Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 2542, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538051

RESUMO

Statins are a class of drug widely prescribed for the prevention of cardiovascular disease, with pleiotropic cellular effects. Statins inhibit HMG-CoA reductase (HMGCR), which converts the metabolite HMG-CoA into mevalonate. Recent discoveries have shown HMG-CoA is a reactive metabolite that can non-enzymatically modify proteins and impact their activity. Therefore, we predicted that inhibition of HMGCR by statins might increase HMG-CoA levels and protein modifications. Upon statin treatment, we observe a strong increase in HMG-CoA levels and modification of only a single protein. Mass spectrometry identifies this protein as fatty acid synthase (FAS), which is modified on active site residues and, importantly, on non-lysine side-chains. The dynamic modifications occur only on a sub-pool of FAS that is located near HMGCR and alters cellular signaling around the ER and Golgi. These results uncover communication between cholesterol and lipid biosynthesis by the substrate of one pathway inhibiting another in a rapid and reversible manner.


Assuntos
Doenças Cardiovasculares , Inibidores de Hidroximetilglutaril-CoA Redutases , Doenças Cardiovasculares/prevenção & controle , Colesterol/metabolismo , Ácido Graxo Sintases , Humanos , Hidroximetilglutaril-CoA Redutases/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Ácido Mevalônico/metabolismo
2.
Trends Endocrinol Metab ; 30(1): 1-3, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30442533

RESUMO

Fatty acid synthesis (FAS) in mitochondria produces a key metabolite called lipoic acid. However, a new study by Van Vranken et al.[1] (Mol. Cell 2018;71:567-580) shows that mitochondrial FAS regulates the assembly of oxidative phosphorylation complexes, thereby functioning as a nutrient sensor for mitochondrial respiration.


Assuntos
Acetilcoenzima A/metabolismo , Proteína de Transporte de Acila/metabolismo , Eucariotos/metabolismo , Ácidos Graxos/metabolismo , Mitocôndrias/metabolismo , Respiração
3.
Trends Biochem Sci ; 43(5): 369-379, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29478872

RESUMO

In recent years, our understanding of the scope and diversity of protein post-translational modifications (PTMs) has rapidly expanded. In particular, mitochondrial proteins are decorated with an array of acyl groups that can occur non-enzymatically. Interestingly, these modifying chemical moieties are often associated with intermediary metabolites from core metabolic pathways. In this Review, we describe biochemical reactions and biological mechanisms that activate carbon metabolites for protein PTM. We explore the emerging links between the intrinsic reactivity of metabolites, non-enzymatic protein acylation, and possible signaling roles for this system. Finally, we propose a model of 'carbon stress', similar to oxidative stress, as an effective way to conceptualize the relationship between widespread protein acylation, nutrient sensing, and metabolic homeostasis.


Assuntos
Acil Coenzima A/metabolismo , Carbono/metabolismo , Acil Coenzima A/química , Animais , Carbono/química , Humanos , Estresse Oxidativo , Processamento de Proteína Pós-Traducional , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA