Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Clin Exp Immunol ; 215(2): 177-189, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-37917972

RESUMO

Patients with decompensated liver cirrhosis, in particular those classified as Childs-Pugh class C, are at increased risk of severe coronavirus disease-2019 (COVID-19) upon infection with severe acute respiratory coronavirus 2 (SARS-CoV-2). The biological mechanisms underlying this are unknown. We aimed to examine the levels of serum intrinsic antiviral proteins as well as alterations in the innate antiviral immune response in patients with decompensated liver cirrhosis. Serum from 53 SARS-CoV-2 unexposed and unvaccinated individuals, with decompensated liver cirrhosis undergoing assessment for liver transplantation, were screened using SARS-CoV-2 pseudoparticle and SARS-CoV-2 virus assays. The ability of serum to inhibit interferon (IFN) signalling was assessed using a cell-based reporter assay. Severity of liver disease was assessed using two clinical scoring systems, the Child-Pugh class and the MELD-Na score. In the presence of serum from SARS-CoV-2 unexposed patients with decompensated liver cirrhosis there was no association between SARS-CoV-2 pseudoparticle infection or live SARS-CoV-2 virus infection and severity of liver disease. Type I IFNs are a key component of the innate antiviral response. Serum from patients with decompensated liver cirrhosis contained elevated levels of auto-antibodies capable of binding IFN-α2b compared to healthy controls. High MELD-Na scores were associated with the ability of these auto-antibodies to neutralize type I IFN signalling by IFN-α2b but not IFN-ß1a. Our results demonstrate that neutralizing auto-antibodies targeting IFN-α2b are increased in patients with high MELD-Na scores. The presence of neutralizing type I IFN-specific auto-antibodies may increase the likelihood of viral infections, including severe COVID-19, in patients with decompensated liver cirrhosis.


Assuntos
COVID-19 , Interferon Tipo I , Hepatopatias , Transplante de Fígado , Humanos , Anticorpos , Cirrose Hepática
2.
PLoS One ; 17(4): e0266412, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35436306

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the coronavirus disease-19 (COVID-19) pandemic, was identified in late 2019 and caused >5 million deaths by February 2022. To date, targeted antiviral interventions against COVID-19 are limited. The spectrum of SARS-CoV-2 infection ranges from asymptomatic to fatal disease. However, the reasons for varying outcomes to SARS-CoV-2 infection are yet to be elucidated. Here we show that an endogenously activated interferon lambda (IFNλ1) pathway leads to resistance against SARS-CoV-2 infection. Using a well-differentiated primary nasal epithelial cell (WD-PNEC) culture model derived from multiple adult donors, we discovered that susceptibility to SARS-CoV-2 infection, but not respiratory syncytial virus (RSV) infection, varied. One of four donors was resistant to SARS-CoV-2 infection. High baseline IFNλ1 expression levels and associated interferon stimulated genes correlated with resistance to SARS-CoV-2 infection. Inhibition of the JAK/STAT pathway in WD-PNECs with high endogenous IFNλ1 secretion resulted in higher SARS-CoV-2 titres. Conversely, prophylactic IFNλ treatment of WD-PNECs susceptible to infection resulted in reduced viral titres. An endogenously activated IFNλ response, possibly due to genetic differences, may be one explanation for the differences in susceptibility to SARS-CoV-2 infection in humans. Importantly, our work supports the continued exploration of IFNλ as a potential pharmaceutical against SARS-CoV-2 infection.


Assuntos
COVID-19 , Infecções por Vírus Respiratório Sincicial , Antivirais/farmacologia , Células Epiteliais/metabolismo , Humanos , Interferons/metabolismo , Interferons/farmacologia , Janus Quinases/metabolismo , SARS-CoV-2 , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais
3.
Viruses ; 14(2)2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-35215919

RESUMO

SARS-CoV-2 can efficiently infect both children and adults, albeit with morbidity and mortality positively associated with increasing host age and presence of co-morbidities. SARS-CoV-2 continues to adapt to the human population, resulting in several variants of concern (VOC) with novel properties, such as Alpha and Delta. However, factors driving SARS-CoV-2 fitness and evolution in paediatric cohorts remain poorly explored. Here, we provide evidence that both viral and host factors co-operate to shape SARS-CoV-2 genotypic and phenotypic change in primary airway cell cultures derived from children. Through viral whole-genome sequencing, we explored changes in genetic diversity over time of two pre-VOC clinical isolates of SARS-CoV-2 during passage in paediatric well-differentiated primary nasal epithelial cell (WD-PNEC) cultures and in parallel, in unmodified Vero-derived cell lines. We identified a consistent, rich genetic diversity arising in vitro, variants of which could rapidly rise to near fixation within two passages. Within isolates, SARS-CoV-2 evolution was dependent on host cells, with paediatric WD-PNECs showing a reduced diversity compared to Vero (E6) cells. However, mutations were not shared between strains. Furthermore, comparison of both Vero-grown isolates on WD-PNECs disclosed marked growth attenuation mapping to the loss of the polybasic cleavage site (PBCS) in Spike, while the strain with mutations in Nsp12 (T293I), Spike (P812R) and a truncation of Orf7a remained viable in WD-PNECs. Altogether, our work demonstrates that pre-VOC SARS-CoV-2 efficiently infects paediatric respiratory epithelial cells, and its evolution is restrained compared to Vero (E6) cells, similar to the case of adult cells. We highlight the significant genetic plasticity of SARS-CoV-2 while uncovering an influential role for collaboration between viral and host cell factors in shaping viral evolution and ultimately fitness in human respiratory epithelium.


Assuntos
Evolução Molecular , Mucosa Respiratória/virologia , SARS-CoV-2/genética , Animais , Células Cultivadas , Criança , Chlorocebus aethiops , Genótipo , Humanos , Mutação , Nariz/citologia , Nariz/virologia , Fenótipo , SARS-CoV-2/classificação , SARS-CoV-2/crescimento & desenvolvimento , Células Vero , Sequenciamento Completo do Genoma
4.
Mol Cell Proteomics ; 19(5): 793-807, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32075873

RESUMO

The respiratory epithelium comprises polarized cells at the interface between the environment and airway tissues. Polarized apical and basolateral protein secretions are a feature of airway epithelium homeostasis. Human respiratory syncytial virus (hRSV) is a major human pathogen that primarily targets the respiratory epithelium. However, the consequences of hRSV infection on epithelium secretome polarity and content remain poorly understood. To investigate the hRSV-associated apical and basolateral secretomes, a proteomics approach was combined with an ex vivo pediatric human airway epithelial (HAE) model of hRSV infection (data are available via ProteomeXchange and can be accessed at https://www.ebi.ac.uk/pride/ with identifier PXD013661). Following infection, a skewing of apical/basolateral abundance ratios was identified for several individual proteins. Novel modulators of neutrophil and lymphocyte activation (CXCL6, CSF3, SECTM1 or CXCL16), and antiviral proteins (BST2 or CEACAM1) were detected in infected, but not in uninfected cultures. Importantly, CXCL6, CXCL16, CSF3 were also detected in nasopharyngeal aspirates (NPA) from hRSV-infected infants but not healthy controls. Furthermore, the antiviral activity of CEACAM1 against RSV was confirmed in vitro using BEAS-2B cells. hRSV infection disrupted the polarity of the pediatric respiratory epithelial secretome and was associated with immune modulating proteins (CXCL6, CXCL16, CSF3) never linked with this virus before. In addition, the antiviral activity of CEACAM1 against hRSV had also never been previously characterized. This study, therefore, provides novel insights into RSV pathogenesis and endogenous antiviral responses in pediatric airway epithelium.


Assuntos
Antivirais/metabolismo , Quimiocinas/metabolismo , Proteoma/metabolismo , Mucosa Respiratória/virologia , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/fisiologia , Brônquios/patologia , Linhagem Celular , Criança , Células Epiteliais/patologia , Células Epiteliais/virologia , Células Caliciformes/metabolismo , Células Caliciformes/virologia , Homeostase , Humanos , Lactente , Cinética , Nasofaringe/virologia , Mucosa Respiratória/metabolismo , Vírus Sincicial Respiratório Humano/crescimento & desenvolvimento , Tropismo , Proteínas Virais/metabolismo
5.
Front Oncol ; 10: 589218, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33489885

RESUMO

The development, maintenance and metastasis of solid tumors are highly dependent on the formation of blood and lymphatic vessels from pre-existing ones through a series of processes that are respectively known as angiogenesis and lymphangiogenesis. Both are mediated by specific growth-stimulating molecules, such as the vascular endothelial growth factor (VEGF) and adrenomedullin (AM), secreted by diverse cell types which involve not only the cancerogenic ones, but also those constituting the tumor stroma (i.e., macrophages, pericytes, fibroblasts, and endothelial cells). In this sense, anti-angiogenic therapy represents a clinically-validated strategy in oncology. Current therapeutic approaches are mainly based on VEGF-targeting agents, which, unfortunately, are usually limited by toxicity and/or tumor-acquired resistance. AM is a ubiquitous peptide hormone mainly secreted in the endothelium with an important involvement in blood vessel development and cardiovascular homeostasis. In this review, we will introduce the state-of-the-art in terms of AM physiology, while putting a special focus on its pro-tumorigenic role, and discuss its potential as a therapeutic target in oncology. A large amount of research has evidenced AM overexpression in a vast majority of solid tumors and a correlation between AM levels and disease stage, progression and/or vascular density has been observed. The analysis presented here indicates that the involvement of AM in the pathogenesis of cancer arises from: 1) direct promotion of cell proliferation and survival; 2) increased vascularization and the subsequent supply of nutrients and oxygen to the tumor; 3) and/or alteration of the cell phenotype into a more aggressive one. Furthermore, we have performed a deep scrutiny of the pathophysiological prominence of each of the AM receptors (AM1 and AM2) in different cancers, highlighting their differential locations and functions, as well as regulatory mechanisms. From the therapeutic point of view, we summarize here an exhaustive series of preclinical studies showing a reduction of tumor angiogenesis, metastasis and growth following treatment with AM-neutralizing antibodies, AM receptor antagonists, or AM receptor interference. Anti-AM therapy is a promising strategy to be explored in oncology, not only as an anti-angiogenic alternative in the context of acquired resistance to VEGF treatment, but also as a potential anti-metastatic approach.

6.
Viruses ; 11(10)2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658630

RESUMO

Human respiratory syncytial virus (HRSV) is a major cause of pediatric infection and also causes disease in the elderly and those with underlying respiratory problems. There is no vaccine for HRSV and anti-viral therapeutics are not broadly applicable. To investigate the effect of HRSV biology in children, nasopharyngeal aspirates were taken from children with different viral loads and a combined high throughput RNAseq and label free quantitative proteomics approach was used to characterize the nucleic acid and proteins in these samples. HRSV proteins were identified in the nasopharyngeal aspirates from infected children, and their abundance correlated with viral load (Ct value), confirming HRSV infection. Analysis of the HRSV genome indicated that the children were infected with sub-group A virus and that minor variants in nucleotide frequency occurred in discrete clusters along the HRSV genome, and within a patient clustered distinctly within the glycoprotein gene. Data from the samples were binned into four groups; no-HRSV infection (control), high viral load (Ct < 20), medium viral load (Ct = 20-25), and low viral load (Ct > 25). Cellular proteins associated with the anti-viral response (e.g., ISG15) were identified in the nasopharyngeal aspirates and their abundance was correlated with viral load. These combined approaches have not been used before to study HRSV biology in vivo and can be readily applied to the study the variation of virus host interactions.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano/genética , Criança , Pré-Escolar , Citocinas/análise , Citocinas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Interações entre Hospedeiro e Microrganismos , Humanos , Lactente , Boca/virologia , Mucosa Nasal/virologia , Proteômica , RNA Viral/genética , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Infecções Respiratórias/virologia , Ubiquitinas/análise , Ubiquitinas/genética , Carga Viral , Proteínas Virais/genética
7.
Pathogens ; 8(3)2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31331089

RESUMO

The airway epithelium is the primary target of respiratory syncytial virus infection. It is an important component of the antiviral immune response. It contributes to the recruitment and activation of innate immune cells from the periphery through the secretion of cytokines and chemokines. This paper provides a broad review of the cytokines and chemokines secreted from human airway epithelial cell models during respiratory syncytial virus (RSV) infection based on a comprehensive literature review. Epithelium-derived chemokines constitute most inflammatory mediators secreted from the epithelium during RSV infection. This suggests chemo-attraction of peripheral immune cells, such as monocytes, neutrophils, eosinophils, and natural killer cells as a key function of the epithelium. The reports of epithelium-derived cytokines are limited. Recent research has started to identify novel cytokines, the functions of which remain largely unknown in the wider context of the RSV immune response. It is argued that the correct choice of in vitro models used for investigations of epithelial immune functions during RSV infection could facilitate greater progress in this field.

8.
PLoS One ; 12(2): e0171681, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28187208

RESUMO

Receptors implicated in cough hypersensitivity are transient receptor potential vanilloid 1 (TRPV1), transient receptor potential cation channel, Subfamily A, Member 1 (TRPA1) and acid sensing ion channel receptor 3 (ASIC3). Respiratory viruses, such as respiratory syncytial virus (RSV) and measles virus (MV) may interact directly and/or indirectly with these receptors on sensory nerves and epithelial cells in the airways. We used in vitro models of sensory neurones (SHSY5Y or differentiated IMR-32 cells) and human bronchial epithelium (BEAS-2B cells) as well as primary human bronchial epithelial cells (PBEC) to study the effect of MV and RSV infection on receptor expression. Receptor mRNA and protein levels were examined by qPCR and flow cytometry, respectively, following infection or treatment with UV inactivated virus, virus-induced soluble factors or pelleted virus. Concentrations of a range of cytokines in resultant BEAS-2B and PBEC supernatants were determined by ELISA. Up-regulation of TRPV1, TRPA1 and ASICS3 expression occurred by 12 hours post-infection in each cell type. This was independent of replicating virus, within the same cell, as virus-induced soluble factors alone were sufficient to increase channel expression. IL-8 and IL-6 increased in infected cell supernatants. Antibodies against these factors inhibited TRP receptor up-regulation. Capsazepine treatment inhibited virus induced up-regulation of TRPV1 indicating that these receptors are targets for treating virus-induced cough.


Assuntos
Canais Iônicos Sensíveis a Ácido/genética , Canais de Cálcio/genética , Sarampo/metabolismo , Proteínas do Tecido Nervoso/genética , Mucosa Respiratória/metabolismo , Infecções por Vírus Respiratório Sincicial/metabolismo , Canais de Cátion TRPV/genética , Canais de Potencial de Receptor Transitório/genética , Regulação para Cima , Canais Iônicos Sensíveis a Ácido/metabolismo , Canais de Cálcio/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Proteínas do Tecido Nervoso/metabolismo , Mucosa Respiratória/virologia , Canal de Cátion TRPA1 , Canais de Cátion TRPV/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo
9.
J Virol ; 90(10): 4876-4888, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26656699

RESUMO

UNLABELLED: Human respiratory syncytial virus (HRSV) is a major cause of serious respiratory tract infection. Treatment options include administration of ribavirin, a purine analog, although the mechanism of its anti-HRSV activity is unknown. We used transcriptome sequencing (RNA-seq) to investigate the genome mutation frequency and viral mRNA accumulation in HRSV-infected cells that were left untreated or treated with ribavirin. In the absence of ribavirin, HRSV-specific transcripts accounted for up to one-third of total RNA reads from the infected-cell RNA population. Ribavirin treatment resulted in a >90% reduction in abundance of viral mRNA reads, while at the same time no such reduction was detected for the abundance of cellular transcripts. The presented data reveal that ribavirin significantly increases the frequency of HRSV-specific RNA mutations, suggesting a direct influence on the fidelity of the HRSV polymerase. The presented data show that transitions and transversions occur during HRSV replication and that these changes occur in hot spots along the HRSV genome. Examination of nucleotide substitution rates in the viral genome indicated an increase in the frequency of transition but not transversion mutations in the presence of ribavirin. In addition, our data indicate that in the continuous cell types used and at the time points analyzed, the abundances of some HRSV mRNAs do not reflect the order in which the mRNAs are transcribed. IMPORTANCE: Human respiratory syncytial virus (HRSV) is a major pediatric pathogen. Ribavirin can be used in children who are extremely ill to reduce the amount of virus and to lower the burden of disease. Ribavirin is used as an experimental therapy with other viruses. The mechanism of action of ribavirin against HRSV is not well understood, although it is thought to increase the mutation rate of the viral polymerase during replication. To investigate this hypothesis, we used a high-resolution approach that allowed us to determine the genetic sequence of the virus to a great depth of coverage. We found that ribavirin did not cause a detectable change in the relative amounts of viral mRNA transcripts. However, we found that ribavirin treatment did indeed cause an increase in the number of mutations, which was associated with a decrease in virus production.


Assuntos
Antivirais/farmacologia , Mutação , RNA Viral/genética , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Vírus Sincicial Respiratório Humano/fisiologia , Ribavirina/farmacologia , Transcriptoma , Genoma Viral/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Interferon beta/metabolismo , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/enzimologia , Vírus Sincicial Respiratório Humano/genética , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Ensaio de Placa Viral , Ligação Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
10.
J Virol ; 89(2): 917-30, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25355874

RESUMO

UNLABELLED: The human respiratory syncytial virus (HRSV) core viral RNA polymerase comprises the large polymerase protein (L) and its cofactor, the phosphoprotein (P), which associate with the viral ribonucleoprotein complex to replicate the genome and, together with the M2-1 protein, transcribe viral mRNAs. While cellular proteins have long been proposed to be involved in the synthesis of HRSV RNA by associating with the polymerase complex, their characterization has been hindered by the difficulty of purifying the viral polymerase from mammalian cell culture. In this study, enhanced green fluorescent protein (EGFP)-tagged L- and P-protein expression was coupled with high-affinity anti-GFP antibody-based immunoprecipitation and quantitative proteomics to identify cellular proteins that interacted with either the L- or the P-proteins when expressed as part of a biologically active viral RNP. Several core groups of cellular proteins were identified that interacted with each viral protein including, in both cases, protein chaperones. Ablation of chaperone activity by using small-molecule inhibitors confirmed previously reported studies which suggested that this class of proteins acted as positive viral factors. Inhibition of HSP90 chaperone function in the current study showed that HSP90 is critical for L-protein function and stability, whether in the presence or absence of the P-protein. Inhibition studies suggested that HSP70 also disrupts virus biology and might help the polymerase remodel the nucleocapsid to allow RNA synthesis to occur efficiently. This indicated a proviral role for protein chaperones in HRSV replication and demonstrates that the function of cellular proteins can be targeted as potential therapeutics to disrupt virus replication. IMPORTANCE: Human respiratory syncytial virus (HRSV) represents a major health care and economic burden, being the main cause of severe respiratory infections in infants worldwide. No vaccine or effective therapy is available. This study focused on identifying those cellular proteins that potentially interact specifically with the viral proteins that are central to virus replication and transcription, with a view to providing potential targets for the development of a specific, transient therapeutic which disrupts virus biology but prevents the emergence of resistance, while maintaining cell viability. In particular, protein chaperones (heat shock proteins 70 and 90), which aid protein folding and function, were identified. The mechanism by which these chaperones contribute to virus biology was tested, and this study demonstrates to the field that cellular protein chaperones may be required for maintaining the correct folding and therefore functionality of specific proteins within the virus replication complex.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Interações Hospedeiro-Patógeno , Chaperonas Moleculares/metabolismo , Mapas de Interação de Proteínas , Vírus Sincicial Respiratório Humano/fisiologia , Proteínas Virais/metabolismo , Replicação Viral , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Ligação Proteica , Mapeamento de Interação de Proteínas , Estabilidade Proteica
11.
J Proteome Res ; 13(11): 5120-35, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25158218

RESUMO

Viral pathogenesis in the infected cell is a balance between antiviral responses and subversion of host-cell processes. Many viral proteins specifically interact with host-cell proteins to promote virus biology. Understanding these interactions can lead to knowledge gains about infection and provide potential targets for antiviral therapy. One such virus is Ebola, which has profound consequences for human health and causes viral hemorrhagic fever where case fatality rates can approach 90%. The Ebola virus VP24 protein plays a critical role in the evasion of the host immune response and is likely to interact with multiple cellular proteins. To map these interactions and better understand the potential functions of VP24, label-free quantitative proteomics was used to identify cellular proteins that had a high probability of forming the VP24 cellular interactome. Several known interactions were confirmed, thus placing confidence in the technique, but new interactions were also discovered including one with ATP1A1, which is involved in osmoregulation and cell signaling. Disrupting the activity of ATP1A1 in Ebola-virus-infected cells with a small molecule inhibitor resulted in a decrease in progeny virus, thus illustrating how quantitative proteomics can be used to identify potential therapeutic targets.


Assuntos
Ebolavirus/patogenicidade , Mapeamento de Interação de Proteínas/métodos , ATPase Trocadora de Sódio-Potássio/metabolismo , Proteínas Virais/metabolismo , Linhagem Celular/efeitos dos fármacos , Linhagem Celular/virologia , Ebolavirus/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293/efeitos dos fármacos , Células HEK293/virologia , Interações Hospedeiro-Patógeno , Humanos , Espectrometria de Massas/métodos , Ouabaína/farmacologia , Proteômica/métodos , Reprodutibilidade dos Testes , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Proteínas Virais/genética
12.
PLoS One ; 8(7): e69390, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23894466

RESUMO

Mixed infections are one of the major therapeutic challenges, as the current strategies have had limited success. One of the most common and widespread conditions of mixed infection is respiratory syncytial virus-mediated pathology of the respiratory tract in children. There is a dire need for the development of novel therapeutic approaches during mixed infections. Therapeutic intravenous immunoglobulin preparations, obtained from plasma pools of healthy donors have been used in immune deficiencies. This study was thus designed to characterize the functional efficacy of RSV-specific antibodies in IVIg. To explore the functional ability of these affinity-purified RSV-specific antibodies, the antibody-dependent and complement dependent cytotoxicity was determined using peripheral cells of healthy donors. This study demonstrates the existence of highly potent RSV-specific antibodies in IVIg preparations and provides the basis for the use of IVIg as broad-spectrum protective shield to RSV-infected children during mixed infections.


Assuntos
Anticorpos Antivirais/imunologia , Anticorpos Antivirais/isolamento & purificação , Citotoxicidade Celular Dependente de Anticorpos , Imunoglobulinas Intravenosas , Vírus Sinciciais Respiratórios/imunologia , Linhagem Celular , Criança , Proteínas do Sistema Complemento/imunologia , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/isolamento & purificação
13.
ACS Nano ; 7(3): 2042-55, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23373658

RESUMO

The efficacious delivery of antigens to antigen-presenting cells (APCs), in particular, to dendritic cells (DCs), and their subsequent activation remains a significant challenge in the development of effective vaccines. This study highlights the potential of dissolving microneedle (MN) arrays laden with nanoencapsulated antigen to increase vaccine immunogenicity by targeting antigen specifically to contiguous DC networks within the skin. Following in situ uptake, skin-resident DCs were able to deliver antigen-encapsulated poly-d,l-lactide-co-glycolide (PGLA) nanoparticles to cutaneous draining lymph nodes where they subsequently induced significant expansion of antigen-specific T cells. Moreover, we show that antigen-encapsulated nanoparticle vaccination via microneedles generated robust antigen-specific cellular immune responses in mice. This approach provided complete protection in vivo against both the development of antigen-expressing B16 melanoma tumors and a murine model of para-influenza, through the activation of antigen-specific cytotoxic CD8(+) T cells that resulted in efficient clearance of tumors and virus, respectively. In addition, we show promising findings that nanoencapsulation facilitates antigen retention into skin layers and provides antigen stability in microneedles. Therefore, the use of biodegradable polymeric nanoparticles for selective targeting of antigen to skin DC subsets through dissolvable MNs provides a promising technology for improved vaccination efficacy, compliance, and coverage.


Assuntos
Antígenos/administração & dosagem , Células Dendríticas/imunologia , Nanocápsulas/administração & dosagem , Imunidade Adaptativa , Animais , Peptídeos Catiônicos Antimicrobianos/química , Sistemas de Liberação de Medicamentos , Feminino , Injeções Intradérmicas , Masculino , Melanoma Experimental/imunologia , Melanoma Experimental/prevenção & controle , Camundongos , Camundongos Transgênicos , Nanocápsulas/química , Nanotecnologia , Agulhas , Ovalbumina/administração & dosagem , Ovalbumina/imunologia , Infecções por Respirovirus/imunologia , Infecções por Respirovirus/prevenção & controle , Vírus Sendai/imunologia , Pele/imunologia , Linfócitos T Citotóxicos/imunologia , Vacinas/administração & dosagem
14.
Virol J ; 8: 43, 2011 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-21272337

RESUMO

BACKGROUND: Human respiratory syncytial virus (RSV) causes severe respiratory disease in infants. Airway epithelial cells are the principle targets of RSV infection. However, the mechanisms by which it causes disease are poorly understood. Most RSV pathogenesis data are derived using laboratory-adapted prototypic strains. We hypothesized that such strains may be poorly representative of recent clinical isolates in terms of virus/host interactions in primary human bronchial epithelial cells (PBECs). METHODS: To address this hypothesis, we isolated three RSV strains from infants hospitalized with bronchiolitis and compared them with the prototypic RSV A2 in terms of cytopathology, virus growth kinetics and chemokine secretion in infected PBEC monolayers. RESULTS: RSV A2 rapidly obliterated the PBECs, whereas the clinical isolates caused much less cytopathology. Concomitantly, RSV A2 also grew faster and to higher titers in PBECs. Furthermore, dramatically increased secretion of IP-10 and RANTES was evident following A2 infection compared with the clinical isolates. CONCLUSIONS: The prototypic RSV strain A2 is poorly representative of recent clinical isolates in terms of cytopathogenicity, viral growth kinetics and pro-inflammatory responses induced following infection of PBEC monolayers. Thus, the choice of RSV strain may have important implications for future RSV pathogenesis studies.


Assuntos
Células Epiteliais/virologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/isolamento & purificação , Vírus Sincicial Respiratório Humano/patogenicidade , Bronquiolite Viral/virologia , Quimiocinas/metabolismo , Criança , Pré-Escolar , Efeito Citopatogênico Viral , Humanos , Lactente , Mucosa Respiratória/virologia , Vírus Sincicial Respiratório Humano/crescimento & desenvolvimento , Virulência , Replicação Viral
15.
J Virol ; 84(22): 11718-28, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20810726

RESUMO

Sendai virus (SeV) is a murine respiratory virus of considerable interest as a gene therapy or vaccine vector, as it is considered nonpathogenic in humans. However, little is known about its interaction with the human respiratory tract. To address this, we developed a model of respiratory virus infection based on well-differentiated primary pediatric bronchial epithelial cells (WD-PBECs). These physiologically authentic cultures are comprised of polarized pseudostratified multilayered epithelium containing ciliated, goblet, and basal cells and intact tight junctions. To facilitate our studies, we rescued a replication-competent recombinant SeV expressing enhanced green fluorescent protein (rSeV/eGFP). rSeV/eGFP infected WD-PBECs efficiently and progressively and was restricted to ciliated and nonciliated cells, not goblet cells, on the apical surface. Considerable cytopathology was evident in the rSeV/eGFP-infected cultures postinfection. This manifested itself by ciliostasis, cell sloughing, apoptosis, and extensive degeneration of WD-PBEC cultures. Syncytia were also evident, along with significant basolateral secretion of proinflammatory chemokines, including IP-10, RANTES, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), interleukin 6 (IL-6), and IL-8. Such deleterious responses are difficult to reconcile with a lack of pathogenesis in humans and suggest that caution may be required in exploiting replication-competent SeV as a vaccine vector. Alternatively, such robust responses might constitute appropriate normal host responses to viral infection and be a prerequisite for the induction of efficient immune responses.


Assuntos
Brônquios/citologia , Diferenciação Celular , Células Epiteliais/virologia , Infecções por Respirovirus/virologia , Vírus Sendai/fisiologia , Brônquios/imunologia , Brônquios/patologia , Brônquios/virologia , Células Cultivadas , Criança , Citocinas/imunologia , Efeito Citopatogênico Viral , Células Epiteliais/citologia , Células Epiteliais/imunologia , Células Epiteliais/patologia , Feminino , Humanos , Masculino , Infecções por Respirovirus/imunologia , Infecções por Respirovirus/patologia , Replicação Viral
16.
Virus Res ; 140(1-2): 40-8, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19084562

RESUMO

Reverse genetics has facilitated the use of non-segmented negative strand RNA viruses (NNSV) as vectors. Currently, heterologous gene expression necessitates insertion of extra-numeral transcription units (ENTUs), which may alter the NNSV polar transcription gradient and attenuate growth relative to wild-type (Wt). We hypothesized that rescuing recombinant Sendai Virus (rSeV) with a bicistronic gene might circumvent this attenuation but still allow heterologous open reading frame (ORF) expression. Therefore, we used a 9-nucleotide sequence previously described with internal ribosome entry site (IRES) activity, which, when constructed as several repeats, synergistically increased the level of expression of the second cistron [Chappell, S.A., Edelman, G.M., Mauro, V.P., 2000. A 9-nt segment of a cellular mRNA can function as an internal ribosome entry site (IRES) and when present in linked multiple copies greatly enhances IRES activity. Proc. Natl. Acad. Sci. U.S.A. 97, 1536-1541]. We inserted the Renilla luciferase (rLuc) ORF, preceded by 1, 3 or 7 IRES copies, downstream of the SeV N ORF in an infectious clone. Corresponding rSeVs were successfully rescued. Interestingly, bicistronic rSeVs grew as fast as or faster than Wt rSeV. Furthermore, SeV gene transcription downstream of the N/rLuc gene was either equivalent to, or slightly enhanced, compared to Wt rSeV. Importantly, all rSeV/rLuc viruses efficiently expressed rLuc. IRES repetition increased rLuc expression at a multiplicity of infection of 0.1, although without evidence of synergistic enhancement. In conclusion, our approach provides a novel way of insertion and expression of foreign genes in NNSVs.


Assuntos
Vetores Genéticos , RNA/genética , Proteínas Recombinantes/biossíntese , Vírus Sendai/genética , Animais , Sequência de Bases , Linhagem Celular , DNA Complementar/genética , Regulação Viral da Expressão Gênica , Genoma Viral , Humanos , Dados de Sequência Molecular , Proteínas do Nucleocapsídeo/genética , Fases de Leitura Aberta , Plasmídeos , RNA Viral/genética , Vírus Sendai/crescimento & desenvolvimento , Transcrição Gênica
17.
J Virol ; 81(7): 3428-36, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17251292

RESUMO

Respiratory syncytial virus (RSV) infection causes bronchiolitis and pneumonia in infants. RSV has a linear single-stranded RNA genome encoding 11 proteins, 2 of which are nonstructural (NS1 and NS2). RSV specifically downregulates STAT2 protein expression, thus enabling the virus to evade the host type I interferon response. Degradation of STAT2 requires proteasomal activity and is dependent on the expression of RSV NS1 and NS2 (NS1/2). Here we investigate whether RSV NS proteins can assemble ubiquitin ligase (E3) enzymes to target STAT2 to the proteasome. We demonstrate that NS1 contains elongin C and cullin 2 binding consensus sequences and can interact with elongin C and cullin 2 in vitro; therefore, NS1 has the potential to act as an E3 ligase. By knocking down expression of specific endogenous E3 ligase components using small interfering RNA, NS1/2, or RSV-induced STAT2, degradation is prevented. These results indicate that E3 ligase activity is crucial for the ability of RSV to degrade STAT2. These data may provide the basis for therapeutic intervention against RSV and/or logically designed live attenuated RSV vaccines.


Assuntos
Proteínas Culina/metabolismo , Vírus Sinciciais Respiratórios/metabolismo , Fator de Transcrição STAT2/metabolismo , Fatores de Transcrição/metabolismo , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Linhagem Celular , Proteínas Culina/genética , Elonguina , Humanos , Dados de Sequência Molecular , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , RNA Interferente Pequeno/genética , Vírus Sinciciais Respiratórios/genética , Fator de Transcrição STAT1/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/genética , Ubiquitina/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA