Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Biotechnol Adv ; 74: 108381, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38777244

RESUMO

Microalgae are a group of microorganisms, mostly photoautotrophs with high CO2 fixation capacity, that have gained increased attention in the last decades due to their ability to produce a wide range of valuable metabolites, such as carotenoids and polyunsaturated fatty acids, for application in food/feed, pharmaceutical, and cosmeceutical industries. Their increasing relevance has highlighted the importance of identifying and culturing new bioactive-rich microalgae species, as well as of a thorough understanding of the growth conditions to optimize the biomass production and master the biochemical composition according to the desired application. Thus, this review intends to describe the main cell processes behind the production of carotenoids and polyunsaturated fatty acids, in order to understand the possible main triggers responsible for the accumulation of those biocompounds. Their economic value and the biological relevance for human consumption are also summarized. In addition, an extensive review of the impact of culture conditions on microalgae growth performance and their biochemical composition is presented, focusing mainly on the studies involving Pavlovophyceae species. A complementary description of the biochemical composition of these microalgae is also presented, highlighting their potential applications as a promising bioresource of compounds for large-scale production and human and animal consumption.

2.
Food Chem ; 451: 139308, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38688095

RESUMO

This study assessed the chemical profiles and bioactivities of the infusions, decoctions and hydroethanolic extracts of tarragon, basil and French lavender. The extracts were chemically characterised (HPLC-DAD-ESI/MS) and their bioactivities were evaluated in vitro. All extracts revealed antimicrobial, antifungal and antioxidant properties. French lavender extracts showed higher total phenolic content, regardless of the extraction method used, and antioxidant and antitumour capacities, but no anti-inflammatory action. All basil and two of the tarragon extracts revealed anti-inflammatory power. Thus, tarragon, basil and French lavender extracts may be considered for inclusion in foods, as preservatives or functional ingredients. Nonetheless, further studies must be conducted to evaluate the pharmacokinetic parameters of the bioactive compounds.


Assuntos
Antioxidantes , Artemisia , Lavandula , Ocimum basilicum , Extratos Vegetais , Polifenóis , Ocimum basilicum/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação , Polifenóis/química , Polifenóis/farmacologia , Lavandula/química , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Artemisia/química , Humanos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Cromatografia Líquida de Alta Pressão
3.
Microorganisms ; 12(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276190

RESUMO

Throughout history as well as the present, food microorganisms have been proven to play a significant role in human life [...].

4.
Ital J Food Saf ; 12(4): 11559, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38116370

RESUMO

In cheese-making, a starter culture composed of adequately chosen lactic acid bacteria (LAB) may be suitable to ensure the rapid acidification of milk, improve textural and sensory characteristics, and avoid pathogen proliferation. In this work, 232 LAB isolates collected from artisanal goat's raw milk cheeses produced in Portugal were evaluated for their antimicrobial capacity (at 10 and 37°C), as well as their acidifying and proteolytic properties. Among the 232 isolates, at least 98% of those isolated in De Man- Rogosa-Sharpe (MRS) agar presented antagonism against Listeria monocytogenes, Salmonella Typhimurium, or Staphylococcus aureus, whereas less than 28.1% of M17-isolated LAB showed antagonism against these pathogens. M17-isolated LAB displayed better results than MRS ones in terms of acidifying capacity. As for the proteolytic assay, only 2 MRS isolates showed casein hydrolysis capacity. Principal component analyses and molecular characterization of a subset of selected isolates were conducted to identify those with promising capacities and to correlate the identified LAB genera and species with their antimicrobial, acidifying, and/or proteolytic properties. Lactococcus strains were associated with the highest acidifying capacity, whereas Leuconostoc and Lacticaseibacillus strains were more related to antimicrobial capacities. Leuconostoc mesenteroides, Lactococcus lactis, and Lacticaseibacillus paracasei were the predominant organisms found. The results of this work highlight various strains with pathogen inhibition capacity and suitable technological properties to be included in a customized starter culture. In future work, it is necessary to appropriately define the starter culture and implement it in the cheese-making process to evaluate if the in-vitro capacities are observable in a real food system.

5.
Foods ; 12(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37685139

RESUMO

The microbial quality of raw milk artisanal cheeses is not always guaranteed due to the possible presence of pathogens in raw milk that can survive during manufacture and maturation. In this work, an overview of the existing information concerning lactic acid bacteria and plant extracts as antimicrobial agents is provided, as well as thermisation as a strategy to avoid pasteurisation and its negative impact on the sensory characteristics of artisanal cheeses. The mechanisms of antimicrobial action, advantages, limitations and, when applicable, relevant commercial applications are discussed. Plant extracts and lactic acid bacteria appear to be effective approaches to reduce microbial contamination in artisanal raw milk cheeses as a result of their constituents (for example, phenolic compounds in plant extracts), production of antimicrobial substances (such as organic acids and bacteriocins, in the case of lactic acid bacteria), or other mechanisms and their combinations. Thermisation was also confirmed as an effective heat inactivation strategy, causing the impairment of cellular structures and functions. This review also provides insight into the potential constraints of each of the approaches, hence pointing towards the direction of future research.

6.
Foods ; 12(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37509778

RESUMO

This study characterises the effect of a customised starter culture (CSC) and plant extracts (lemon balm, sage, and spearmint) on Staphylococcus aureus (SA) and lactic acid bacteria (LAB) kinetics in goat's raw milk soft cheeses. Raw milk cheeses were produced with and without the CSC and plant extracts, and analysed for pH, SA, and LAB counts throughout ripening. The pH change over maturation was described by an empirical decay function. To assess the effect of each bio-preservative on SA, dynamic Bigelow-type models were adjusted, while their effect on LAB was evaluated by classical Huang models and dynamic Huang-Cardinal models. The models showed that the bio-preservatives decreased the time necessary for a one-log reduction but generally affected the cheese pH drop and SA decay rates (logDref = 0.621-1.190 days; controls: 0.796-0.996 days). Spearmint and sage extracts affected the LAB specific growth rate (0.503 and 1.749 ln CFU/g day-1; corresponding controls: 1.421 and 0.806 ln CFU/g day-1), while lemon balm showed no impact (p > 0.05). The Huang-Cardinal models uncovered different optimum specific growth rates of indigenous LAB (1.560-1.705 ln CFU/g day-1) and LAB of cheeses with CSC (0.979-1.198 ln CFU/g day-1). The models produced validate the potential of the tested bio-preservatives to reduce SA, while identifying the impact of such strategies on the fermentation process.

7.
Int J Mol Sci ; 24(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37511513

RESUMO

Grape stems have emerged as a promising natural ingredient in the cosmetics industry due to their abundance of phenolic compounds, known for their antioxidant and anti-inflammatory properties. These compounds have shown great potential in promoting skin health, fighting signs of aging, and shielding against environmental stressors. With high concentrations of resveratrol, flavonoids, and tannins, grape stems have garnered attention from cosmetic scientists. Research has indicated that phenolic compounds extracted from grape stems possess potent antioxidant abilities, effectively combating free radicals that accelerate aging. Moreover, these compounds have demonstrated the capacity to shield the skin from UV damage, boost collagen production, and enhance skin elasticity. Cosmetic formulations incorporating grape stem extracts have displayed promising results in addressing various skin concerns, including reducing wrinkles, fine lines, and age spots, leading to a more youthful appearance. Additionally, grape stem extracts have exhibited anti-inflammatory properties, soothing irritated skin and diminishing redness. Exploring the potential of grape stem phenolic compounds for cosmetics paves the way for sustainable and natural beauty products. By harnessing the beauty benefits of grape stems, the cosmetics industry can provide effective and eco-friendly solutions for consumers seeking natural alternatives. Ongoing research holds the promise of innovative grape stem-based formulations that could revolutionize the cosmetics market, fully unlocking the potential of these extraordinary botanical treasures.


Assuntos
Cosméticos , Vitis , Antioxidantes/farmacologia , Fenóis/farmacologia , Extratos Vegetais/farmacologia
8.
Crit Rev Food Sci Nutr ; : 1-12, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37403775

RESUMO

Obesity, a highly prevalent condition worldwide that leads to the development of multiple metabolic diseases, has been related to gut microbial dysbiosis. To understand this correlation, in vivo models have been extremely useful. However, its use is limited by associated ethical concerns, high costs, low representativeness, and low reproducibility. Therefore, new and improved in vitro models have been developed in recent years, representing a promising tool in the study of the role of gut microbiota modulation in weight management and metabolic health. This review aims to provide an update on the main findings obtained in vitro regarding gut microbiota modulation with probiotics, and food compounds, and its interaction with the host metabolism, associated with obesity. Available in vitro colon models currently used to study obesity are discussed, including batch and dynamic fermentation systems, and models that allow the study of microbiota-host interactions using cell cultures. In vitro models have demonstrated that homeostatic microbiota may help overcome obesity by producing satiety-related neurotransmitters and metabolites that protect the gut barrier and improve the metabolic activity of adipose tissue. In vitro models may be the key to finding new treatments for obesity-related disorders.

9.
Microorganisms ; 11(5)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37317209

RESUMO

Food is rarely kept in a sterile environment and the composition of microbial associations found in various foodstuffs is widely varied. Microorganisms in food usually originate from the natural microbiota of raw materials and the surrounding environments. Whether a species prevails depends upon its ability to adapt to intrinsic factors associated with foods, such as nutrient content; pH; water activity; oxidation-reduction potential; and antimicrobial properties, with various extrinsic factors playing a role, including temperature, relative humidity, atmosphere, and ambient pressure. Any change to these parameters may cause changes in the present microbial consortia. Therefore, it is important to identify which microbial consortia will thrive in particular foods and conditions. While active, microorganisms undergo many complex mechanisms that affect food quality and safety. Most beneficial food microorganisms belong to lactic acid bacteria and yeasts. Pathogenic and spoilage bacteria are usually Gram-negative, although there are some Gram-positive ones, such as Listeria monocytogenes, Clostridium botulinum, and C. perfringens. Some may merely cause spoilage, while others may be related to foodborne illnesses.

10.
Molecules ; 28(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36903332

RESUMO

Microbial production of hyaluronic acid (HA) is an area of research that has been gaining attention in recent years due to the increasing demand for this biopolymer for several industrial applications. Hyaluronic acid is a linear, non-sulfated glycosaminoglycan that is widely distributed in nature and is mainly composed of repeating units of N-acetylglucosamine and glucuronic acid. It has a wide and unique range of properties such as viscoelasticity, lubrication, and hydration, which makes it an attractive material for several industrial applications such as cosmetics, pharmaceuticals, and medical devices. This review presents and discusses the available fermentation strategies to produce hyaluronic acid.


Assuntos
Acetilglucosamina , Ácido Hialurônico , Fermentação , Fenômenos Químicos , Ácido Glucurônico
11.
Foods ; 12(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36981191

RESUMO

Diffusion methods, including agar disk-diffusion and agar well-diffusion, as well as dilution methods such as broth and agar dilution, are frequently employed to evaluate the antimicrobial capacity of extracts and essential oils (EOs) derived from Origanum L., Syzygium aromaticum, and Citrus L. The results are reported as inhibition diameters (IDs) and minimum inhibitory concentrations (MICs), respectively. In order to investigate potential sources of variability in antimicrobial susceptibility testing results and to assess whether a correlation exists between ID and MIC measurements, meta-analytical regression models were built using in vitro data obtained through a systematic literature search. The pooled ID models revealed varied bacterial susceptibilities to the extracts and in some cases, the plant species and methodology utilised impacted the measurements obtained (p < 0.05). Lemon and orange extracts were found to be most effective against E. coli (24.4 ± 1.21 and 16.5 ± 0.84 mm, respectively), while oregano extracts exhibited the highest level of effectiveness against B. cereus (22.3 ± 1.73 mm). Clove extracts were observed to be most effective against B. cereus and demonstrated the general trend that the well-diffusion method tends to produce higher ID (20.5 ± 1.36 mm) than the disk-diffusion method (16.3 ± 1.40 mm). Although the plant species had an impact on MIC, there is no evidence to suggest that the methodology employed had an effect on MIC (p > 0.05). The ID-MIC model revealed an inverse correlation (R2 = 47.7%) and highlighted the fact that the extract dose highly modulated the relationship (p < 0.0001). The findings of this study encourage the use of extracts and EOs derived from Origanum, Syzygium aromaticum, and Citrus to prevent bacterial growth. Additionally, this study underscores several variables that can impact ID and MIC measurements and expose the correlation between the two types of results.

12.
Foods ; 12(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36900464

RESUMO

Plants are rich in bioactive phytochemicals that often display medicinal properties. These can play an important role in the production of health-promoting food additives and the replacement of artificial ones. In this sense, this study aimed to characterise the polyphenolic profile and bioactive properties of the decoctions, infusions and hydroethanolic extracts of three plants: lemon balm (Melissa officinalis L.), sage (Salvia officinalis L.) and spearmint (Mentha spicata L.). Total phenolic content ranged from 38.79 mg/g extract to 84.51 mg/g extract, depending on the extract. The main phenolic compound detected in all cases was rosmarinic acid. The results highlighted that some of these extracts may have the ability to prevent food spoilage (due to antibacterial and antifungal effects) and promote health benefits (due to anti-inflammatory and antioxidant capacities) while not displaying toxicity against healthy cells. Furthermore, although no anti-inflammatory capacity was observed from sage extracts, these stood out for often displaying the best outcomes in terms of other bioactivities. Overall, the results of our research provide insight into the potential of plant extracts as a source of active phytochemicals and as natural food additives. They also support the current trends in the food industry of replacing synthetic additives and developing foods with added beneficial health effects beyond basic nutrition.

13.
Microorganisms ; 11(2)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36838280

RESUMO

Non-Saccharomyces yeasts represent a very appealing alternative to producing beers with zero or low ethanol content. The current study explores the potential of seven non-Saccharomyces yeasts to produce low-alcohol or non-alcoholic beer, in addition to engineered/selected Saccharomyces yeasts for low-alcohol production. The yeasts were first screened for their sugar consumption and ethanol production profiles, leading to the selection of strains with absent or inefficient maltose consumption and consequently with low-to-null ethanol production. The selected yeasts were then used in larger-scale fermentations for volatile and sensory evaluation. Overall, the yeasts produced beers with ethanol concentrations below 1.2% in which fusel alcohols and esters were also detected, making them eligible to produce low-alcohol beers. Among the lager beers produced in this study, beers produced using Saccharomyces yeast demonstrated a higher acceptance by taster panelists. This study demonstrates the suitability of non-conventional yeasts for producing low-alcohol or non-alcoholic beers and opens perspectives for the development of non-conventional beers.

14.
Molecules ; 28(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36770664

RESUMO

In recent years, there has been an increased motivation to reduce meat consumption globally due to environmental and health concerns, which has driven the development of meat substitutes. Filamentous fungal biomass, commonly known as mycoprotein, is a potential meat substitute since it is nutritious and has filaments to mimic meat fibrils. The current study aimed to investigate the potential use of a cheap substrate derived from the food industry, i.e., residual water in a tempeh factory, for mycoprotein production. The type of residual water, nutrient supplementation, optimum conditions for biomass production, and characteristics of the mycoprotein were determined. The results showed that the residual water from the first boiling with yeast extract addition gave the highest mycoprotein content. The optimum growth condition was a pH of 4.5 and agitation of 125 rpm, and it resulted in 7.76 g/L biomass. The mycoprotein contains 19.44% (w/w) protein with a high crude fiber content of 8.51% (w/w) and a low fat content of 1.56% (w/w). In addition, the amino acid and fatty acid contents are dominated by glutamic acid and polyunsaturated fatty acids, which are associated with an umami taste and are considered healthier foods. The current work reveals that the residual boiling water from the tempeh factory can be used to produce high-quality mycoprotein.


Assuntos
Alimentos de Soja , Fungos/química , Proteínas Fúngicas , Aminoácidos , Carne
15.
Curr Res Food Sci ; 6: 100453, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36815999

RESUMO

Sulfur dioxide (SO2), the main preservative in wine, may affect the sensory properties of the wines, as well as cause allergic reactions and headaches in sensitive people. The aim of this work was to evaluate the replacement of SO2 in Tempranillo wines with Mazuelo grape stem products. Five Tempranillo red wines were elaborated: positive control (60 mg/L SO2); negative control with no preservatives; Mazuelo extract (200 mg/L); Mazuelo extract combined with SO2 (100 mg/L + 20 mg/L); and Mazuelo stem (400 mg/L). The oenological parameters, antioxidant capacity, total phenolic (TP), total flavonoids (TF) and total anthocyanins (TA) contents were determined. Additionally, individual phenols were analyzed by HPLC-DAD-FLD. The spectrophotometric analyses showed that the wines had similar antioxidant capacities and concentrations of TP and TF. However, TA was more affected by the lack of SO2 as anthocyanins presented higher concentrations in positive control samples. The concentrations of individual phenols followed a similar path in all samples. Wines containing sulfites were more similar than the other treatments. However, these similarities were not reflected on the sensory analysis performed, as triangle test did not show differences between the wine with extract addition and the positive control wine. Therefore, Mazuelo stem extract could be a possible strategy for SO2 replacement. Nevertheless, further studies are necessary to confirm the potential of grape stem extracts as wine preservative.

16.
Molecules ; 28(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36677758

RESUMO

The quality standards for the export of chestnuts generate large quantities of rejected fruits, which require novel processing technologies for their safe industrial utilization. This study aimed to investigate the impact of high-pressure processing (HPP) and hydrothermal treatments (HT) on the physicochemical properties of rejected chestnut starch. Chestnuts were treated by HPP at 400, 500, and 600 MPa for 5 min and HT at 50 °C for 45 min. In general, all HPP treatments did not induce starch gelatinization, and their granules preserved the integrity and Maltese-cross. Moreover, starch granules' size and resistant starch content increased with the intensity of pressure. Native and HT chestnut starches were the most susceptible to digestion. HPP treatments did not affect the C-type crystalline pattern of native starch, but the crystalline region was gradually modified to become amorphous. HPP-600 MPa treated starch showed modified pasting properties and exhibited the highest values of peak viscosity. This study demonstrates for the first time that after HPP-600 MPa treatment, a novel chestnut starch gel structure is obtained. Moreover, HPP treatments could increase the slow-digesting starch, which benefits the development of healthier products. HPP can be considered an interesting technology to obtain added-value starch from rejected chestnut fruits.


Assuntos
Amilose , Amido , Amido/química , Amilose/química , Viscosidade , Nozes/química , Amido Resistente/análise
17.
Food Chem ; 405(Pt B): 134958, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36413840

RESUMO

Bee pollen is an imperative product for human use. Seven bee pollens were harvested from Morocco, and their chemical, biological and techno-functional properties were studied. All samples showed acceptable physicochemical and nutritional quality with a mean energy value of 239 kcal/100 g. FTIR spectra confirmed the presence of major constituents like carbohydrates, lipids, proteins and polyphenols. Moreover, pollens exhibited good techno-functional properties, like carbohydrate solubility (34.47-59.27 g/100 g), protein solubility (7.28-23.31 g/100 g), emulsifying stability (16.52-45.38 min), emulsifying activity (9.83-25.05 g/m3) water absorption capacity (1.06-2.19 g/g), oil absorption capacity (1.15-3.50 g/g) and water-oil absorption index (0.62-1.25). Bee pollen extracts revealed potent antioxidant capacity and digestive enzyme inhibitory activity associated with the presence of fifteen phenolic compounds belonging to flavons, flavonols, flavanones, flavan-3-ols, hydroxybenzoic and hydroxycinnamic acids, and stilbenes families. Present data indicate the possible application of bee pollen as a useful nutritional, bioactive and anti-foaming ingredient, replacing synthetic products in food industries.


Assuntos
Ingredientes de Alimentos , Humanos , Abelhas , Animais , Polifenóis , Solubilidade , Antioxidantes , Pólen
18.
Molecules ; 27(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36144513

RESUMO

Bee products are known for their beneficial properties widely used in complementary medicine. This study aims to unveil the physicochemical, nutritional value, and phenolic profile of bee pollen and honey collected from Boulemane-Morocco, and to evaluate their antioxidant and antihyperglycemic activity. The results indicate that Citrus aurantium pollen grains were the majority pollen in both samples. Bee pollen was richer in proteins than honey while the inverse was observed for carbohydrate content. Potassium and calcium were the predominant minerals in the studied samples. Seven similar phenolic compounds were found in honey and bee pollen. Three phenolic compounds were identified only in honey (catechin, caffeic acid, vanillic acid) and six phenolic compounds were identified only in bee pollen (hesperidin, cinnamic acid, apigenin, rutin, chlorogenic acid, kaempferol). Naringin is the predominant phenolic in honey while hesperidin is predominant in bee pollen. The results of bioactivities revealed that bee pollen exhibited stronger antioxidant activity and effective α-amylase and α-glycosidase inhibitory action. These bee products show interesting nutritional and bioactive capabilities due to their chemical constituents. These features may allow these bee products to be used in food formulation, as functional and bioactive ingredients, as well as the potential for the nutraceutical sector.


Assuntos
Catequina , Hesperidina , Mel , Animais , Antioxidantes/química , Apigenina/análise , Abelhas , Cálcio/análise , Catequina/análise , Ácido Clorogênico/análise , Glicosídeo Hidrolases/análise , Hesperidina/análise , Mel/análise , Hipoglicemiantes/análise , Quempferóis/análise , Minerais/análise , Marrocos , Fenóis/química , Pólen/química , Potássio/análise , Rutina/análise , Rutina/farmacologia , Ácido Vanílico , alfa-Amilases
19.
Molecules ; 27(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35566315

RESUMO

Green extraction techniques (GreETs) emerged in the last decade as greener and sustainable alternatives to classical sample preparation procedures aiming to improve the selectivity and sensitivity of analytical methods, simultaneously reducing the deleterious side effects of classical extraction techniques (CETs) for both the operator and the environment. The implementation of improved processes that overcome the main constraints of classical methods in terms of efficiency and ability to minimize or eliminate the use and generation of harmful substances will promote more efficient use of energy and resources in close association with the principles supporting the concept of green chemistry. The current review aims to update the state of the art of some cutting-edge GreETs developed and implemented in recent years focusing on the improvement of the main analytical features, practical aspects, and relevant applications in the biological, food, and environmental fields. Approaches to improve and accelerate the extraction efficiency and to lower solvent consumption, including sorbent-based techniques, such as solid-phase microextraction (SPME) and fabric-phase sorbent extraction (FPSE), and solvent-based techniques (µQuEChERS; micro quick, easy, cheap, effective, rugged, and safe), ultrasound-assisted extraction (UAE), and microwave-assisted extraction (MAE), in addition to supercritical fluid extraction (SFE) and pressurized solvent extraction (PSE), are highlighted.


Assuntos
Cromatografia com Fluido Supercrítico , Microextração em Fase Sólida , Alimentos , Solventes , Manejo de Espécimes
20.
Molecules ; 27(8)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35458671

RESUMO

Aloe vera has been medicinally used for centuries. Its bioactive compounds have been shown to be very effective in the treatment of numerous diseases. In this work, a novel functional beverage was developed and characterized to combine the health benefits of probiotic bacteria with the Aloe vera plant itself. Two Aloe vera juices were obtained by fermentation either by a novel isolated Enterococcus faecium or a commercial Lactococcus lactis. The extraction of Aloe vera biocompounds for further fermentation was optimized. Extraction with water plus cellulase enhanced the carbohydrates and phenolic compounds in the obtained extracts. The biotransformation of the bioactive compounds from the extracts during fermentation was assessed. Both probiotic bacteria were able to grow on the Aloe vera extract. Lactic acid and short-chain fatty acids (SCFA) together with fourteen individual phenolic compounds were quantified in the produced Aloe vera juice, mainly epicatechin, aloin, ellagic acid, and hesperidin. The amount of total phenolic compounds was maintained through fermentation. The antioxidant activity was significantly increased in the produced juice by the ABTS method. The novel produced Aloe vera juice showed great potential as a functional beverage containing probiotics, prebiotics, SCFA, and phenolic compounds in its final composition.


Assuntos
Aloe , Enterococcus faecium , Probióticos , Aloe/metabolismo , Bebidas , Enterococcus faecium/metabolismo , Ácidos Graxos Voláteis/metabolismo , Fermentação , Lactobacillus , Fenóis/metabolismo , Extratos Vegetais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA