Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Food Chem ; 391: 133196, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35609460

RESUMO

Large amount of wheat proteins by-products are produced during wheat starch manufacture. This work aimed to develop edible films of cast aqueous wheat proteins (WP) and alginate (Al) solutions. The investigation of the microstructure of Al/WP films revealed a more compacted cross-section and homogeneous surface, comparatively to Al films. Those properties could be modified with the increase of WP concentration from 4 to 8 % w/v, as result of electrostatic interactions between WP and Al. Furthermore, the incorporation of WP provided UltraViolet-blocking behaviour (4-fold decrease in the Ultra-Violet-B region). Additionally, the incorporation of WP in the films reduced the water solubility of the Al films. It was also found that by incorporating different amounts of WP the mechanical and Water Vapor Transmission rate (WVTR) properties could also be modified, so the film composition could be adjusted to suit different types of foods and applications (e.g. coatings and packaging).


Assuntos
Alginatos , Filmes Comestíveis , Alginatos/química , Embalagem de Alimentos , Permeabilidade , Polissacarídeos/química , Proteínas/química , Solubilidade , Triticum
2.
ACS Appl Polym Mater ; 4(1): 24-28, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35072077

RESUMO

Osmotic dehydration (OD) was introduced as a method to reproducibly tune the water content and porosity of cellulose nanofiber (CNF) hydrogels. The hierarchical porosity was followed by electron microscopy (pores with a >100 µm diameter) and thermoporosimetry (mesopores), together with mechanical testing, in hydrogels with solid contents ranging from 0.7 to 12 wt %. Furthermore, a reciprocal correlation between proton conductivity and the ratio of water bound to the nanocellulose network was established, suggesting the potential of these systems toward tunable energy materials.

3.
Carbohydr Polym ; 266: 118114, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34044931

RESUMO

Direct-ink-writing (DIW) of hydrogels has become an attractive research area due to its capability to fabricate intricate, complex, and highly customizable structures at ambient conditions for various applications, including biomedical purposes. In the current study, cellulose nanofibrils reinforced aloe vera bio-hydrogels were utilized to develop 3D geometries through the DIW technique. The hydrogels revealed excellent viscoelastic properties enabled extruding thin filaments through a nozzle with a diameter of 630 µm. Accordingly, the lattice structures were printed precisely with a suitable resolution. The 3D-printed structures demonstrated significant wet stability due to the high aspect ratio of the nano- and microfibrils cellulose, reinforced the hydrogels, and protected the shape from extensive shrinkage upon drying. Furthermore, all printed samples had a porosity higher than 80% and a high-water uptake capacity of up to 46 g/g. Altogether, these fully bio-based, porous, and wet stable 3D structures might have an opportunity in biomedical fields.


Assuntos
Aloe/química , Celulose/química , Hidrogéis/química , Tinta , Nanofibras/química , Impressão Tridimensional , Porosidade , Substâncias Viscoelásticas/química , Viscosidade
4.
ACS Appl Mater Interfaces ; 12(42): 48027-48039, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33035422

RESUMO

Today's consumer electronics are made from nonrenewable and toxic components. They are also rigid, bulky, and manufactured in an energy-inefficient manner via CO2-generating routes. Though petroleum-based polymers such as polyethylene terephthalate and polyethylene naphthalate can address the rigidity issue, they have a large carbon footprint and generate harmful waste. Scalable routes for manufacturing electronics that are both flexible and ecofriendly (Fleco) could address the challenges in the field. Ideally, such substrates must incorporate into electronics without compromising device performance. In this work, we demonstrate that a new type of wood-based [nanocellulose (NC)] material made via nanosilicate (NS) reinforcement can yield flexible electronics that can bend and roll without loss of electrical function. Specifically, the NSs interact electrostatically with NC to reinforce thermal and mechanical properties. For instance, films containing 34 wt % of NS displayed an increased young's modulus (1.5 times), thermal stability (290 → 310 °C), and a low coefficient of thermal expansion (40 ppm/K). These films can also easily be separated and renewed into new devices through simple and low-energy processes. Moreover, we used very cheap and environmentally friendly NC from American Value Added Pulping (AVAP) technology, American Process, and therefore, the manufacturing cost of our NS-reinforced NC paper is much cheaper ($0.016 per dm-2) than that of conventional NC-based substrates. Looking forward, the methodology highlighted herein is highly attractive as it can unlock the secrets of Fleco electronics and transform otherwise bulky, rigid, and "difficult-to-process" rigid circuits into more aesthetic and flexible ones while simultaneously bringing relief to an already-overburdened ecosystem.

5.
ACS Omega ; 5(25): 15362-15369, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32637810

RESUMO

The effects of crystalline morphology and presence of nanoparticles such as cellulose nanofibers (CNFs), organically modified nanoclay (C30B), or a combination of both on water vapor sorption and diffusion in polylactide (PLA) were evaluated by a quartz spring microbalance (QSM). It was found that the large spherulite size induced by high-temperature processing leads to an increase in water sorption and a substantial reduction of diffusion with increasing crystallinity. Contrarily, small-sized spherulites, arising after low-temperature processing during solvent-casting, showed a different behavior with a slight decrease in both water vapor sorption and diffusion with increasing crystallinity. These observations suggest that solvent-casting at low temperatures should not be used to predict the properties a material will show after industrial-scale processing. From the analysis of the nanocomposite materials, it was concluded that nanoparticles affected the material's properties not only by themselves but also by modifying the crystalline morphology. Interestingly, this led to CNF showing similar performance to C30B, decreasing water diffusivity (21 vs 27%) on isothermally crystallized materials despite its less favorable geometry. Additionally, the incorporation of 1 wt % CNF and C30B decreased water vapor transmission rate (WVTR) by 24% under an amorphous state but by 44% in a crystallized state, which makes hybrid CNF/C30B composites a promising food packaging material.

6.
Mater Sci Eng C Mater Biol Appl ; 61: 180-9, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26838839

RESUMO

Limitations in controlling scaffold architecture using traditional fabrication techniques are a problem when constructing engineered tissues/organs. Recently, integration of two pore architectures to generate dual-pore scaffolds with tailored physical properties has attracted wide attention in tissue engineering community. Such scaffolds features primary structured pores which can efficiently enhance nutrient/oxygen supply to the surrounding, in combination with secondary random pores, which give high surface area for cell adhesion and proliferation. Here, we present a new technique to fabricate dual-pore scaffolds for various tissue engineering applications where 3D printing of poly(vinyl alcohol) (PVA) mould is combined with salt leaching process. In this technique the sacrificial PVA mould, determining the structured pore architecture, was filled with salt crystals to define the random pore regions of the scaffold. After crosslinking the casted polymer the combined PVA-salt mould was dissolved in water. The technique has advantages over previously reported ones, such as automated assembly of the sacrificial mould, and precise control over pore architecture/dimensions by 3D printing parameters. In this study, polydimethylsiloxane and biodegradable poly(ϵ-caprolactone) were used for fabrication. However, we show that this technique is also suitable for other biocompatible/biodegradable polymers. Various physical and mechanical properties of the dual-pore scaffolds were compared with control scaffolds with either only structured or only random pores, fabricated using previously reported methods. The fabricated dual-pore scaffolds supported high cell density, due to the random pores, in combination with uniform cell distribution throughout the scaffold, and higher cell proliferation and viability due to efficient nutrient/oxygen transport through the structured pores. In conclusion, the described fabrication technique is rapid, inexpensive, scalable, and compatible with different polymers, making it suitable for engineering various large scale organs/tissues.


Assuntos
Teste de Materiais , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais/química , Células Hep G2 , Humanos
7.
Biomacromolecules ; 17(4): 1321-9, 2016 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-26902925

RESUMO

Scaffolds with multiple functionalities have attracted widespread attention in the field of tissue engineering due to their ability to control cell behavior through various cues, including mechanical, chemical, and electrical. Fabrication of such scaffolds from clinically approved materials is currently a huge challenge. The goal of this work was to fabricate a tissue engineering scaffold from clinically approved materials with the capability of delivering biomolecules and direct cell fate. We have used a simple 3D printing approach, that combines polymer casting with supercritical fluid technology to produce 3D interpenetrating polymer network (IPN) scaffold of silicone-poly(2-hydroxyethyl methacrylate)-co-poly(ethylene glycol) methyl ether acrylate (pHEMA-co-PEGMEA). The pHEMA-co-PEGMEA IPN materials were employed to support growth of human mesenchymal stem cells (hMSC), resulting in high cell viability and metabolic activity over a 3 weeks period. In addition, the IPN scaffolds support 3D tissue formation inside the porous scaffold with well spread cell morphology on the surface of the scaffold. As a proof of concept, sustained doxycycline (DOX) release from pHEMA-co-PEGMEA IPN was demonstrated and the biological activity of released drug from IPN was confirmed using a DOX regulated green fluorescent reporter (GFP) gene expression assay with HeLa cells. Given its unique mechanical and drug releasing characteristics, IPN scaffolds may be used for directing stem cell differentiation by releasing various chemicals from its hydrogel network.


Assuntos
Materiais Biocompatíveis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Hidrogéis/farmacologia , Células-Tronco Mesenquimais/citologia , Silicones/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxiciclina/química , Liberação Controlada de Fármacos , Células HeLa , Humanos , Hidrogéis/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Metacrilatos/química , Impressão Tridimensional
8.
Mater Sci Eng C Mater Biol Appl ; 55: 569-78, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26117791

RESUMO

One of the major challenges in producing large scale engineered tissue is the lack of ability to create large highly perfused scaffolds in which cells can grow at a high cell density and viability. Here, we explore 3D printed polyvinyl alcohol (PVA) as a sacrificial mould in a polymer casting process. The PVA mould network defines the channels and is dissolved after curing the polymer casted around it. The printing parameters determined the PVA filament density in the sacrificial structure and this density resulted in different stiffness of the corresponding elastomer replica. It was possible to achieve 80% porosity corresponding to about 150 cm(2)/cm(3) surface to volume ratio. The process is easily scalable as demonstrated by fabricating a 75 cm(3) scaffold with about 16,000 interconnected channels (about 1m(2) surface area) and with a channel to channel distance of only 78 µm. To our knowledge this is the largest scaffold ever to be produced with such small feature sizes and with so many structured channels. The fabricated scaffolds were applied for in-vitro culturing of hepatocytes over a 12-day culture period. Smaller scaffolds (6×4 mm) were tested for cell culturing and could support homogeneous cell growth throughout the scaffold. Presumably, the diffusion of oxygen and nutrient throughout the channel network is rapid enough to support cell growth. In conclusion, the described process is scalable, compatible with cell culture, rapid, and inexpensive.


Assuntos
Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais , Células Hep G2 , Humanos , Solubilidade , Propriedades de Superfície , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA