Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Food Res Int ; 188: 114393, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823852

RESUMO

After successfully addressing to mitigate bitterness of naringin through construction Pickering emulsion using pea protein (PP) and naringin (NG) in our previous study, we now probed thermal stability, antioxidant efficacy, and bioavailability. FTIR analysis and UV-vis spectroscopy indicated predominant interactions between PP and NG were hydrogen and hydrophobic bonds. TGA and DSC analyses demonstrated that PP-NG complexes exhibited superior heat-resistance compared to pure PP and NG. Thermal stability assessments indicated a significant retention of NG in the PP-NG Pickering emulsion than the control NG across varied temperatures (4 °C, 25 °C, 37 °C, and 65 °C). Moreover, the antioxidant activity of PP-NG emulsion was dependent on the concentration of NG, as evidenced by DPPH and ABTS free radicals scavenging abilities, ferric reducing power, and lipid peroxidation resistance. Additionally, PP-NG Pickering emulsion exhibited substantially high bioavailability (92.01 ± 3.91%). These results suggest a promising avenue for the application of NG with improved characteristics.


Assuntos
Antioxidantes , Disponibilidade Biológica , Emulsões , Flavanonas , Proteínas de Ervilha , Flavanonas/química , Antioxidantes/química , Proteínas de Ervilha/química , Temperatura Alta , Espectroscopia de Infravermelho com Transformada de Fourier , Peroxidação de Lipídeos/efeitos dos fármacos , Pisum sativum/química
2.
Eur J Med Chem ; 268: 116233, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38408390

RESUMO

Antibody-drug conjugates (ADCs) have arisen as a promising class of biotherapeutics for targeted cancer treatment, combining the specificity of monoclonal antibodies with the cytotoxicity of small-molecule drugs. The choice of an appropriate payload is crucial for the success development of ADCs, as it determines the therapeutic efficacy and safety profile. This review focuses on payloads derived from natural products, including cytotoxic agents, DNA-damaging agents, and immunomodulators. These offer several advantages such as diverse chemical structures, unique mechanism of actions, and potential for improved therapeutic index. Challenges and opportunities associated with their development were highlighted. This review underscores the significance of natural product payloads in the elaboration of ADCs, which serves as a valuable resource for researchers involved in developing and optimizing next-generation ADCs for cancer treatment.


Assuntos
Antineoplásicos , Produtos Biológicos , Imunoconjugados , Neoplasias , Humanos , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Imunoconjugados/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Produtos Biológicos/química , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/química , Citotoxinas/uso terapêutico , Neoplasias/tratamento farmacológico
3.
Food Funct ; 14(7): 3230-3241, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36938848

RESUMO

An unacceptable bitter taste limits the application of luteolin in healthier food systems. In this study, a bitterness-masking assessment was performed on whey protein isolate-coated liposomes loaded with luteolin (WPI-coated liposomes) using an electronic tongue and human sensory test. The physical properties of the WPI-coated colloidal nanocarrier were characterized by zeta potential, average diameter, distribution, and morphology analyses. The results indicated that WPI-coated nanocarrier systems exhibited a uniformly dispersed distribution and spherical morphology. After the comparison of the bitterness value, the bitterness-reducing effect of 5% WPI-coated liposomes was the most significant and reduced the bitterness of luteolin by 75%. Raman spectroscopy and X-ray diffraction analysis demonstrated that the decoration of WPI on the liposomes reduced the free motion of lipid molecules. This promoted the ordering at the polar headgroup area and hydrophobic core of the lipid bilayer, which explained why luteolin-loaded liposomes (uncoated liposomes) and WPI-coated liposomes could reduce the bitterness of luteolin from the perspective of bitter molecular groups. Combined with the Raman spectral data, the bilayer rigidity of 5% WPI-coated liposomes was positively responsive to the stabilization of uncoated liposomes against storage and resistance ability against surfactants. It was proven that the emergence of the surface modification of the WPI coating enhanced the stability of uncoated liposomes. These results may contribute to the use of WPI-coated liposomes as prospective candidates for effective delivery of the bioactive bitter substance in nutraceuticals and functional foods.


Assuntos
Lipossomos , Paladar , Humanos , Proteínas do Soro do Leite/química , Luteolina , Interações Hidrofóbicas e Hidrofílicas
4.
Food Chem ; 409: 135270, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-36580701

RESUMO

Nanoliposome is an effective delivery system for polyphenols, whereas it always suffers from low electrostatic stability and oxidation of lipid membranes. Here, different charged anionic polysaccharides including carrageenan (-62.67 ± 1.85 mV), trehalose (-20.73 ± 1.42 mV), and pectin (-4.47 ± 0.38 mV) were used as coating material to improve the stability of nanoliposomes. Results showed that carrageenan coating greatly inhibited aggregation and fusion of nanoliposome. The coating of the higher charged polysaccharides produced the more hydrogen bonds and made the inner chains of lipid molecules more compact, thus improving the rigidity of the membrane and thermal stability. In addition, the polysaccharide coating effectively reduced the lateral diffusion within the membrane and the propagation rate of oxidation reaction. The aim of this study is to investigate the effect of anionic polysaccharides with different charges on coated nanoliposomes, provide reference for the delivery of quercetin.


Assuntos
Polissacarídeos , Quercetina , Carragenina/química , Polissacarídeos/química , Pectinas/química , Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA