RESUMO
Edible biosensors can measure a wide range of physiological and biochemical parameters, including temperature, pH, gases, gastrointestinal biomarkers, enzymes, hormones, glucose, and drug levels, providing real-time data. Edible biocatalytic biosensors represent a new frontier within healthcare technology available for remote medical diagnosis. The main challenges to develop edible biosensors are: i) finding edible materials (i.e. redox mediators, conductive materials, binders and biorecognition elements such as enzymes) complying with Food and Drug Administration (FDA), European Food Safety Authority (EFSA) and European Medicines Agency (EMEA) regulations; ii) developing bioelectronics able to operate in extreme working conditions such as low pH (â¼pH 1.5 gastric fluids etc.), body temperature (between 37 °C and 40 °C) and highly viscous bodily fluids that may cause surface biofouling issues. Nowadays, advanced printing techniques can revolutionize the design and manufacturing of edible biocatalytic biosensors. This review outlines recent research on biomaterials suitable for creating edible biocatalytic biosensors, focusing on their electrochemical properties such as electrical conductivity and redox potential. It also examines biomaterials as substrates for printing and discusses various printing methods, highlighting challenges and perspectives for edible biocatalytic biosensors.
RESUMO
The development of ultrasensitive electronic sensors for in vitro diagnostics is essential for the reliable monitoring of asymptomatic individuals before illness proliferation or progression. These platforms are increasingly valued for their potential to enable timely diagnosis and swift prognosis of infectious or progressive diseases. Typically, the responses from these analytical tools are recorded as digital signals, with electronic data offering simpler processing compared to spectral and optical data. However, preprocessing electronic data from potentiometric biosensor arrays is still in its infancy compared to more established optical technologies. This study utilized the Single-Molecule with a Large Transistor (SiMoT) array, which has achieved a Technology Readiness Level of 5, to explore the impact of data preprocessing on electronic biosensor outcomes. A dataset consisting of plasma and cyst fluid samples from 37 patients with pancreatic precursor cyst lesions was analyzed. The findings revealed that standard signal preprocessing can produce misleading conclusions due to artifacts introduced by mathematical transformations. The study offers strategies to mitigate these effects, ensuring that data interpretation remains accurate and reflective of the underlying biochemical information in the samples.
RESUMO
Biosensors have demonstrated versatility across numerous applications; however, their systematic optimization remains a primary obstacle, limiting their widespread adoption as dependable point-of-care tests. Experimental design, a powerful chemometric tool, offers a solution by effectively guiding the development and optimization of ultrasensitive biosensors. This perspective review provides an overview of recent applications of experimental design in the deployment of optical and electrical ultrasensitive biosensors. Various experimental designs, including full factorial, central composite, and mixture designs, are examined as systematic methodologies for optimizing biosensor fabrication, accounting for both individual variable effects and their interactions. Illustrative examples showcasing the optimization of optical and electronic biosensors through design of experiments are presented and critically analyzed. Finally, the future prospects of experimental design in the biosensor community are outlined, highlighting its potential to expedite development and bolster the performance of biosensing devices for point-of-care diagnostics, thereby facilitating their sustainable and reliable integration.
RESUMO
The possibility to print electronics by means of office tools has remarkedly increased the possibility to design affordable and robust point-of-care/need devices. However, conductive inks suffer from low electrochemical and rheological performances limiting their applicability in biosensors. Herein, a fast CO2 laser approach to activate printed carbon inks towards direct enzymatic bioelectrocatalysis (3rd generation) is proposed and exploited to build biosensors for D-fructose analysis in biological fluids. The CO2 laser treatment was compared with two lab-grade printed transducers fabricated with solvent (SB) and water (WB) based carbon inks. The use of the laser revealed significant morpho-chemical variations on the printed inks and was investigated towards enzymatic direct catalysis, using Fructose dehydrogenase (FDH) integrated into entirely lab-produced biosensors. The laser-driven activation of the inks unveils the inks' direct electron transfer (DET) ability between FDH and the electrode surface. Sub-micromolar limits of detection (SB-ink LOD = 0.47 µM; WB-ink LOD = 0.24 µM) and good linear ranges (SB-ink: 5-100 µM; WB-ink: 1-50 µM) were obtained, together with high selectivity due to use of the enzyme and the low applied overpotential (0.15 V vs. pseudo-Ag/AgCl). The laser-activated biosensors were successfully used for D-fructose determination in complex synthetic and real biological fluids (recoveries: 93-112%; RSD ≤8.0%, n = 3); in addition, the biosensor ability for continuous measurement (1.5h) was also demonstrated simulating physiological D-fructose fluctuations in cerebrospinal fluid.
Assuntos
Técnicas Biossensoriais , Frutose , Grafite , Tinta , Frutose/análise , Frutose/química , Grafite/química , Humanos , Desidrogenases de Carboidrato/química , Técnicas Eletroquímicas/métodos , Transporte de Elétrons , Limite de Detecção , Lasers de Gás , Enzimas Imobilizadas/química , EletrodosRESUMO
Artificial neural networks (ANNs) are versatile tools capable of learning without prior knowledge. This study aims to evaluate whether ANN can calculate minute volume during spontaneous breathing after being trained using data from an animal model of metabolic acidosis. Data was collected from ten anesthetized, spontaneously breathing pigs divided randomly into two groups, one without dead space and the other with dead space at the beginning of the experiment. Each group underwent two equal sequences of pH lowering with pre-defined targets by continuous infusion of lactic acid. The inputs to ANNs were pH, ΔPaCO2 (variation of the arterial partial pressure of CO2), PaO2, and blood temperature which were sampled from the animal model. The output was the delta minute volume (ΔVM), (the change of minute volume as compared to the minute volume the animal had at the beginning of the experiment). The ANN performance was analyzed using mean squared error (MSE), linear regression, and the Bland-Altman (B-A) method. The animal experiment provided the necessary data to train the ANN. The best architecture of ANN had 17 intermediate neurons; the best performance of the finally trained ANN had a linear regression with R2 of 0.99, an MSE of 0.001 [L/min], a B-A analysis with bias ± standard deviation of 0.006 ± 0.039 [L/min]. ANNs can accurately estimate ΔVM using the same information that arrives at the respiratory centers. This performance makes them a promising component for the future development of closed-loop artificial ventilators.
RESUMO
Herein we introduce a novel water-based graphite ink modified with multiwalled carbon nanotubes, designed for the development of the first wearable self-powered biosensor enabling alcohol abuse detection through sweat analysis. The stencil-printed graphite (SPG) electrodes, printed onto a flexible substrate, were modified by casting multiwalled carbon nanotubes (MWCNTs), electrodepositing polymethylene blue (pMB) at the anode to serve as a catalyst for nicotinamide adenine dinucleotide (NADH) oxidation, and hemin at the cathode as a selective catalyst for H2O2 reduction. Notably, alcohol dehydrogenase (ADH) was additionally physisorbed onto the anodic electrode, and alcohol oxidase (AOx) onto the cathodic electrode. The self-powered biosensor was assembled using the ADH/pMB-MWCNTs/SPG||AOx/Hemin-MWCNTs/SPG configuration, enabling the detection of ethanol as an analytical target, both at the anodic and cathodic electrodes. Its performance was assessed by measuring polarization curves with gradually increasing ethanol concentrations ranging from 0 to 50 mM. The biosensor demonstrated a linear detection range from 0.01 to 0.3 mM, with a detection limit (LOD) of 3 ± 1 µM and a sensitivity of 64 ± 2 µW mM-1, with a correlation coefficient of 0.98 (RSD 8.1%, n = 10 electrode pairs). It exhibited robust operational stability (over 2800 s with continuous ethanol turnover) and excellent storage stability (approximately 93% of initial signal retained after 90 days). Finally, the biosensor array was integrated into a wristband and successfully evaluated for continuous alcohol abuse monitoring. This proposed system displays promising attributes for use as a flexible and wearable biosensor employing biocompatible water-based inks, offering potential applications in forensic contexts.
Assuntos
Técnicas Biossensoriais , Eletrodos , Etanol , Limite de Detecção , Nanotubos de Carbono , Suor , Dispositivos Eletrônicos Vestíveis , Nanotubos de Carbono/química , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Etanol/análise , Suor/química , Humanos , Álcool Desidrogenase/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Grafite/química , Oxirredutases do Álcool/químicaRESUMO
Our society largely relies on inorganic semiconductor devices which are, so far, fabricated using expensive and complex processes requiring ultra-high vacuum equipment. Here we report on the possibility of growing a p-n junction taking advantage of electrochemical processes based on the use of aqueous solutions. The growth of the junction has been carried out using the Electrochemical Atomic Layer Deposition (E-ALD) technique, which allowed to sequentially deposit two different semiconductors, CdS and Cu2S, on an Ag(111) substrate, in a single procedure. The growth process was monitored inâ situ by Surface X-Ray Diffraction (SXRD) and resulted in the fabrication of a thin double-layer structure with a high degree of crystallographic order and a well-defined interface. The high-performance electrical characteristics of the device were analysed ex-situ and show the characteristic feature of a diode.
RESUMO
Herein, a strategy to stamp laser-produced reduced graphene oxide (rGO) onto flexible polymers using only office-grade tools, namely, roll-to-roll thermal stamping, is proposed, proving for the first time its effectiveness for direct bioelectrocatalysis. This straightforward, scalable, and low-cost approach allows us to overcome the limits of the integration of laser-induced rGO-films in bioanalytical devices. Laser-produced rGO has been thermally stamped (TS) onto different polymeric substrates (PET, PVC, and EVA) using a simple roll-laminator; the obtained TS-rGO films have been compared with the native rGO (untransferred) via morphochemical and electrochemical characterization. Particularly, the direct electron transfer (DET) reaction between fructose dehydrogenase (FDH) and TS-rGO transducers has been investigated, with respect to the influence of the amount of enzyme on the catalytic process. Remarkable differences have been observed among TS-rGO transducers; PET proved to be the elective substrate to support the transfer of the laser-induced rGO, allowing the preservation of the morphochemical features of the native material and returning a reduced capacitive current. Noteworthily, TS-rGOs ensure superior electrocatalysis using a very low amount of FDH units (15 mU). Eventually, TS-rGO-based third-generation complete enzymatic biosensors were fabricated via low-cost benchtop technologies. TS-rGOPET exhibited bioanalytical performances superior to the native rGO, allowing a sensitive (0.0289 µA cm-2 µM-1) and reproducible (RSD = 3%, n = 3) d-fructose determination at the nanomolar level (LOD = 0.2 µM). TS-rGO exploitability as a point-of-need device was proved via the monitoring of d-fructose during banana (Musa acuminata) postharvest ripening, returning accurate (recoveries 110-90%; relative error -13/+1%) and reproducible (RSD ≤ 7%; n = 3) data.
Assuntos
Grafite , Lasers , Grafite/química , Transporte de Elétrons , Técnicas Eletroquímicas , Desidrogenases de Carboidrato/química , Desidrogenases de Carboidrato/metabolismo , Técnicas Biossensoriais , OxirreduçãoRESUMO
While a substantial amount of research activity has been conducted in fields related to organic photonics and electronics, including the development of devices such as organic field-effect transistors, organic photovoltaics, and organic light-emitting diodes for applications encompassing organic thermoelectrics, organic batteries, excitonic organic materials for photochemical and optoelectronic applications, and organic thermoelectrics, this perspective review will primarily concentrate on the emerging and rapidly expanding domain of organic bioelectronics and neuromorphics. Here we present the most recent research findings on organic transistors capable of sensing biological biomarkers down at the single-molecule level (i.e., oncoproteins, genomes, etc.) for the early diagnosis of pathological states and to mimic biological synapses, paving the way to neuromorphic applications that surpass the limitations of the traditional von Neumann computing architecture. Both organic bioelectronics and neuromorphics exhibit several challenges but will revolutionize human life, considering the development of artificial synapses to counteract neurodegenerative disorders and the development of ultrasensitive biosensors for the early diagnosis of cancer to prevent its development. Moreover, organic bioelectronics for sensing applications have also triggered the development of several wearable, flexible and stretchable biodevices for continuous biomarker monitoring.
Assuntos
Técnicas Biossensoriais , Eletrônica , Humanos , Biomarcadores , Fontes de Energia Elétrica , SinapsesRESUMO
Pancreatic cancer, ranking as the third factor in cancer-related deaths, necessitates enhanced diagnostic measures through early detection. In response, SiMoT-Single-molecule with a large Transistor multiplexing array, achieving a Technology Readiness Level of 5, is proposed for a timely identification of pancreatic cancer precursor cysts and is benchmarked against the commercially available chemiluminescent immunoassay SIMOA (Single molecule array) SP-X System. A cohort of 39 samples, comprising 33 cyst fluids and 6 blood plasma specimens, undergoes detailed examination with both technologies. The SiMoT array targets oncoproteins MUC1 and CD55, and oncogene KRAS, while the SIMOA SP-X planar technology exclusively focuses on MUC1 and CD55. Employing Principal Component Analysis (PCA) for multivariate data processing, the SiMoT array demonstrates effective discrimination of malignant/pre-invasive high-grade or potentially malignant low-grade pancreatic cysts from benign non-mucinous cysts. Conversely, PCA analysis applied to SIMOA assay reveals less effective differentiation ability among the three cyst classes. Notably, SiMoT unique capability of concurrently analyzing protein and genetic markers with the threshold of one single molecule in 0.1 mL positions it as a comprehensive and reliable diagnostic tool. The electronic response generated by the SiMoT array facilitates direct digital data communication, suggesting potential applications in the development of field-deployable liquid biopsy.
Assuntos
Cisto Pancreático , Neoplasias Pancreáticas , Cisto Pancreático/diagnóstico , Cisto Pancreático/patologia , Humanos , Imunoensaio/métodos , Neoplasias Pancreáticas/diagnóstico , Medições Luminescentes/métodos , Biomarcadores Tumorais/genética , Sensibilidade e Especificidade , Análise de Componente Principal/métodos , Proteínas Proto-Oncogênicas p21(ras)/genéticaRESUMO
Herein, we describe a novel method for producing cadmium-selenide nanoparticles (CdSe NPs) with controlled size using apoferritin as a bionanoreactor triggered by local pH change at the electrode/solution interface. Apoferritin is known for its reversible self-assembly at alkaline pH. The pH change is induced electrochemically by reducing O2 through the application of sufficiently negative voltages and bioelectrochemically through O2 reduction catalyzed by laccase, co-immobilized with apoferritin on the electrode surface. Specifically, a Ti electrode is modified with (3-aminopropyl)triethoxysilane, followed by glutaraldehyde cross-linking (1.5% v/v in H2O) of apoferritin (as the bionanoreactor) and laccase (as the local pH change triggering system). This proposed platform offers a universal approach for controlling the synthesis of semiconductor NPs within a bionanoreactor solely driven by (bio)electrochemical inputs. The CdSe NPs obtained through different synthetic approaches, namely electrochemical and bioelectrochemical, were characterized spectroscopically (UV-Vis, Raman, XRD) and morphologically (TEM). Finally, we conducted online monitoring of CdSe NPs formation within the apoferritin core by integrating the electrochemical system with LWs. The quantity of CdSe NPs produced through bioelectrochemical means was determined to be 2.08 ± 0.12 mg after 90 minutes of voltage application in the presence of O2. TEM measurements revealed that the bioelectrochemically synthesized CdSe NPs have a diameter of 4 ± 1 nm, accounting for 85% of the size distribution, a result corroborated by XRD data. Further research is needed to explore the synthesis of nanoparticles using different biological nanoreactors, as the process can be challenging due to the elevated buffer capacitance of biological media.
RESUMO
Screening asymptomatic organisms (humans, animals, plants) with a high-diagnostic accuracy using point-of-care-testing (POCT) technologies, though still visionary holds great potential. Convenient surveillance requires easy-to-use, cost-effective, ultra-portable but highly reliable, in-vitro-diagnostic devices that are ready for use wherever they are needed. Currently, there are not yet such devices available on the market, but there are a couple more promising technologies developed at readiness-level 5: the Clustered-Regularly-Interspaced-Short-Palindromic-Repeats (CRISPR) lateral-flow-strip tests and the Single-Molecule-with-a-large-Transistor (SiMoT) bioelectronic palmar devices. They both hold key features delineated by the World-Health-Organization for POCT systems and an occurrence of false-positive and false-negative errors <1-5% resulting in diagnostic-selectivity and sensitivity >95-99%, while limit-of-detections are of few markers. CRISPR-strip is a molecular assay that, can detect down to few copies of DNA/RNA markers in blood while SiMoT immunometric and molecular test can detect down to a single oligonucleotide, protein marker, or pathogens in 0.1mL of blood, saliva, and olive-sap. These technologies can prospectively enable the systematic and reliable surveillance of asymptomatic ones prior to worsening/proliferation of illnesses allowing for timely diagnosis and swift prognosis. This could establish a proactive healthcare ecosystem that results in effective treatments for all living organisms generating diffuse and well-being at efficient costs.
Assuntos
Sistemas CRISPR-Cas , Saúde Única , Animais , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , RNARESUMO
Organic electrochemical transistors (OECTs) are widely employed in several bioelectronic applications such as biosensors, logic circuits, and neuromorphic engineering, providing a seamless link between the realm of biology and electronics. More specifically, OECTs are endowed with remarkable signal amplification, the ability to operate in an aqueous environment, and the effective transduction of ionic to electrical signals. One main limiting factor preventing OECTs' wide use is the need for microfabrication processes, typically requiring specialized equipment. From this perspective, a robust and cost-effective production protocol to achieve high-performing OECT would be desirable. Herein, a straightforward stencil-printed OECT fabrication procedure is proposed, where the electrical performance can be controlled by adjusting the electronic channel fabrication conditions. An experimental design approach is undertaken to optimize OECT figures of merit by varying key parameters such as the annealing temperature and time, as well as the transistor active channel length. The resulting OECT devices, fabricated through a high-yield, cost-effective, and fast stencil printing technique, feature large transconductance values at low operating voltages. The experimental design allowed for minimizing the threshold voltage (VT = 260 mV) while keeping a high on/off ratio (7 × 103). A signal-to-noise ratio as high as 40 dB was obtained, which is among the highest for OECTs, operating in an aqueous electrolyte operated in a DC mode. An atomic force microscopy (AFM) characterization has been undertaken to analyze the channel morphology in the OECTs, correlating the annealing conditions with the charge transport properties.
RESUMO
Kelvin probe force microscopy (KPFM) allows the detection of single binding events between immunoglobulins (IgM, IgG) and their cognate antibodies (anti-IgM, anti-IgG). Here an insight into the reliability and robustness of the methodology is provided. Our method is based on imaging the surface potential shift occurring on a dense layer of â¼5 × 107 antibodies physisorbed on a 50 µm × 90 µm area when assayed with increasing concentrations of antigens in phosphate buffer saline (PBS) standard solutions, in air and at a fixed scanning location. A comprehensive investigation of the influence of the main experimental parameters that may interfere with the outcomes of KPFM immune-assay is provided, showing the robustness and reliability of our approach. The data are supported also by a thorough polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS) analysis of the physisorbed biolayer, in the spectral region of the amide I, amide II and amide A bands. Our findings demonstrate that a 10 min incubation in 500 µL PBS encompassing ≈ 30 antigens (100 zM) triggers an extended surface potential shift that involves the whole investigated area. Such a shift quickly saturates at increasing ligand concentration, showing that the developed sensing platform works as an OFF/ON detector, capable of assessing the presence of a few specific biomarkers in a given assay volume. The reliability of the developed methodology KPFM is an important asset in single molecule detections at a wide electrode interface.
RESUMO
Antibody physisorption at a solid interface is a very interesting phenomenon that has important effects on applications such as the development of novel biomaterials and the rational design and fabrication of high-performance biosensors. The strategy selected to immobilize biorecognition elements can determine the performance level of a device and one of the simplest approaches is physical adsorption, which is cost-effective, fast, and compatible with printing techniques as well as with green-chemistry processes. Despite its huge advantages, physisorption is very seldom adopted, as there is an ingrained belief that it does not lead to high performance because of its lack of uniformity and long-term stability, which, however, have never been systematically investigated, particularly for bilayers of capture antibodies. Herein, the homogeneity and stability of an antibody layer against SARS-CoV-2-Spike1 (S1) protein physisorbed onto a gold surface have been investigated by means of multi-parametric surface plasmon resonance (MP-SPR). A surface coverage density of capture antibodies as high as (1.50 ± 0.06) × 1012 molecules per cm-2 is measured, corresponding to a thickness of 12 ± 1 nm. This value is compatible with a single monolayer of homogeneously deposited antibodies. The effect of the ionic strength (is) of the antibody solution in controlling physisorption of the protein was thoroughly investigated, demonstrating an enhancement in surface coverage at lower ionic strength. An atomic force microscopy (AFM) investigation shows a globular structure attributed to is-related aggregations of antibodies. The long-term stability over two weeks of the physisorbed proteins was also assessed. High-performance sensing was proven by evaluating figures of merit, such as the limit of detection (2 nM) and the selectivity ratio between a negative control and the sensing experiment (0.04), which is the best reported performance for an SPR S1 protein assay. These figures of merit outmatch those measured with more sophisticated biofunctionalization procedures involving chemical bonding of the capture antibodies to the gold surface. The present study opens up interesting new pathways toward the achievement of a cost-effective and scalable biofunctionalization protocol, which could guarantee the prolonged stability of the biolayer and easy handling of the biosensing system.
RESUMO
A cohort of 47 patients is screened for pancreatic cancer precursors with a portable 96-well bioelectronic sensing-array for single-molecule assay in cysts fluid and blood plasma, deployable at point-of-care (POC). Pancreatic cancer precursors are mucinous cysts diagnosed with a sensitivity of at most 80% by state-of-the-art cytopathological molecular analyses (e.g., KRASmut DNA). Adding the simultaneous assay of proteins related to malignant transformation (e.g., MUC1 and CD55) is deemed essential to enhance diagnostic accuracy. The bioelectronic array proposed here, based on single-molecule-with-a-large-transistor (SiMoT) technology, can assay both nucleic acids and proteins at the single-molecule limit-of-identification (LOI) (1% of false-positives and false-negatives). It comprises an enzyme-linked immunosorbent assay (ELISA)-like 8 × 12-array organic-electronics disposable cartridge with an electrolyte-gated organic transistor sensor array, and a reusable reader, integrating a custom Si-IC chip, operating via software installed on a USB-connected smart device. The cartridge is complemented by a 3D-printed sensing gate cover plate. KRASmut , MUC1, and CD55 biomarkers either in plasma or cysts-fluid from 5 to 6 patients at a time, are multiplexed at single-molecule LOI in 1.5 h. The pancreatic cancer precursors are classified via a machine-learning analysis resulting in at least 96% diagnostic-sensitivity and 100% diagnostic-specificity. This preliminary study opens the way to POC liquid-biopsy-based early diagnosis of pancreatic-cancer precursors in plasma.
Assuntos
Cistos , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Detecção Precoce de Câncer , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias PancreáticasRESUMO
Herein, we report a scalable benchtop electrode fabrication method to produce highly sensitive and flexible third-generation fructose dehydrogenase amperometric biosensors based on water-dispersed 0D-nanomaterials. The electrochemical platform was fabricated via Stencil-Printing (StPE) and insulated via xurography. Carbon black (CB) and mesoporous carbon (MS) were employed as 0D-nanomaterials promoting an efficient direct electron transfer (DET) between fructose dehydrogenase (FDH) and the transducer. Both nanomaterials were prepared in water-phase via a sonochemical approach. The nano-StPE exhibited enhanced electrocatalytic currents compared to conventional commercial electrodes. The enzymatic sensors were exploited for the determination of D-fructose in model solutions and various food and biological samples. StPE-CB and StPE-MS integrated biosensors showed appreciable sensitivity (â¼150 µA cm-2 mM-1) with µmolar limit of detection (0.35 and 0.16 µM, respectively) and extended linear range (2-500 and 1-250 µM, respectively); the selectivity of the biosensors, ensured by the low working overpotential (+0.15 V), has been also demonstrated. Good accuracy (recoveries between 95 and 116%) and reproducibility (RSD ≤8.6%) were achieved for food and urine samples. The proposed approach because of manufacturing versatility and the electro-catalytic features of the water-nanostructured 0D-NMs opens new paths for affordable and customizable FDH-based bioelectronics.
Assuntos
Técnicas Biossensoriais , Frutose , Reprodutibilidade dos Testes , Técnicas Biossensoriais/métodos , Eletrodos , Oxirredutases , ÁguaRESUMO
The development of ultrasensitive analytical detection methods for organophosphorus pesticides such as dimethoate (DMT) plays a key role in healthy food production. DMT is an inhibitor of acetylcholinesterase (AChE), which can lead to the accumulation of acetylcholine and result in symptoms related to the autonomous and central nervous systems. Herein, we report the first spectroscopic and electrochemical study on template removal after an imprinting process from a polypyrrole-based molecularly imprinted polymer (PPy-MIP) film for the detection of DMT. Several template removal procedures were tested and evaluated using X-ray photoelectron spectroscopy. The most effective procedure was achieved in 100 mM NaOH. The proposed DMT PPy-MIP sensor exhibits a limit of detection of (8 ± 2) × 10-12 M.
Assuntos
Impressão Molecular , Praguicidas , Polímeros/química , Dimetoato , Pirróis/química , Impressão Molecular/métodos , Acetilcolinesterase , Compostos OrganofosforadosRESUMO
In this study, a novel sensing strategy based on double sensing/actuating pathway is demonstrated, being capable to trigger the DNA-based AND gate for the sensitive and selective detection of hepatitis B virus DNA (HBV-DNA). Such an approach encompasses an enzymatic machinery logically operated using the variation of physiologically relevant biomarkers for liver dysfunctions. Alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) are used as inputs of an AND gate generating an output signal, namely lactate. In particular, lactate is oxidized back to pyruvate at the anodic electrode by lactate oxidase connected in mediated electron transfer through ferrocene moieties (creating an amplifying recycling mechanism). The anodic electrode is further connected with a Myrothecium verrucaria bilirubin oxidase (MvBOx) based biocathode modified with SiO2 nanoparticles (SiO2NPs) functionalized with phenyl boronic acid and trigonelline, triggering the release of quenching DNA (qDNA) upon local pH change at the electrode surface (notably, modified SiONPs gets negatively recharged upon local pH gradient releasing negatively charged DNA). Next, the released qDNA labeled with BHQ2 and detecting DNA (dDNA, labeled with FAM) are detecting HBV-DNA. The proposed biosensor can discriminate between the absence and presence of HBV-DNA setting the threshold at 0.05 fM in model buffer solutions and 1 fM in human serum. This enzymatic/DNA logic network can be of particular interest for future biomedical applications (e.g., early detection of liver cancer disease etc.). In the future development this technology could be easily integrated with a smartphone camera, allowing more user-friendly applications.