Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Enzyme Inhib Med Chem ; 39(1): 2313055, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38416868

RESUMO

Toll-like receptor (TLR) innate immunity signalling protects against pathogens, but excessive or prolonged signalling contributes to a range of inflammatory conditions. Structural information on the TLR cytoplasmic TIR (Toll/interleukin-1 receptor) domains and the downstream adaptor proteins can help us develop inhibitors targeting this pathway. The small molecule o-vanillin has previously been reported as an inhibitor of TLR2 signalling. To study its mechanism of action, we tested its binding to the TIR domain of the TLR adaptor MAL/TIRAP (MALTIR). We show that o-vanillin binds to MALTIR and inhibits its higher-order assembly in vitro. Using NMR approaches, we show that o-vanillin forms a covalent bond with lysine 210 of MAL. We confirm in mouse and human cells that o-vanillin inhibits TLR2 but not TLR4 signalling, independently of MAL, suggesting it may covalently modify TLR2 signalling complexes directly. Reactive aldehyde-containing small molecules such as o-vanillin may target multiple proteins in the cell.


Assuntos
Benzaldeídos , Lisina , Receptor 2 Toll-Like , Humanos , Animais , Camundongos , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Receptores Toll-Like/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Interleucina-1/metabolismo
2.
Eur J Immunol ; 54(5): e2350515, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38361219

RESUMO

Caspase-1 location in cells has been studied with fluorochrome-labeled inhibitors of caspase-1 (FLICA reagents). We report that FLICA reagents have limited cell-membrane permeability. This impacts experimental design as cells with intact membranes, including caspase-1 knockout cells, are not appropriate controls for cells with inflammasome-induced gasdermin D membrane pores.


Assuntos
Caspase 1 , Inibidores de Caspase , Permeabilidade da Membrana Celular , Corantes Fluorescentes , Inflamassomos , Macrófagos , Caspase 1/metabolismo , Animais , Macrófagos/imunologia , Macrófagos/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Camundongos , Inflamassomos/metabolismo , Inibidores de Caspase/farmacologia , Camundongos Knockout , Proteínas de Ligação a Fosfato/metabolismo , Humanos
3.
J Virol ; 97(11): e0125123, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37850747

RESUMO

IMPORTANCE: Dengue virus, an arbovirus, causes an estimated 100 million symptomatic infections annually and is an increasing threat as the mosquito range expands with climate change. Dengue epidemics are a substantial strain on local economies and health infrastructure, and an understanding of what drives severe disease may enable treatments to help reduce hospitalizations. Factors exacerbating dengue disease are debated, but gut-related symptoms are much more frequent in severe than mild cases. Using mouse models of dengue infection, we have shown that inflammation and damage are earlier and more severe in the gut than in other tissues. Additionally, we observed impairment of the gut mucus layer and propose that breakdown of the barrier function exacerbates inflammation and promotes severe dengue disease. This idea is supported by recent data from human patients showing elevated bacteria-derived molecules in dengue patient serum. Therapies aiming to maintain gut integrity may help to abrogate severe dengue disease.


Assuntos
Vírus da Dengue , Dengue Grave , Animais , Humanos , Camundongos , Culicidae , Vírus da Dengue/fisiologia , Inflamação/virologia , Dengue Grave/patologia , Cinética
4.
Nat Commun ; 12(1): 2578, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972532

RESUMO

MyD88 and MAL are Toll-like receptor (TLR) adaptors that signal to induce pro-inflammatory cytokine production. We previously observed that the TIR domain of MAL (MALTIR) forms filaments in vitro and induces formation of crystalline higher-order assemblies of the MyD88 TIR domain (MyD88TIR). These crystals are too small for conventional X-ray crystallography, but are ideally suited to structure determination by microcrystal electron diffraction (MicroED) and serial femtosecond crystallography (SFX). Here, we present MicroED and SFX structures of the MyD88TIR assembly, which reveal a two-stranded higher-order assembly arrangement of TIR domains analogous to that seen previously for MALTIR. We demonstrate via mutagenesis that the MyD88TIR assembly interfaces are critical for TLR4 signaling in vivo, and we show that MAL promotes unidirectional assembly of MyD88TIR. Collectively, our studies provide structural and mechanistic insight into TLR signal transduction and allow a direct comparison of the MicroED and SFX techniques.


