Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Am J Physiol Cell Physiol ; 319(5): C858-C876, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32783659

RESUMO

Human skeletal muscle is a heterogeneous tissue composed of multiple fiber types that express unique contractile and metabolic properties. While analysis of mixed fiber samples predominates and holds value, increasing attention has been directed toward studying proteins segregated by fiber type, a methodological distinction termed "fiber type-specific." Fiber type-specific protein studies have the advantage of uncovering key molecular effects that are often missed in mixed fiber homogenate studies but also require greater time and resource-intensive methods, particularly when applied to human muscle. This review summarizes and compares current methods used for fiber type-specific protein analysis, highlighting their advantages and disadvantages for human muscle studies, in addition to recent advances in these techniques. These methods can be grouped into three categories based on the initial processing of the tissue: 1) muscle-specific fiber homogenates, 2) cross sections of fiber bundles, and 3) isolated single fibers, with various subtechniques for performing fiber type identification and protein quantification. The relative implementation for each unique methodological approach is analyzed from 83 fiber type-specific studies of proteins in live human muscle found in the literature to date. These studies have investigated several proteins involved in a wide range of cellular functions that are important to muscle tissue. The second half of this review summarizes key findings from this ensemble of fiber type-specific human protein studies. We highlight examples of where this analytical approach has helped to improve understanding of important physiological topics such as insulin sensitivity, muscle hypertrophy, muscle fatigue, and adaptation to different exercise programs.


Assuntos
Hipertrofia/fisiopatologia , Fadiga Muscular/fisiologia , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Lenta/fisiologia , Proteínas Musculares/genética , Doenças Musculares/fisiopatologia , Misturas Complexas/química , Exercício Físico/fisiologia , Expressão Gênica , Humanos , Hipertrofia/genética , Hipertrofia/metabolismo , Resistência à Insulina/fisiologia , Microtomia/métodos , Proteínas Musculares/classificação , Proteínas Musculares/metabolismo , Doenças Musculares/genética , Doenças Musculares/metabolismo , Especificidade de Órgãos , Resistência Física/fisiologia
3.
J Appl Physiol (1985) ; 128(2): 350-361, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31895596

RESUMO

Women and men present different metabolic responses to exercise, yet whether this phenomenon results from differences in fiber type (FT) composition or other sex-specific factors remains unclear. Therefore, our aim was to examine the effects of sex and FT independently on AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC), Tre-2/BUB2/CDC1 domain family (TBC1D)1, and TBC1D4 in response to acute exercise. Segregated pools of myosin heavy chain (MHC) I and MHC IIa fibers were prepared from vastus lateralis biopsies of young trained men and women at rest and during recovery (0 min, 45 min, 90 min, or 180 min) from high-intensity interval exercise (6 × 1.5 min at 95% maximum oxygen uptake). In resting MHC I vs. IIa fibers, AMPKα2, AMPKγ3, and TBC1D1 were higher and TBC1D4 expression was lower in both sexes, along with higher phospho (p)-TBC1D1Ser660 and lower p-TBC1D4Thr642. Women expressed higher ACC than men in MHC IIa fibers and higher AMPKß1, AMPKß2, TBC1D1, and TBC1D4 in both FTs. Immediately after exercise, p-AMPKαThr172 increased only in MHC IIa fibers, whereas p-ACCSer221 increased in both FTs, with no change in p-TBC1D1Ser660 or p-TBC1D4Thr642. During recovery, delayed responses were observed for p-AMPKαThr172 in MHC I (45 min), p-TBC1D4Thr642 in both FTs (45 min), and p-TBC1D1Ser660 (180 min). FT-specific phosphorylation responses to exercise were similar between men and women. Data indicate that sex and FT independently influence expression of AMPK and its substrates. Thus failing to account for sex or FT may reduce accuracy and precision of metabolic protein measurements and conceal key findings.NEW & NOTEWORTHY This investigation is the first to compare muscle fiber type (FT)-specific analysis of proteins between the sexes, providing comprehensive data on AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC), Tre-2/BUB2/CDC1 domain family (TBC1D)1, and TBC1D4 before and in the hours following high-intensity interval exercise (HIIT). Expression and phosphorylation of specific AMPK isoforms, ACC, TBC1D1, and TBC1D4 were shown to be FT dependent, sex dependent, or both, and TBC1D1 showed an unexpected delay in FT-dependent phosphorylation in the time period following HIIT.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Treinamento Intervalado de Alta Intensidade , Fatores Sexuais , Miosinas Cardíacas/metabolismo , Feminino , Humanos , Masculino , Músculo Esquelético/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Consumo de Oxigênio , Fosforilação
4.
Sci Signal ; 12(562)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30600259

RESUMO

Atypical protein kinase C (aPKC) isozymes are unique in the PKC superfamily in that they are not regulated by the lipid second messenger diacylglycerol, which has led to speculation about whether a different second messenger acutely controls their function. Here, using a genetically encoded reporter that we designed, aPKC-specific C kinase activity reporter (aCKAR), we found that the lipid mediator sphingosine 1-phosphate (S1P) promoted the cellular activity of aPKC. Intracellular S1P directly bound to the purified kinase domain of aPKC and relieved autoinhibitory constraints, thereby activating the kinase. In silico studies identified potential binding sites on the kinase domain, one of which was validated biochemically. In HeLa cells, S1P-dependent activation of aPKC suppressed apoptosis. Together, our findings identify a previously undescribed molecular mechanism of aPKC regulation, a molecular target for S1P in cell survival regulation, and a tool to further explore the biochemical and biological functions of aPKC.


Assuntos
Proteínas Luminescentes/metabolismo , Lisofosfolipídeos/metabolismo , Proteína Quinase C/metabolismo , Transdução de Sinais , Esfingosina/análogos & derivados , Animais , Apoptose , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Ativação Enzimática , Células HeLa , Células Hep G2 , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Proteínas Luminescentes/genética , Células MCF-7 , Microscopia de Fluorescência , Simulação de Acoplamento Molecular , Ligação Proteica , Proteína Quinase C/genética , Esfingosina/metabolismo
5.
Eur J Appl Physiol ; 118(10): 2097-2110, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30006671

RESUMO

INTRODUCTION: Physical health and function depend upon both genetic inheritance and environmental factors (e.g., exercise training). PURPOSE: To enhance the understanding of heritability/adaptability, we explored the skeletal muscle health and physiological performance of monozygotic (MZ) twins with > 30 years of chronic endurance training vs. no specific/consistent exercise. METHODS: One pair of male MZ twins (age = 52 years; Trained Twin, TT; Untrained Twin, UT) underwent analyses of: (1) anthropometric characteristics and blood profiles, (2) markers of cardiovascular and pulmonary health, and (3) skeletal muscle size, strength, and power and molecular markers of muscle health. RESULTS: This case study represents the most comprehensive physiological comparison of MZ twins with this length and magnitude of differing exercise history. TT exhibited: (1) lower body mass, body fat%, resting heart rate, blood pressure, cholesterol, triglycerides, and plasma glucose, (2) greater relative cycling power, anaerobic endurance, and aerobic capacity (VO2max), but lower muscle size/strength and poorer muscle quality, (3) more MHC I (slow-twitch) and fewer MHC IIa (fast-twitch) fibers, (4) greater AMPK protein expression, and (5) greater PAX7, IGF1Ec, IGF1Ea, and FN14 mRNA expression than UT. CONCLUSIONS: Several measured differences are the largest reported between MZ twins (TT expressed 55% more MHC I fibers, 12.4 ml/kg/min greater VO2max, and 8.6% lower body fat% vs. UT). These data collectively (a) support utilizing chronic endurance training to improve body composition and cardiovascular health and (b) suggest the cardiovascular and skeletal muscle systems exhibit greater plasticity than previously thought, further highlighting the importance of studying MZ twins with large (long-term) differences in exposomes.


Assuntos
Exercício Físico/fisiologia , Músculo Esquelético/fisiologia , Gêmeos Monozigóticos/genética , Proteínas Quinases Ativadas por AMP/genética , Adaptação Fisiológica/genética , Adaptação Fisiológica/fisiologia , Glicemia/genética , Pressão Sanguínea/genética , Pressão Sanguínea/fisiologia , Colesterol/sangue , Colesterol/genética , Hábitos , Frequência Cardíaca/genética , Frequência Cardíaca/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Triglicerídeos/sangue , Triglicerídeos/genética
6.
J Appl Physiol (1985) ; 124(4): 840-849, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29357518

RESUMO

Human skeletal muscle is a heterogeneous mixture of multiple fiber types (FT). Unfortunately, present methods for FT-specific study are constrained by limits of protein detection in single-fiber samples. These limitations beget compensatory resource-intensive procedures, ultimately dissuading investigators from pursuing FT-specific research. Additionally, previous studies neglected hybrid FT, confining their analyses to only pure FT. Here we present novel methods of protein detection across a wider spectrum of human skeletal muscle FT using fully automated capillary nanoimmunoassay (CNIA) technology. CNIA allowed a ~20-fold-lower limit of 5'-AMP-activated protein kinase (AMPK) detection compared with Western blotting. We then performed FT-specific assessment of AMPK expression as a proof of concept. Individual human muscle fibers were mechanically isolated, dissolved, and myosin heavy chain (MHC) fiber typed via SDS-PAGE. Single-fiber samples were combined in pairs and grouped into MHC I, MHC I/IIa, MHC IIa, and MHC IIa/IIx for expression analysis of AMPK isoforms α1, α2, ß1, ß2, γ2, and γ3 with a tubulin loading control. Significant FT-specific differences were found for α2 (1.7-fold higher in MHC IIa and MHC IIa/IIx vs. others), γ2 (2.5-fold higher in MHC IIa vs. others), and γ3 (2-fold higher in MHC IIa and 4-fold higher in MHC IIa/IIx vs. others). Development of a protocol that combines the efficient and sensitive CNIA technology with comprehensive SDS-PAGE fiber typing marks an important advancement in FT-specific research because it allows more precise study of the molecular mechanisms governing metabolism, adaptation, and regulation in human muscle. NEW & NOTEWORTHY We demonstrate the viability of applying capillary nanoimmunoassay technology to the study of fiber type-specific protein analysis in human muscle fibers. This novel technique enables a ~20-fold-lower limit of protein detection compared with traditional Western blotting methods. Combined with SDS-PAGE methods of fiber typing, we apply this technique to compare 5'-AMP-activated protein kinase isoform expression in myosin heavy chain (MHC) I, MHC I/IIa, MHC IIa, and MHC IIa/IIx fiber types.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Isoformas de Proteínas/metabolismo , Adulto , Feminino , Humanos , Imunoensaio/métodos , Cadeias Pesadas de Miosina/metabolismo , Tubulina (Proteína)/metabolismo
7.
J Biol Chem ; 291(26): 13809-22, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27143478

RESUMO

Atypical protein kinase C (aPKC) isozymes modulate insulin signaling and cell polarity, but how their activity is controlled in cells is not well understood. These enzymes are constitutively phosphorylated, insensitive to second messengers, and have relatively low activity. Here we show that protein scaffolds not only localize but also differentially control the catalytic activity of the aPKC PKCζ, thus promoting activity toward localized substrates and restricting activity toward global substrates. Using cellular substrate readouts and scaffolded activity reporters in live cell imaging, we show that PKCζ has highly localized and differentially controlled activity on the scaffolds p62 and Par6. Both scaffolds tether aPKC in an active conformation as assessed through pharmacological inhibition of basal activity, monitored using a genetically encoded reporter for PKC activity. However, binding to Par6 is of higher affinity and is more effective in locking PKCζ in an active conformation. FRET-based translocation assays reveal that insulin promotes the association of both p62 and aPKC with the insulin-regulated scaffold IRS-1. Using the aPKC substrate MARK2 as another readout for activity, we show that overexpression of IRS-1 reduces the phosphorylation of MARK2 and enhances its plasma membrane localization, indicating sequestration of aPKC by IRS-1 away from MARK2. These results are consistent with scaffolds serving as allosteric activators of aPKCs, tethering them in an active conformation near specific substrates. Thus, signaling of these intrinsically low activity kinases is kept at a minimum in the absence of scaffolding interactions, which position the enzymes for stoichiometric phosphorylation of substrates co-localized on the same protein scaffold.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Proteína Quinase C/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Insulina/farmacologia , Proteínas Substratos do Receptor de Insulina/genética , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Proteína Quinase C/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Sequestossoma-1
8.
Biochem J ; 473(4): 509-23, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26635352

RESUMO

Atypical protein kinase C (aPKC) isoenzymes are key modulators of insulin signalling, and their dysfunction correlates with insulin-resistant states in both mice and humans. Despite the engaged interest in the importance of aPKCs to type 2 diabetes, much less is known about the molecular mechanisms that govern their cellular functions than for the conventional and novel PKC isoenzymes and the functionally-related protein kinase B (Akt) family of kinases. Here we show that aPKC is constitutively phosphorylated and, using a genetically-encoded reporter for PKC activity, basally active in cells. Specifically, we show that phosphorylation at two key regulatory sites, the activation loop and turn motif, of the aPKC PKCζ in multiple cultured cell types is constitutive and independently regulated by separate kinases: ribosome-associated mammalian target of rapamycin complex 2 (mTORC2) mediates co-translational phosphorylation of the turn motif, followed by phosphorylation at the activation loop by phosphoinositide-dependent kinase-1 (PDK1). Live cell imaging reveals that global aPKC activity is constitutive and insulin unresponsive, in marked contrast to the insulin-dependent activation of Akt monitored by an Akt-specific reporter. Nor does forced recruitment to phosphoinositides by fusing the pleckstrin homology (PH) domain of Akt to the kinase domain of PKCζ alter either the phosphorylation or activity of PKCζ. Thus, insulin stimulation does not activate PKCζ through the canonical phosphatidylinositol-3,4,5-triphosphate-mediated pathway that activates Akt, contrasting with previous literature on PKCζ activation. These studies support a model wherein an alternative mechanism regulates PKCζ-mediated insulin signalling that does not utilize conventional activation via agonist-evoked phosphorylation at the activation loop. Rather, we propose that scaffolding near substrates drives the function of PKCζ.


Assuntos
Fosfatos de Fosfatidilinositol/metabolismo , Proteína Quinase C/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Sequência de Aminoácidos , Animais , Biocatálise , Células Cultivadas , Insulina/farmacologia , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Complexos Multiproteicos/metabolismo , Fosforilação , Conformação Proteica , Proteína Quinase C/química , Serina-Treonina Quinases TOR/metabolismo
9.
J Control Release ; 146(3): 356-62, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20566343

RESUMO

A reservoir-based device constructed of a completely biodegradable elastomer can enable several new implantation and insertion options for localized drug therapy, particularly in the case of urological therapies. We performed an in vitro performance evaluation of an implantable, bio-resorbable device that supplies short-term controlled release of ciprofloxacin-HCl (CIP). The proposed device functions through a combination of osmosis and diffusion mechanisms to release CIP for short-term therapies of a few weeks duration. Poly(glycerol-co-sebacic acid) (PGS) was cast in a tubular geometry with solid drug powder packed into its core and a micro-machined release orifice drilled through its wall. Drug release experiments were performed to determine the effective release rate from a single orifice and the range of orifice sizes in which controlled zero-order release was the main form of drug expulsion from the device. It is demonstrated that PGS is sufficiently permeable to water to allow the design of an elementary osmotic pump for drug delivery. Indeed, PGS's water permeability is several orders of magnitude larger than commonly used cellulose acetate for elementary osmotic pumps.


Assuntos
Anti-Infecciosos/administração & dosagem , Ciprofloxacina/administração & dosagem , Sistemas de Liberação de Medicamentos/instrumentação , Materiais Biocompatíveis/metabolismo , Decanoatos/metabolismo , Desenho de Equipamento , Glicerol/análogos & derivados , Glicerol/metabolismo , Polímeros/metabolismo
10.
Biomacromolecules ; 7(6): 1990-5, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16768424

RESUMO

Biochemical functionalization of surfaces is an increasingly utilized mechanism to promote or inhibit adhesion of cells. To promote mammalian cell adhesion, one common functionalization approach is surface conjugation of adhesion peptide sequences such as Arg-Gly-Asp (RGD), a ligand of transmembrane integrin molecules. It is generally assumed that such functionalization does not alter the local mechanical properties of the functionalized surface, as is important to interpretations of macromolecular mechanotransduction in cells. Here, we examine this assumption systematically, through nanomechanical measurement of the nominal elastic modulus of polymer multilayer films of nanoscale thickness, functionalized with RGD through different processing routes. We find that the method of biochemical functionalization can significantly alter mechanical compliance of polymeric substrata such as weak polyelectrolyte multilayers (PEMs), increasingly utilized materials for such studies. In particular, immersed adsorption of intermediate functionalization reagents significantly decreases compliance of the PEMs considered herein, whereas polymer-on-polymer stamping of these same reagents does not alter compliance of weak PEMs. This finding points to the potential unintended alteration of mechanical properties via surface functionalization and also suggests functionalization methods by which chemical and mechanical properties of cell substrata can be controlled independently.


Assuntos
Fibroblastos/efeitos dos fármacos , Membranas Artificiais , Peptídeos/farmacologia , Animais , Adesão Celular/efeitos dos fármacos , Elasticidade , Camundongos , Células NIH 3T3 , Peptídeos/química , Poliaminas/química , Poliaminas/farmacologia , Propriedades de Superfície
11.
Biomaterials ; 26(34): 6836-45, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15972236

RESUMO

It is well known that mechanical stimuli induce cellular responses ranging from morphological reorganization to mineral secretion, and that mechanical stimulation through modulation of the mechanical properties of cell substrata affects cell function in vitro and in vivo. However, there are few approaches by which the mechanical compliance of the substrata to which cells adhere and grow can be determined quantitatively and varied independent of substrata chemical composition. General methods by which mechanical state can be quantified and modulated at the cell population level are critical to understanding and engineering materials that promote and maintain cell phenotype for applications such as vascular tissue constructs. Here, we apply contact mechanics of nanoindentation to measure the mechanical compliance of weak polyelectrolyte multilayers (PEMs) of nanoscale thickness, and explore the effects of this tunable compliance for cell substrata applications. We show that the nominal elastic moduli E(s) of these substrata depend directly on the pH at which the PEMs are assembled, and can be varied over several orders of magnitude for given polycation/polyanion pairs. Further, we demonstrate that the attachment and proliferation of human microvascular endothelial cells (MVECs) can be regulated through independent changes in the compliance and terminal polyion layer of these PEM substrata. These data indicate that substrate mechanical compliance is a strong determinant of cell fate, and that PEMs of nanoscale thickness provide a valuable tool to vary the external mechanical environment of cells independently of chemical stimuli.


Assuntos
Acrilatos/química , Adesão Celular/fisiologia , Técnicas de Cultura de Células/métodos , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Membranas Artificiais , Nanoestruturas/química , Polímeros/química , Acrilatos/análise , Materiais Biocompatíveis/análise , Materiais Biocompatíveis/química , Células Cultivadas , Elasticidade , Eletrólitos/química , Dureza , Humanos , Teste de Materiais , Nanoestruturas/análise , Polímeros/análise , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA