RESUMO
BACKGROUND: Factors to accurately stratify patients with early-stage non-small cell lung cancer (NSCLC) in different prognostic groups are still needed. This study aims to investigate 1) the prognostic potential of circulating cell-free (CF) and extracellular vesicles (EVs)-derived microRNA (miRNAs), and 2) their added value with respect to known prognostic factors (PFs). METHODS: The RESTING study is a multicentre prospective observational cohort study on resected stage IA-IIIA patients with NSCLC. The primary end-point was disease-free survival (DFS), and the main analyses were carried out separately for CF- and EV-miRNAs. CF- and EV-miRNAs were isolated from plasma, and miRNA-specific libraries were prepared and sequenced. To reach the study aims, three statistical models were specified: one using the miRNA data only (Model 1); one using both miRNAs and known PFs (age, gender, and pathological stage) (Model 2), and one using the PFs alone (Model 3). Five-fold cross-validation (CV) was used to assess the predictive performance of each. Standard Cox regression and elastic net regularized Cox regression were used. RESULTS: A total of 222 patients were enrolled. The median follow-up time was 26.3 (95% CI 25.4-27.6) months. From Model 1, three CF-miRNAs and 21 EV-miRNAs were associated with DFS. In Model 2, two CF-miRNAs (miR-29c-3p and miR-877-3p) and five EV-miRNAs (miR-181a-2-3p, miR-182-5p, miR-192-5p, miR-532-3p and miR-589-5p) remained associated with DFS. From pathway enrichment analysis, TGF-beta and NOTCH were the most involved pathways. CONCLUSION: This study identified promising prognostic CF- and EV-miRNAs that could be used as a non-invasive, cost-effective tool to aid clinical decision-making. However, further evaluation of the obtained miRNAs in an external cohort of patients is warranted.
Assuntos
Biomarcadores Tumorais , Carcinoma Pulmonar de Células não Pequenas , Vesículas Extracelulares , Neoplasias Pulmonares , MicroRNAs , Estadiamento de Neoplasias , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Masculino , Feminino , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Prognóstico , Pessoa de Meia-Idade , Idoso , Estudos Prospectivos , MicroRNAs/genética , MicroRNA Circulante , AdultoRESUMO
Chronic Obstructive Pulmonary Disease (COPD) and lung cancer are strictly related. To date, it is unknown if COPD-associated cancers are different from the tumors of non-COPD patients. The main goal of the study was to compare the morphological/molecular profiles of lung adenocarcinoma (LUAD) samples of COPD, non-COPD/smokers and non-COPD/non-smokers, and to investigate if a genetic instability also characterized non-pathological areas. This study included 110 patients undergoing surgery for a LUAD, divided into three groups: COPD/smoker LUAD (38), non-COPD/smoker LUAD (54) and non-COPD/non-smoker LUAD (18). The tissue samples were systemically evaluated by pathologists and analyzed using a 30-gene Next Generation Sequencing (NGS) panel. In a subset of patients, tissues taken far from the neoplasia were also included. The non-COPD/smoker LUAD were characterized by a higher proliferative index (p = 0.001), while the non-COPD/non-smoker LUAD showed higher percentages of lepidic pattern (p = 0.008), lower necrosis, higher fibrosis, and a significantly lower mutation rate in the KRAS and PIK3CA genes. Interestingly, the same gene mutations were found in pathological and normal areas exclusively in the COPD/smokers and non-COPD/smokers. COPD/smoker LUAD seem to be similar to non-COPD/smoker LUAD, particularly for the genetic background. A less aggressive cancer phenotype was confirmed in non-COPD/non-smokers. The genetic alterations detected in normal lungs from smokers with and without COPD reinforce the importance of screening to detect early neoplastic lesions.
RESUMO
BACKGROUND: Neuroendocrine Carcinomas (NECs) prognosis is poor.No standard second-line therapy is currently recognized after failure of platinum-based first-line treatment. FOLFIRI and CAPTEM regimens have shown promising activity in preliminary studies. We aimed to evaluate these regimens in metastatic NEC patients. METHODS: This is an open-label, multicenter, randomized non-comparative phase II trial to evaluate the activity and safety of FOLFIRI or CAPTEM in metastatic NEC patients. Primary endpoints were the 12 weeks-Disease Control Rate (12w-DCR) by investigator assessment per RECIST v1.1 and safety per CTCAE v5.0. Additional endpoints included overall response rate (ORR), progression-free survival (PFS) and overall survival (OS). Patients' serum samples were subject to NGS miRNome profiling in comparison with healthy donors to reveal differentially expressed miRNAs as candidate circulating biomarkers. RESULTS: The study was halted for futility at interim analysis, as the minimum 12w-DCR threshold of 10 out of 25 patients required for the first step was not reached. From 06/03/2017 to 18/01/2021, 53 out of 112 patients were enrolled. Median follow-up was 22.6 months (range: 1.4-60.4). The 12w-DCR was 39.1 % in the FOLFIRI arm and 28.0 % in the CAPTEM arm. In the FOLFIRI subgroup the 12-months OS rate was 28.4 % (95 % CI: 12.7-46.5) while in the CAPTEM subgroup it was 32.4 % (95 % CI: 14.9-51.3). The most common G3-G4 side effects were neutropenia (n = 5, 18.5 %) and anemia (n = 2, 7.4 %) for FOLFIRI and G3-G4 thrombocytopenia (n = 2, 8.0 %), G4 nausea/vomiting (n = 1, 4.0 %) for CAPTEM. Three microRNAs emerged as NEC independent predictors. High expression values were found to be significantly associated with decreased PFS and OS. CONCLUSION: The safety profile of FOLFIRI and CAPTEM was manageable. FOLFIRI and CAPTEM chemotherapy showed comparable activity in the second-line setting after progression on etoposide/platinum. GOV IDENTIFIER: NCT03387592.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Camptotecina , Carcinoma Neuroendócrino , Fluoruracila , Leucovorina , Humanos , Masculino , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Feminino , Pessoa de Meia-Idade , Leucovorina/uso terapêutico , Leucovorina/efeitos adversos , Fluoruracila/uso terapêutico , Fluoruracila/efeitos adversos , Idoso , Carcinoma Neuroendócrino/tratamento farmacológico , Carcinoma Neuroendócrino/sangue , Carcinoma Neuroendócrino/patologia , Carcinoma Neuroendócrino/mortalidade , Adulto , Camptotecina/análogos & derivados , Camptotecina/uso terapêutico , Camptotecina/efeitos adversos , Etoposídeo/uso terapêutico , Etoposídeo/efeitos adversos , Etoposídeo/administração & dosagem , Temozolomida/uso terapêutico , Temozolomida/efeitos adversos , Intervalo Livre de ProgressãoRESUMO
Gastro-entero-pancreatic neuroendocrine tumors (GEP-NETs) are rare diseases encompassing pancreatic (PanNETs) and ileal NETs (SINETs), characterized by heterogeneous somatostatin receptors (SSTRs) expression. Treatments for inoperable GEP-NETs are limited, and SSTR-targeted Peptide Receptor Radionuclide Therapy (PRRT) achieves variable responses. Prognostic biomarkers for the management of GEP-NET patients are required. 18F-FDG uptake is a prognostic indicator of aggressiveness in GEP-NETs. This study aims to identify circulating and measurable prognostic miRNAs associated with 18F-FDG-PET/CT status, higher risk and lower response to PRRT. Methods: Whole miRNOme NGS profiling was conducted on plasma samples obtained from well-differentiated advanced, metastatic, inoperable G1, G2 and G3 GEP-NET patients enrolled in the non-randomized LUX (NCT02736500) and LUNET (NCT02489604) clinical trials prior to PRRT (screening set, n= 24). Differential expression analysis was performed between 18F-FDG positive (n=12) and negative (n=12) patients. Validation was conducted by Real Time quantitative PCR in two distinct well-differentiated GEP-NET validation cohorts, considering the primary site of origin (PanNETs n=38 and SINETs n=30). The Cox regression was applied to assess independent clinical parameters and imaging for progression-free survival (PFS) in PanNETs. In situ RNA hybridization combined with immunohistochemistry was performed to simultaneously detect miR and protein expression in the same tissue specimens. This novel semi-automated miR-protein protocol was applied in PanNET FFPE specimens (n=9). In vitro functional experiments were performed in PanNET models. Results: While no miRNAs emerged to be deregulated in SINETs, hsa-miR-5096, hsa-let-7i-3p and hsa-miR-4311 were found to correlate with 18F-FDG-PET/CT in PanNETs (p-value:<0.005). Statistical analysis has shown that, hsa-miR-5096 can predict 6-month PFS (p-value:<0.001) and 12-month Overall Survival upon PRRT treatment (p-value:<0.05), as well as identify 18F-FDG-PET/CT positive PanNETs with worse prognosis after PRRT (p-value:<0.005). In addition, hsa-miR-5096 inversely correlated with both SSTR2 expression in PanNET tissue and with the 68Gallium-DOTATOC captation values (p-value:<0.05), and accordingly it was able to decrease SSTR2 when ectopically expressed in PanNET cells (p-value:<0.01). Conclusions: hsa-miR-5096 well performs as a biomarker for 18F-FDG-PET/CT and as independent predictor of PFS. Moreover, exosome-mediated delivery of hsa-miR-5096 may promote SSTR2 heterogeneity and thus resistance to PRRT.
RESUMO
PVs and LPVs in BRCA1/2 genes are correlated to a high risk of developing breast cancer and/or ovarian cancer (Hereditary Breast and Ovarian Cancer syndrome, HBOC); additionally, in recent years, an increasing number of BRCA 1/2 variants have been identified and associated with pancreatic cancer. Epidemiologic studies have highlighted that inherited factors are involved in 10% to 20% of PCs, mainly through deleterious variants of BRCA2. The frequency of BRCA1/2 germline alterations fluctuates quite a lot among different ethnic groups, and the estimated rate of PVs/LPVs variants in Italian HBOC families is not very accurate, according to different reports. The aim of our study is to describe the prevalence of a BRCA2 PV observed in a selected cohort of HBOC patients and their relatives, whose common origin is the eastern coast of Emilia Romagna, a region of Italy. This study provides insight into the frequency of the variant detected in this area and provides evidence of an increased risk of pancreatic and breast cancer, useful for genetic counseling and surveillance programs.
RESUMO
In recent years, circulating extracellular miRNAs have emerged as a useful tool for the molecular characterization and study of tumors' biological functions. However, the high heterogeneity in sample processing, isolation of circulating fraction, RNA extraction, and sequencing hamper the reproducibility and the introduction of these biomarkers in clinical practice. In this paper, we compare the content and the performance of miRNA sequencing in plasma-derived samples processed with different isolation protocols. We tested three different fractions of miRNA from healthy-donor human blood: whole plasma (WP), free-circulating (FC) and EV-associated, isolated by either column (ccEV) or size exclusion chromatography (secEV) miRNAs. An additional cohort of 18 lung cancer patients was analyzed. Protein profiles of ccEV and secEV were compared and miRNA expression profiles were assessed through sequencing. Slight differences were found between ccEV and secEV expressions of typical EV markers. Conversely, sequencing performance and the mirnome profile varied between RNA extracted using different isolation methods. Sequencing performance was better in FC samples. Higher varieties of miRNAs were identified in WP and FC with respect to ccEV and secEV. Analysis of free-circulating and EV-associated miRNA profiles in lung cancer patients demonstrated the reliability of the biomarkers identifiable on plasma with these approaches.
RESUMO
Circulating tumor cells' (CTCs) heterogeneity contributes to counteract their introduction in clinical practice. Through single-cell sequencing we aim at exploring CTC heterogeneity in metastatic breast cancer (MBC) patients. Single CTCs were isolated using DEPArray NxT. After whole genome amplification, libraries were prepared for copy number aberration (CNA) and single nucleotide variant (SNV) analysis and sequenced using Ion GeneStudio S5 and Illumina MiSeq, respectively. CTCs demonstrate distinctive mutational signatures but retain molecular traces of their common origin. CNA profiling identifies frequent aberrations involving critical genes in pathogenesis: gains of 1q (CCND1) and 11q (WNT3A), loss of 22q (CHEK2). The longitudinal single-CTC analysis allows tracking of clonal selection and the emergence of resistance-associated aberrations, such as gain of a region in 12q (CDK4). A group composed of CTCs from different patients sharing common traits emerges. Further analyses identify losses of 15q and enrichment of terms associated with pseudopodium formation as frequent and exclusive events. CTCs from MBC patients are heterogeneous, especially concerning their mutational status. The single-cell analysis allows the identification of aberrations associated with resistance, and is a candidate tool to better address treatment strategy. The translational significance of the group populated by similar CTCs should be elucidated.
RESUMO
Glioblastoma (GBM) is the most lethal brain tumor in adults. Radiation, together with temozolomide is the standard treatment, but nevertheless, relapse occurs in nearly all cases. Understanding the mechanisms underlying radiation resistance may help to find more effective therapies. After radiation treatment, ATP is released into the tumor microenvironment where it binds and activates purinergic P2 receptors, mainly of the P2X7 subtype. Two main P2X7 splice variants, P2X7A and P2X7B, are expressed in most cell types, where they associate with distinct biochemical and functional responses. GBM cells widely differ for the level of P2X7 isoform expression and accordingly for sensitivity to stimulation with extracellular ATP (eATP). Irradiation causes a dramatic shift in P2X7 isoform expression, with the P2X7A isoform being down- and the P2X7B isoform up-modulated, as well as extensive cell death and overexpression of stemness and senescence markers. Treatment with P2X7 blockers during the post-irradiation recovery potentiated irradiation-dependent cytotoxicity, suggesting that P2X7B activation by eATP generated a trophic/growth-promoting stimulus. Altogether, these data show that P2X7A and B receptor isoform levels are inversely modulated during the post-irradiation recovery phase in GBM cells.
Assuntos
Trifosfato de Adenosina , Glioblastoma , Receptores Purinérgicos P2X7 , Trifosfato de Adenosina/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/radioterapia , Humanos , Recidiva Local de Neoplasia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores Purinérgicos P2X7/genética , Microambiente TumoralRESUMO
To improve the success rate of current preclinical drug trials, there is a growing need for more complex and relevant models that can help predict clinical resistance to anticancer agents. Here, we present a three-dimensional (3D) technology, based on biomimetic collagen scaffolds, that enables the modeling of the tumor hypoxic state and the prediction of in vivo chemotherapy responses in terms of efficacy, molecular alterations, and emergence of resistance mechanisms. The human breast cancer cell lines MDA-MB-231 (triple negative) and MCF-7 (luminal A) were treated with scaling doses of doxorubicin in monolayer cultures, 3D collagen scaffolds, or orthotopically transplanted murine models. Lineage-specific resistance mechanisms were revealed by the 3D tumor model. Reduced drug uptake, increased drug efflux, and drug lysosomal confinement were observed in triple-negative MDA-MB-231 cells. In luminal A MCF-7 cells, the selection of a drug-resistant subline from parental cells with deregulation of p53 pathways occurred. These cells were demonstrated to be insensitive to DNA damage. Transcriptome analysis was carried out to identify differentially expressed genes (DEGs) in treated cells. DEG evaluation in breast cancer patients demonstrated their potential role as predictive biomarkers. High expression of the transporter associated with antigen processing 1 (TAP1) and the tumor protein p53-inducible protein 3 (TP53I3) was associated with shorter relapse in patients affected by ER+ breast tumor. Likewise, the same clinical outcome was associated with high expression of the lysosomal-associated membrane protein 1 LAMP1 in triple-negative breast cancer. Hypoxia inhibition by resveratrol treatment was found to partially re-sensitize cells to doxorubicin treatment. Our model might improve preclinical in vitro analysis for the translation of anticancer compounds as it provides: (a) more accurate data on drug efficacy and (b) enhanced understanding of resistance mechanisms and molecular drivers.
Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Animais , Biomimética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Células MCF-7 , Camundongos , Neoplasias de Mama Triplo Negativas/tratamento farmacológicoRESUMO
Although targeting of cell metabolism is a promising therapeutic strategy in acute myeloid leukemia (AML), metabolic dependencies are largely unexplored. We aimed to classify AML patients based on their metabolic landscape and map connections between metabolic and genomic profiles. Combined serum and urine metabolomics improved AML characterization compared with individual biofluid analysis. At intracellular level, AML displayed dysregulated amino acid, nucleotide, lipid, and bioenergetic metabolism. The integration of intracellular and biofluid metabolomics provided a map of alterations in the metabolism of polyamine, purine, keton bodies and polyunsaturated fatty acids and tricarboxylic acid cycle. The intracellular metabolome distinguished three AML clusters, correlating with distinct genomic profiles: NPM1-mutated(mut), chromatin/spliceosome-mut and TP53-mut/aneuploid AML that were confirmed by biofluid analysis. Interestingly, integrated genomic-metabolic profiles defined two subgroups of NPM1-mut AML. One was enriched for mutations in cohesin/DNA damage-related genes (NPM1/cohesin-mut AML) and showed increased serum choline + trimethylamine-N-oxide and leucine, higher mutation load, transcriptomic signatures of reduced inflammatory status and better ex-vivo response to EGFR and MET inhibition. The transcriptional differences of enzyme-encoding genes between NPM1/cohesin-mut and NPM1-mut allowed in silico modeling of intracellular metabolic perturbations. This approach predicted alterations in NAD and purine metabolism in NPM1/cohesin-mut AML that suggest potential vulnerabilities, worthy of being therapeutically explored.
Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Dano ao DNA/genética , Leucemia Mieloide Aguda/genética , Mutação/genética , Proteínas Nucleares/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Cromatina/genética , Feminino , Genômica/métodos , Humanos , Leucemia Mieloide Aguda/patologia , Masculino , Pessoa de Meia-Idade , Nucleofosmina , Prognóstico , Adulto Jovem , CoesinasRESUMO
Circulating tumor cells (CTCs) are a rare population of cells found in the bloodstream and represent key players in the metastatic cascade. Their analysis has proved to provide further core information concerning the tumor. Herein, we aim at investigating CTCs isolated from a 32-year-old patient diagnosed with triple negative spindle-shaped metaplastic breast cancer (MpBC), a rare tumor poorly responsive to therapies and with a dismal prognosis. The molecular analysis performed on the primary tumor failed to underline effective actionable targets to address the therapeutic strategy. Besides the presence of round-shaped CTCs, cells with a spindle shape were present as well, and through molecular analysis, we confirmed their malignant nature. This aspect was coherent with the primary tumor histology, proving that CTCs are released regardless of their morphology. Copy number aberration (CNA) profiling and variant analysis using next-generation sequencing (NGS) showed that these cells did not harbor the alterations exhibited by the primary tumor (PIK3CA G1049A mutation, MYC copy number gain). However, despite the great heterogeneity observed, the amplification of regions involved in metastasis emerged (8q24.22-8q24.23). Our findings support the investigation of CTCs to identify alterations that could have a role in the metastatic process. To the best of our knowledge, this is the first examination of CTCs in an MpBC patient.
RESUMO
TRANSLATIONAL RELEVANCE: No prophylactic treatments for COVID-19 have been clearly proven and found. In this pandemic context, cancer patients constitute a particularly fragile population that would benefit the best from such treatments, a present unmet need. TMPRSS2 is essential for COVID-19 replication cycle and it is under androgen control. Estrogen and androgen receptor dependent cues converge on TMPRSS2 regulation through different mechanisms of action that can be blocked by the use of hormonal therapies. We believe that there is enough body of evidence to foresee a prophylactic use of hormonal therapies against COVID-19 and this hypothesis can be easily tested on cohorts of breast and prostate cancer patients who follow those regimens. In case of pandemic, if the protective effect of hormonal therapies will be proven on cancer patients, the use of specific hormonal therapies could be extended to other oncological groups and to healthy individuals to decrease the overall risk of infection by SARS-CoV-2.Given the COVID-19 coronavirus emergency, a special focus is needed on the impact of this rapidly spreading viral infection on cancer patients. Androgen receptor (AR) signaling in the transmembrane protease serine 2 (TMPRSS2) regulation is emerging as an important determinant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) susceptibility. In our study, we analyzed AR and TMPRSS2 expression in 17,352 normal and 9,556 cancer tissues from public repositories and stratified data according to sex and age. The emerging picture is that some patient groups may be particularly susceptible to SARS-CoV-2 infection and may benefit from antiandrogen- or tamoxifen-based therapies. These findings are relevant to choose proper treatments in order to protect cancer patients from concomitant SARS-CoV-2 contagion and related symptoms and put forward the idea that hormonal therapies could be used as prophylactic agents against COVID-19.
Assuntos
Antagonistas de Receptores de Andrógenos/uso terapêutico , Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/complicações , COVID-19/complicações , Antagonistas de Estrogênios/uso terapêutico , Neoplasias da Próstata/complicações , Tamoxifeno/uso terapêutico , Antagonistas de Receptores de Andrógenos/farmacologia , Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , COVID-19/metabolismo , Descoberta de Drogas , Antagonistas de Estrogênios/farmacologia , Feminino , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/análise , Receptores Androgênicos/metabolismo , Serina Endopeptidases/análise , Serina Endopeptidases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tamoxifeno/farmacologia , Tratamento Farmacológico da COVID-19RESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic. One open question is whether genetics could influence the severity of symptoms. Considering the limited data on cancer patients, we analyzed public data repositories limited to investigate angiotensin-converting enzyme 2 (ACE2) and the transmembrane serine protease 2 (TMPRSS2) expressions and genetic variants to identify the basis of individual susceptibility to SARS-CoV-2.Gene expression and variant data were retrieved from Tissue Cancer Genome Atlas, Genotype-Tissue Expression, and gnomAD. Differences in gene expression were tested with Mann-Whitney U-test. Allele frequencies of germline variants were explored in different ethnicities, with a special focus on ACE2 variants located in the binding site to SARS-CoV-2 spike protein.The analysis of ACE2 and TMPRSS2 expressions in healthy tissues showed a higher expression in the age class 20 to 59 years (false discovery rate [FDR] < 0.0001) regardless of gender. ACE2 and TMPRSS2 were more expressed in tumors from males than females (both FDR < 0.0001) and, opposite to the regulation in tissues from healthy individuals, more expressed in elderly patients (FDR = 0.005; FDR < 0.0001, respectively). ACE2 and TMPRSS2 expressions were higher in cancers of elderly patients compared with healthy individuals (FDR < 0.0001). Variants were present at low frequency (range 0% to 3%) and among those with the highest frequency, the variant S19P belongs to the SARS-CoV-2 spike protein binding site and it was exclusively present in Africans with a frequency of 0.2%.The mechanisms of ACE2 and TMPRSS2 regulation could be targeted for preventive and therapeutic purposes in the whole population and especially in cancer patients.Further studies are needed to show a direct correlation of ACE2 and TMPRSS2 expressions in cancer patients and the incidence of COVID-19.
Assuntos
Infecções por Coronavirus/patologia , Predisposição Genética para Doença , Neoplasias/patologia , Peptidil Dipeptidase A/genética , Pneumonia Viral/patologia , Serina Endopeptidases/genética , Adulto , Enzima de Conversão de Angiotensina 2 , Betacoronavirus/isolamento & purificação , Sítios de Ligação , População Negra/genética , COVID-19 , Estudos de Casos e Controles , Infecções por Coronavirus/virologia , Bases de Dados Genéticas , Feminino , Frequência do Gene , Variação Genética , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Neoplasias/epidemiologia , Neoplasias/genética , Pandemias , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/virologia , SARS-CoV-2 , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Adulto JovemRESUMO
Male breast cancer (MBC) is a rare tumor, accounting for less than 1% of all breast cancers. In MBC, genetic predisposition plays an important role; however, only a few studies have investigated in depth the role of genes other than BRCA1 and BRCA2. We performed a Next-Generation Sequencing (NGS) analysis with a panel of 94 cancer predisposition genes on germline DNA from an Italian case series of 70 patients with MBC. Moreover, we searched for large deletions/duplications of BRCA1/2 genes through the Multiplex Ligation-dependent Probe Amplification (MLPA) technique. Through the combination of NGS and MLPA, we identified three pathogenic variants in the BRCA1 gene and six in the BRCA2 gene. Besides these alterations, we found six additional pathogenic/likely-pathogenic variants in PALB2, CHEK2, ATM, RAD51C, BAP1 and EGFR genes. From our study, BRCA1 and BRCA2 emerge as the main genes associated with MBC risk, but also other genes seem to be associated with the disease. Indeed, some of these genes have already been implicated in female breast cancer predisposition, but others are known to be involved in other types of cancer. Consequently, our results suggest that novel genes could be involved in MBC susceptibility, shedding new light on their role in cancer development.
RESUMO
BACKGROUND: Lynch syndrome (LS) is associated with germline mutations in one of the mismatch repair genes or EPCAM. The majority of the causative alterations are point mutations. Large genomic rearrangements represent only 5-20%. Hypothetically, the allelic imbalance, like the loss of heterozygosity, may be another high penetrance risk factor. CASE PRESENTATION: We describe the case of a patient who developed 5 tumors during her lifetime and with a family history characterized by a high frequency of tumors associated with LS. The proband was tested for mutations and copy number alterations with a panel of hereditary cancer genes and by SNP array. She showed a 187 Kb duplication including EPCAM and the first 7 exons of MSH2, plus two loss of heterozygosity (LOHs) in chromosome 20 and one in chromosome X which include many tumor suppressor genes. CONCLUSION: We found a novel large EPCAM-MSH2 duplication associated with LS and the presence of LOHs in regions containing numerous tumor suppressors, raising the hypothesis that these alterations could contribute to cancer susceptibility. Our results underline the importance to deepen the knowledge of molecular mechanisms in order to determine the role in cancer predisposition of novel genetic alterations.
Assuntos
Cromossomos Humanos Par 20/genética , Cromossomos Humanos X/genética , Neoplasias Colorretais Hereditárias sem Polipose/genética , Molécula de Adesão da Célula Epitelial/genética , Duplicação Gênica , Perda de Heterozigosidade/genética , Proteína 2 Homóloga a MutS/genética , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , LinhagemRESUMO
The main gene involved in gastric cancer (GC) predisposition is CDH1, the pathogenic variants of which are associated with diffuse-type gastric cancer (DGC) and lobular breast cancer (LBC). CDH1 only explains a fraction (10-50%) of patients suspected of DGC/LBC genetic predisposition. To identify novel susceptibility genes, thus improving the management of families at risk, we performed a multigene panel testing on selected patients. We searched for germline pathogenic variants in 94 cancer-related genes in 96 GC or LBC Italian patients with early-onset and/or family history of GC. We found CDH1 pathogenic variants in 10.4% of patients. In 11.5% of cases, we identified loss-of-function variants in BRCA1, BRCA2, PALB2, and ATM breast/ovarian cancer susceptibility genes, as well as in MSH2, PMS2, BMPR1A, PRF1, and BLM genes. In 78.1% of patients, we did not find any variants with clear-cut clinical significance; however, 37.3% of these cases harbored rare missense variants predicted to be damaging by bioinformatics tools. Multigene panel testing decreased the number of patients that would have otherwise remained genetically unexplained. Besides CDH1, our results demonstrated that GC pathogenic variants are distributed across a number of susceptibility genes and reinforced the emerging link between gastric and breast cancer predisposition.
RESUMO
Cell-free DNA (cfDNA) is acquiring increasingly importance in oncologic clinical practice, mostly due to its role in predicting the onset of therapy resistance by following the mutation status changes of patients. In this field, high-sensitivity methods like next-generation sequencing (NGS) could help to accurately detect somatic mutations at low frequency. Here, we report some advantages and limitations of NGS approaches for cfDNA mutation analyses with the aim of choosing the most suitable in terms of sensitivity, specificity, data output, costs, and time work.
Assuntos
Ácidos Nucleicos Livres/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Animais , Ácidos Nucleicos Livres/sangue , Análise Mutacional de DNA/métodos , Humanos , Neoplasias/sangue , Neoplasias/genética , Hibridização de Ácido Nucleico/métodos , Fluxo de TrabalhoRESUMO
Malignant pleural mesothelioma (MPM) is a progressive malignancy associated to the exposure of asbestos fibers. The most frequently inactivated tumor suppressor gene in MPM is CDKN2A/ARF, encoding for the cell cycle inhibitors p16INK4a and p14ARF, deleted in about 70% of MPM cases. Considering the high frequency of alterations of this gene, we tested in MPM cells the efficacy of palbociclib (PD-0332991), a highly selective inhibitor of cyclin-dependent kinase (CDK) 4/6. The analyses were performed on a panel of MPM cell lines and on two primary culture cells from pleural effusion of patients with MPM. All the MPM cell lines, as well as the primary cultures, were sensitive to palbociclib with a significant blockade in G0/G1 phase of the cell cycle and with the acquisition of a senescent phenotype. Palbociclib reduced the phosphorylation levels of CDK6 and Rb, the expression of myc with a concomitant increased phosphorylation of AKT. Based on these results, we tested the efficacy of the combination of palbociclib with the PI3K inhibitors NVP-BEZ235 or NVP-BYL719. After palbociclib treatment, the sequential association with PI3K inhibitors synergistically hampered cell proliferation and strongly increased the percentage of senescent cells. In addition, AKT activation was repressed while p53 and p21 were up-regulated. Interestingly, two cycles of sequential drug administration produced irreversible growth arrest and senescent phenotype that were maintained even after drug withdrawal. These findings suggest that the sequential association of palbociclib with PI3K inhibitors may represent a valuable therapeutic option for the treatment of MPM.
Assuntos
Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Antineoplásicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Neoplasias Pulmonares/metabolismo , Mesotelioma/metabolismo , Mesotelioma Maligno , Piperazinas/farmacologia , Piridinas/farmacologiaRESUMO
As new genes predisposing to breast (BC) and ovarian cancer (OC) are constantly emerging, the use of panels of genes analyzed by Next-Generation Sequencing (NGS) is increasing in clinical diagnostics. The identification of a large number of new germline mutations allows for deeper knowledge of cancer predisposition, although raising many questions about patient management.BC and OC patients recruited by our counseling service between 2012-2015 were included in this study. DNA was extracted from peripheral blood and a panel of 94 genes involved in hereditary tumors was analyzed by NGS. Patient clinical features of BC and OC and cancer family history were collected and compared to the patient genetic profile.A total of 255 women were analyzed, 57 of whom had a pathogenic mutation in BRCA1/2 genes, and 17 carried pathogenic mutations in other genes, such as PALB2, ATM, BRIP1, RAD51D, MSH6, PPM1D, RECQL4, ERCC3, TSC2, SLX4 and other Fanconi anemia genes.Patients with a pathogenic mutation in genes other than BRCA1 and BRCA2 showed no significant difference from the BRCA1/2-mutated carriers with respect to age at diagnosis and clinical features, suggesting that mutations in other genes could pose a high risk of cancer development.These patients had a much higher percentage of bilateral breast cancer (BBC) and a lower rate of OC than BRCA-mutated patients and patients with no pathogenic mutations: as a consequence, the surveillance protocol should be customized to the patient genetic characteristics.
Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Síndrome Hereditária de Câncer de Mama e Ovário/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Feminino , Genes BRCA1 , Genes BRCA2 , Testes Genéticos , Mutação em Linhagem Germinativa , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Pessoa de Meia-Idade , Mutação , LinhagemRESUMO
Li-Fraumeni syndrome (LFS) is an autosomal dominant disorder occurring at a young age that predisposes individuals to multiple forms of cancer and to a heterogeneous spectrum of malignancies. We describe the clinical history of a patient who had 5 primary malignant cancers and a familiar history consistent with LFS. We analyzed the genomic DNA of the proband and her relatives by next-generation sequencing (NGS) technology using an enrichment protocol for the simultaneous sequencing of 94 genes involved in hereditary cancers. Genetic analysis of the proband revealed a TP53 germline mutation in exon 5 determining a nucleotide alteration at codon 175 (R175H), a hot spot mutation site related to LFS and a reported pathogenic mutation. The proband daughter's and brother's DNA did not carry the TP53 mutation but they had some rare variants in common with the proband, in addition to other variants with a still unclear role. In conclusion, we identified a TP53 mutation in a patient with multiple primary tumors and a family history characterized by a severe susceptibility to cancer. The genetic analysis by targeted NGS led to the identification of the genetic background and to the exclusion of a cancer risk for the family members. Targeted NGS represents an efficient approach for the identification of mutations in families with a heterogeneous phenotype.