Assuntos
Cristalografia/métodos , Glicoproteínas de Membrana/química , Fator 88 de Diferenciação Mieloide/química , Receptores de Interleucina-1/química , Receptor 4 Toll-Like/química , Dimerização , Células HEK293 , Humanos , Glicoproteínas de Membrana/genética , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação , Fator 88 de Diferenciação Mieloide/genética , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios Proteicos , Receptores de Interleucina-1/genética , Proteínas Recombinantes , Transdução de Sinais/genética , Receptor 4 Toll-Like/genética
5.
EMBO J ; 39(17): e106202, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32869315

RESUMO

Shigella, a major cause of bacterial dysentery, knows when it is not wanted. To generate and maintain its niche within host cells, this unwelcome guest injects several dozen virulence factors via a type 3 secretion system (T3SS). In this issue, Ashida et al (2020) have elucidated the role of two such factors from Shigella flexneri-OspC1 and OspD3-that together counteract apoptotic and necroptotic death pathways in colonised epithelial cells. As a result, Shigella can replicate to high levels within the colonic epithelium, leading to the substantial epithelial damage in shigellosis and efficient bacterial release for faecal transmission.


Assuntos
Disenteria Bacilar , Shigella , Caspase 8 , Morte Celular , Células Epiteliais , Humanos , Shigella/genética , Shigella flexneri/genética
6.
EMBO Rep ; 20(9): e48891, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31379068

RESUMO

The non-canonical inflammasome mediates pyroptotic cell death in response to bacterial lipopolysaccharide (LPS) found in the cytosol. Understanding the mechanism and regulation of this system is of great interest, given its central role in mouse models of bacterial septic shock. In this issue of EMBO Reports, Benaoudia and colleagues sought to discover extra players in the human non-canonical inflammasome using a CRISPR library screen; the only strongly positive hit apart from the known components caspase-4 and gasdermin D was interferon regulatory factor-2 (IRF2) [1 ]. IRF2 was found to be a transcriptional activator of caspase-4, and in its absence, induction of IRF1 could substitute to maintain caspase-4 expression.


Assuntos
Inflamassomos , Lipopolissacarídeos , Animais , Humanos , Fator Regulador 1 de Interferon , Fator Regulador 2 de Interferon , Camundongos
7.
Immunol Cell Biol ; 97(1): 17-28, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30052286

RESUMO

Inflammasomes are protein complexes activated by infection and cellular stress that promote caspase-1 activation and subsequent inflammatory cytokine processing and cell death. It has been anticipated that inflammasome activity contributes to autoimmunity. However, we previously showed that macrophages from autoimmune New Zealand Black (NZB) mice lack NLRP3 inflammasome function, and their absent in melanoma 2 (AIM2) inflammasome responses are compromised by high expression of the AIM2 antagonist protein p202. Here we found that the point mutation leading to lack of NLRP3 expression occurred early in the NZB strain establishment, as it is shared with the related obese strain New Zealand Obese, but not with the unrelated New Zealand White (NZW) strain. The first cross progeny of NZB and NZW mice develop more severe lupus nephritis than the NZB strain. We have compared AIM2 and NLRP3 inflammasome function in macrophages from NZB, NZW, and NZB/W F1 mice. The NZW parental strain showed strong inflammasome function, whereas the NZB/W F1 have haploinsufficient expression of NLRP3 and show reduced NLRP3 and AIM2 inflammasome responses, particularly at low stimulus strength. It remains to be established whether the low inflammasome function could contribute to loss of tolerance and the onset of autoimmunity in NZB and NZB/W F1. However, with amplifying inflammatory stimuli through the course of disease, the NLRP3 response in the NZB/W F1 may be sufficient to contribute to kidney damage at later stages of disease.


Assuntos
Autoimunidade , Proteínas de Ligação a DNA/deficiência , Inflamassomos , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , Animais , Autoimunidade/genética , Proteínas de Ligação a DNA/imunologia , Feminino , Inflamassomos/genética , Nefrite Lúpica/genética , Nefrite Lúpica/imunologia , Nefrite Lúpica/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos NZB , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Mutação Puntual
8.
Curr Protoc Immunol ; 114: 14.40.1-14.40.29, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27479658

RESUMO

Inflammasomes are large protein complexes formed in response to cellular stresses that are platforms for recruitment and activation of caspase 1. Central to most inflammasome functions is the adapter molecule ASC (apoptosis-associated speck-like protein containing a caspase-recruitment domain) that links the inflammasome initiator protein to the recruited caspases. ASC is normally diffuse within the cell but within minutes of inflammasome activation relocates to a dense speck in the cytosol. The dramatic redistribution of ASC can be monitored by flow cytometry using parameters of fluorescence peak height and width when immunostained or tagged with a fluorescent protein. This can be used to define cells with active inflammasomes within populations of primary macrophages and monocytes, allowing quantification of responses and flow-sorting of responding cells. Protein structural requirements for ASC speck formation and recruitment of caspases to ASC specks can be assessed by expressing components in HEK293 cells. This provides rapid quantification of responding cell number and correlation with the expression level of inflammasome components within single cells. © 2016 by John Wiley & Sons, Inc.


Assuntos
Separação Celular/métodos , Citometria de Fluxo/métodos , Inflamassomos/metabolismo , Macrófagos/imunologia , Monócitos/imunologia , Animais , Apoptose , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Caspase 1/metabolismo , Células HEK293 , Humanos , Análise de Célula Única
9.
Immunol Cell Biol ; 94(5): 520-4, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26833024

RESUMO

Inflammasomes are molecular complexes activated by infection and cellular stress, leading to caspase-1 activation and subsequent interleukin-1ß (IL-1ß) processing and cell death. The autoimmune NZB mouse strain does not express NLRP3, a key inflammasome initiator mediating responses to a wide variety of stimuli including endogenous danger signals, environmental irritants and a range of bacterial, fungal and viral pathogens. We have previously identified an intronic point mutation in the Nlrp3 gene from NZB mice that generates a splice acceptor site. This leads to inclusion of a pseudoexon that introduces an early termination codon and is proposed to be the cause of NLRP3 inflammasome deficiency in NZB cells. Here we have used exon skipping antisense oligonucleotides (AONs) to prevent aberrant splicing of Nlrp3 in NZB macrophages, and this restored both NLRP3 protein expression and NLRP3 inflammasome activity. Thus, the single point mutation leading to aberrant splicing is the sole cause of NLRP3 inflammasome deficiency in NZB macrophages. The NZB mouse provides a model for addressing a splicing defect in macrophages and could be used to further investigate AON design and delivery of AONs to macrophages in vivo.


Assuntos
Autoimunidade/efeitos dos fármacos , Éxons/genética , Inflamassomos/metabolismo , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , Oligonucleotídeos Antissenso/farmacologia , Processamento Alternativo/genética , Animais , Sequência de Bases , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NZB , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
10.
J Immunol ; 195(3): 1233-41, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26116505

RESUMO

Inflammasomes are protein complexes that promote caspase activation, resulting in processing of IL-1ß and cell death, in response to infection and cellular stresses. Inflammasomes have been anticipated to contribute to autoimmunity. The New Zealand Black (NZB) mouse develops anti-erythrocyte Abs and is a model of autoimmune hemolytic anemia. These mice also develop anti-nuclear Abs typical of lupus. In this article, we show that NZB macrophages have deficient inflammasome responses to a DNA virus and fungal infection. Absent in melanoma 2 (AIM2) inflammasome responses are compromised in NZB by high expression of the AIM 2 antagonist protein p202, and consequently NZB cells had low IL-1ß output in response to both transfected DNA and mouse CMV infection. Surprisingly, we also found that a second inflammasome system, mediated by the NLR family, pyrin domain containing 3 (NLRP3) initiating protein, was completely lacking in NZB cells. This was due to a point mutation in an intron of the Nlrp3 gene in NZB mice, which generates a novel splice acceptor site. This leads to incorporation of a pseudoexon with a premature stop codon. The lack of full-length NLRP3 protein results in NZB being effectively null for Nlrp3, with no production of bioactive IL-1ß in response to NLRP3 stimuli, including infection with Candida albicans. Thus, this autoimmune strain harbors two inflammasome deficiencies, mediated through quite distinct mechanisms. We hypothesize that the inflammasome deficiencies in NZB alter the interaction of the host with both microflora and pathogens, promoting prolonged production of cytokines that contribute to development of autoantibodies.


Assuntos
Anemia Hemolítica Autoimune/genética , Proteínas de Transporte/genética , Proteínas de Ligação a DNA/genética , Inflamassomos/genética , Macrófagos/imunologia , Anemia Hemolítica Autoimune/imunologia , Animais , Anticorpos Antinucleares/imunologia , Autoimunidade/genética , Autoimunidade/imunologia , Candida albicans/imunologia , Candidíase/imunologia , Candidíase/microbiologia , Proteínas de Transporte/imunologia , Caspase 1/genética , Citomegalovirus/imunologia , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/imunologia , Inflamassomos/imunologia , Interleucina-1beta/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Camundongos , Camundongos Endogâmicos NZB , Proteína 3 que Contém Domínio de Pirina da Família NLR , Transdução de Sinais/genética , Transdução de Sinais/imunologia
11.
J Immunol ; 194(1): 455-62, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25404358

RESUMO

Inflammasomes are large protein complexes induced by a wide range of microbial, stress, and environmental stimuli that function to induce cell death and inflammatory cytokine processing. Formation of an inflammasome involves dramatic relocalization of the inflammasome adapter protein apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) into a single speck. We have developed a flow cytometric assay for inflammasome formation, time of flight inflammasome evaluation, which detects the change in ASC distribution within the cell. The transit of ASC into the speck is detected by a decreased width or increased height of the pulse of emitted fluorescence. This assay can be used to quantify native inflammasome formation in subsets of mixed cell populations ex vivo. It can also provide a rapid and sensitive technique for investigating molecular interactions in inflammasome formation, by comparison of wild-type and mutant proteins in inflammasome reconstitution experiments.


Assuntos
Proteínas Reguladoras de Apoptose/imunologia , Citometria de Fluxo/métodos , Inflamassomos/imunologia , Animais , Apoptose/imunologia , Proteínas Reguladoras de Apoptose/genética , Células da Medula Óssea/imunologia , Proteínas Adaptadoras de Sinalização CARD/imunologia , Caspase 1/genética , Linhagem Celular , Células HEK293 , Humanos , Inflamassomos/análise , Mediadores da Inflamação/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Knockout
12.
Cell Rep ; 4(2): 327-39, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23850291

RESUMO

Mouse p202 containing two hemopoietic expression, interferon inducibility, nuclear localization (HIN) domains antagonizes AIM2 inflammasome signaling and potentially modifies lupus susceptibility. We found that only HIN1 of p202 binds double-stranded DNA (dsDNA), while HIN2 forms a homotetramer. Crystal structures of HIN1 revealed that dsDNA is bound on face opposite the site used in AIM2 and IFI16. The structure of HIN2 revealed a dimer of dimers, the face analogous to the HIN1 dsDNA binding site being a dimerization interface. Electron microscopy imaging showed that HIN1 is flexibly linked to HIN2 in p202, and tetramerization provided enhanced avidity for dsDNA. Surprisingly, HIN2 of p202 interacts with the AIM HIN domain. We propose that this results in a spatial separation of the AIM2 pyrin domains, and indeed p202 prevented the dsDNA-dependent clustering of apoptosis-associated speck-like protein containing caspase recruitment domain (ASC) and AIM2 inflammasome activation. We hypothesize that while p202 was evolutionarily selected to limit AIM2-mediated inflammation in some mouse strains, the same mechanism contributes to increased interferon production and lupus susceptibility.


Assuntos
Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Ligação a DNA , Ativação Enzimática , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/genética , Estrutura Terciária de Proteína , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA