , Receptor Smoothened/química , Sítios de Ligação , Cristalografia por Raios X , Medição da Troca de Deutério/métodos , Células HEK293 , Humanos , Ligantes , Espectrometria de Massas/métodos , Simulação de Dinâmica Molecular , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Receptor Smoothened/isolamento & purificação , Receptor Smoothened/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA