Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 33(15)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-34965523

RESUMO

Cu with nanotwin (NT) possesses great electrical, mechanical, and thermal properties and has potential for electronic applications. Various studies have reported the effect of NT orientation on Cu mechanical properties. However, its effect on Cu stress-relaxation behavior has not been clarified, particularly in nano-scale. In this study, Cu nanopillars with various orientations were examined by a picoindenter under constant strain and observed byin situTEM. The angles between the twin plane and the loading direction in the examined nanopillars were 0°, 60°, to 90°, and a benchmark pillar of single-crystal Cu without NT was examined. The stress drops were respectively 10%, 80%, 4%, and 50%. Owing to the interaction by NT, the dislocation behavior in nanopillars was different from that in bulk or in thin film samples. Especially, the rapid slip path of dislocations to go to the free surface of the nanopillar induced a dislocation-free zone in the 0° nanopillar, which led to work-softening. On the contrary, a high dislocation density was observed in the 90° nanopillar, which was generated by dislocation interaction and obstruction of dislocation slip by twin planes, and it led to work-hardening. The findings reveal the NT orientation in Cu nanopillars affected stress relaxation significantly.

2.
Materials (Basel) ; 14(21)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34771919

RESUMO

In microelectronic packaging technology for three-dimensional integrated circuits (3D ICs), Cu-to-Cu direct bonding appears to be the solution to solve the problems of Joule heating and electromigration (EM) in solder microbumps under 10 µm in diameter. However, EM will occur in Cu-Cu bumps when the current density is over 106 A/cm2. The surface, grain boundary, and the interface between the Cu and TiW adhesion layer are the three major diffusion paths in EM tests, and which one may lead to early failure is of interest. This study showed that bonding strength affects the outcome. First, if the bonding strength is not strong enough to sustain the thermal mismatch of materials during EM tests, the bonding interface will fracture and lead to an open circuit of early failure. Second, if the bonding strength can sustain the bonding structure, voids will form at the passivation contact area between the Cu-Cu bump and redistribution layer (RDL) due to current crowding. When the void grows along the passivation interface and separates the Cu-Cu bump and RDL, an open circuit can occur, especially when the current density and temperature are severe. Third, under excellent bonding, when the voids at the contact area between the Cu-Cu bump and RDL do not merge together, the EM lifetime can be more than 5000 h.

3.
Sci Rep ; 11(1): 20449, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34650223

RESUMO

Uni-modal, not bi-modal, of abnormal grain growth has been observed in (111) oriented and nano-twinned Cu films. Because of the highly anisotropic microstructure, our kinetic analysis and calculation showed that it is the mobility which dominates the uni-modal growth, in which the lateral growth rate can be two orders of magnitude higher than the vertical growth rate. As a consequence, the abnormal grain growth has been converted from bi-modal to uni-modal.

4.
Sci Rep ; 10(1): 16566, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33024166

RESUMO

Fine grained and nanotwinned Au has many excellent properties and is widely used in electronic devices. We have fabricated [Formula: see text] preferred-oriented Au thin films by DC plating at 5 mA/cm2. Microstructure analysis of the films show a unique fine grain structure with a twin formation. Hardness tests performed on electroplated [Formula: see text] Au films show a hardness 47% greater than random and untwinned Au. We then achieved direct bonding between two Au [Formula: see text] surfaces operating at 200 °C for an hour in a vacuum oven. The highly-oriented [Formula: see text] nanotwinned Au films could be an ideal material in many gold products.

5.
Sci Rep ; 9(1): 14788, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31616021

RESUMO

We applied Simmons-Balluffi methods, positron measurements, and neutron diffraction to estimate the vacancy of CoCrFeNi and CoCrFeMnNi high-entropy alloys (HEAs) using Cu as a benchmark. The corresponding formation enthalpies and associated entropies of the HEAs and Cu were calculated. The vacancy-dependent effective free volumes in both CoCrFeNi and CoCrFeMnNi alloys are greater than those in Cu, implying the easier formation of vacancies by lattice structure relaxation of HEAs at elevated temperatures. Spatially resolved synchrotron X-ray measurements revealed different characteristics of CoCrFeNi and CoCrFeMnNi HEAs subjected to quasi-equilibrium conditions at high temperatures. Element-dependent behavior revealed by X-ray fluorescence (XRF) mapping indicates the effect of Mn on the Cantor Alloy.

6.
Materials (Basel) ; 11(12)2018 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-30477274

RESUMO

Highly (111)-oriented Cu pillar-bumps were bonded to highly (111)-oriented Cu films at temperatures ranging from 200 °C/100 °C to 350 °C/100 °C in N2 ambient conditions. The microstructures of the bonded interfaces affected the shear strength performance of the bonded Cu joints. The bonded interfaces at 300 °C/100 °C and 350 °C/100 °C had far fewer voids than interfaces bonded at 200 °C/100 °C and 250 °C/100 °C. In addition, grain growth took place across the bonding interfaces at temperatures above 300 °C/100 °C. The corresponding orientation map (OIM) showed the preferred orientation of large grown grains to be <100>. Shear tests revealed that the fracture mode was brittle for joints bonded at 200 °C/100 °C, but became ductile after bonded above 300 °C/100 °C. Based on the results, we found that voids and grain growth behavior play import roles in the shear strength performance of bonded Cu joints.

7.
Sci Rep ; 8(1): 13910, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30224717

RESUMO

A vacuum-free Cu-to-Cu direct bonding by using (111)-oriented and nanotwinned Cu has been achieved. A fast bonding process occurs in 5 min under a temperature gradient between 450 and 100 °C. It is verified by grain growth across the bonded interface. To investigate the grain growth behavior, further annealing in the temperature gradient, as well as in a reversed temperature gradient, was performed. They showed similar recrystallization behavior with de-twinning. To analyze the de-twinning, we recall the classic model of annealing twin formation by Fullman and Fisher as comparison. Our case is opposite to the model of Fullman and Fisher. A mechanism of direct bonding by surface diffusion creep is proposed.

8.
Sci Rep ; 8(1): 10671, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30006591

RESUMO

Cu-to-Cu direct bonding has attracted attention because it has been implemented in CMOS image sensors. Prior to the bonding, the oxides on the Cu surface needs to be removed, yet the surface may oxidize right after cleaning. Thus, oxidation is an inherent issue in the application of Cu direct bonding. Our previous study reported that Cu direct bonding can be achieved below 250 °C by using (111)-oriented nanotwinned Cu because it has the fastest surface diffusivity. However, the oxidation behavior of the nanotwinned Cu is unclear. Here, we examined the oxidation behavior of highly (111) and (200) oriented, and randomly-oriented Cu films at temperatures ranging from 120 to 250 °C. Transmission electron microscopy was used to measure the oxide thickness. The results show that the oxidation rate of (111)-oriented nanotwinned Cu has the lowest oxidation rate among them. Together, it is unique to possess the combination of the fastest surface diffusivity and the lowest oxidation rate.

9.
Nat Commun ; 9(1): 340, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29362356

RESUMO

Cavitation and hollow structures can be introduced in nanomaterials via the Kirkendall effect in an alloying or reaction system. By introducing dense nanoscale twins into copper nanowires (CuNWs), we change the surface structure and prohibit void formation in oxidation of the nanowires. The nanotwinned CuNW exhibits faceted surfaces of very few atomic steps as well as a very low vacancy generation rate at copper/oxide interfaces. Together they lower the oxidation rate and eliminate void formation at the copper/oxide interface. We propose that the slow reaction rate together with the highly effective vacancy absorption at interfaces leads to a lattice shift in the oxidation reaction. Our findings suggest that the nanoscale Kirkendall effect can be manipulated by controlling the internal and surface crystal defects of nanomaterials.

10.
Nano Lett ; 15(6): 4121-8, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25965773

RESUMO

Effects of strain impact a range of applications involving mobility change in field-effect-transistors. We report the effect of strain fluctuation on epitaxial growth of NiSi2 in a Si nanowire via point contact and atomic layer reactions, and we discuss the thermodynamic, kinetic, and mechanical implications. The generation and relaxation of strain shown by in situ TEM is periodic and in synchronization with the atomic layer reaction. The Si lattice at the epitaxial interface is under tensile strain, which enables a high solubility of supersaturated interstitial Ni atoms for homogeneous nucleation of an epitaxial atomic layer of the disilicide phase. The tensile strain is reduced locally during the incubation period of nucleation by the dissolution of supersaturated Ni atoms in the Si lattice but the strained-Si state returns once the atomic layer epitaxial growth of NiSi2 occurs by consuming the supersaturated Ni.

11.
Nano Lett ; 13(12): 6009-15, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24274698

RESUMO

The vapor-liquid-solid (VLS) mechanism is the predominate growth mechanism for semiconductor nanowires (NWs). We report here a new solid-liquid-solid (SLS) growth mechanism of a silicide phase in Si NWs using in situ transmission electron microcopy (TEM). The new SLS mechanism is analogous to the VLS one in relying on a liquid-mediating growth seed, but it is fundamentally different in terms of nucleation and mass transport. In SLS growth of Ni disilicide, the Ni atoms are supplied from remote Ni particles by interstitial diffusion through a Si NW to the pre-existing Au-Si liquid alloy drop at the tip of the NW. Upon supersaturation of both Ni and Si in Au, an octahedral nucleus of Ni disilicide (NiSi2) forms at the center of the Au liquid alloy, which thereafter sweeps through the Si NW and transforms Si into NiSi2. The dissolution of Si by the Au alloy liquid mediating layer proceeds with contact angle oscillation at the triple point where Si, oxide of Si, and the Au alloy meet, whereas NiSi2 is grown from the liquid mediating layer in an atomic stepwise manner. By using in situ quenching experiments, we are able to measure the solubility of Ni and Si in the Au-Ni-Si ternary alloy. The Au-catalyzed mechanism can lower the formation temperature of NiSi2 by 100 °C compared with an all solid state reaction.


Assuntos
Ouro/química , Nanofios/química , Níquel/química , Silício/química , Catálise , Transição de Fase , Semicondutores
12.
Science ; 336(6084): 1007-10, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22628648

RESUMO

Highly oriented [111] Cu grains with densely packed nanotwins have been fabricated by direct-current electroplating with a high stirring rate. The [111]-oriented and nanotwinned Cu (nt-Cu) allow for the unidirectional growth of Cu(6)Sn(5) intermetallics in the microbumps of three-dimensional integrated-circuit packaging; a uniform microstructure in a large number of microbumps of controlled orientation can be obtained. The high-density twin boundaries in the nt-Cu serve as vacancy sinks during the solid-state reaction between Pb-free solder and Cu and greatly reduce the formation of Kirkendall (or Frenkel) voids.

13.
Nano Lett ; 11(7): 2753-8, 2011 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-21657260

RESUMO

We report the critical effects of oxide on the growth of nanostructures through silicide formation. Under an in situ ultrahigh vacuum transmission electron microscope, it is observed from the conversion of Si nanowires into the metallic PtSi grains epitaxially through controlled reactions between lithographically defined Pt pads and Si nanowires. With oxide, instead of contact area, single crystal PtSi grains start forming either near the center between two adjacent pads or from the ends of Si nanowires, resulting in the heterostructure formation of Si/PtSi/Si. Without oxide, transformation from Si into PtSi begins at the contact area between them, resulting in the heterostructure formation of PtSi/Si/PtSi. The nanowire heterostructures have an atomically sharp interface with epitaxial relationships of Si(20-2)//PtSi(10-1) and Si[111]//PtSi[111]. Additionally, it has been observed that the existence of oxide significantly affects not only the growth position but also the growth behavior and the growth rate by two orders of magnitude. Molecular dynamics simulations have been performed to support our experimental results and the proposed growth mechanisms. In addition to fundamental science, the significance of the study matters for future processing techniques in nanotechnology and related applications as well.


Assuntos
Nanofios/química , Óxidos/química , Platina/química , Nanotecnologia , Tamanho da Partícula , Semicondutores , Silício/química , Propriedades de Superfície
14.
Nano Lett ; 10(10): 3984-9, 2010 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-20809607

RESUMO

Forming functional circuit components in future nanotechnology requires systematic studies of solid-state chemical reactions in the nanoscale. Here, we report efficient and unique methods, point and line contact reactions on Si nanowires, fabricating high quality and quantity of multiple nanoheterostructures of NiSi/Si and investigation of NiSi formation in nanoscale. By using the point contact reaction between several Ni nanodots and a Si nanowire carried out in situ in an ultrahigh vacuum transmission electron microscopy, multiple sections of single-crystal NiSi and Si with very sharp interfaces were produced in a Si nanowire. Owing to the supply limited point contact reaction, we propose that the nucleation and growth of the sugar cane-type NiSi grains start at the middle of the point contacts between two Ni nanodots and a Si nanowire. The reaction happens by the dissolution of Ni into the Si nanowire at the point contacts and by interstitial diffusion of Ni atoms within a Si nanowire. The growth of NiSi stops as the amount of Ni in the Ni nanodots is consumed. Additionally, without lithography, utilizing the line contact reaction between PS nanosphere-mediated Ni nanopatterns and a nanowire of Si, we have fabricated periodic multi-NiSi/Si/NiSi heterostructure nanonowires that may enhance the development of circuit elements in nanoscale electronic devices. Unlike the point contact reaction, silicide growth starts at the contact area in the line contact reaction; the different silicide formation modes resulting from point and line contact reactions are compared and analyzed. A mechanism on the basis of flux divergence is proposed for controlling the growth of the nano-multiheterostructures.

15.
Nanoscale Res Lett ; 5(2): 332-7, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20672116

RESUMO

Nanoditches from selective etching of periodically twinned SiC nanowires were employed to hinder the migration and coalescence of Pd nanoparticles supported on the nanowires, and thus to improve their catalytic stability for total combustion of methane. The results show that the etched Pd/SiC catalyst can keep the methane conversion of almost 100% while the unetched one has an obvious decline in the catalytic activity from 100 to 82% after ten repeated reaction cycles. The excellent catalytic stability originates from the limitation of the nanoditches to the migration and growth of Pd nanoparticles.

16.
Science ; 321(5892): 1066-9, 2008 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-18719278

RESUMO

Grain boundaries affect the migration of atoms and electrons in polycrystalline solids, thus influencing many of the mechanical and electrical properties. By introducing nanometer-scale twin defects into copper grains, we show that we can change the grain-boundary structure and atomic-diffusion behavior along the boundary. Using in situ ultrahigh-vacuum and high-resolution transmission electron microscopy, we observed electromigration-induced atomic diffusion in the twin-modified grain boundaries. The triple point where a twin boundary meets a grain boundary was found to slow down grain-boundary and surface electromigration by one order of magnitude. We propose that this occurs because of the incubation time of nucleation of a new step at the triple points. The long incubation time slows down the overall rate of atomic transport.

17.
Nano Lett ; 8(8): 2194-9, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18616326

RESUMO

The formation of CoSi and CoSi2 in Si nanowires at 700 and 800 degrees C, respectively, by point contact reactions between nanodots of Co and nanowires of Si have been investigated in situ in a ultrahigh vacuum high-resolution transmission electron microscope. The CoSi2 has undergone an axial epitaxial growth in the Si nanowire and a stepwise growth mode was found. We observed that the stepwise growth occurs repeatedly in the form of an atomic step sweeping across the CoSi2/Si interface. It appears that the growth of a new step or a new silicide layer requires an independent event of nucleation. We are able to resolve the nucleation stage and the growth stage of each layer of the epitaxial growth in video images. In the nucleation stage, the incubation period is measured, which is much longer than the period needed to grow the layer across the silicide/Si interface. So the epitaxial growth consists of a repeating nucleation and a rapid stepwise growth across the epitaxial interface. This is a general behavior of epitaxial growth in nanowires. The axial heterostructure of CoSi2/Si/CoSi2 with sharp epitaxial interfaces has been obtained. A discussion of the kinetics of supply limited and source-limited reaction in nanowire case by point contact reaction is given. The heterostructures are promising as high performance transistors based on intrinsic Si nanowires.


Assuntos
Cobalto/química , Nanofios/química , Nanofios/ultraestrutura , Silício/química , Microscopia Eletrônica de Transmissão
18.
J Nanosci Nanotechnol ; 8(5): 2568-74, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18572685

RESUMO

Copper films with high density of twin boundaries are known for high mechanical strength with little tradeoff in electrical conductivity. To achieve such a high density, twin lamellae and spacing will be on the nanoscale. In the current study, 10 microm copper films were prepared by pulse electrodeposition with different applied pulse peak current densities and pulse on-times. It was found that the deposits microstructure was dependent on the parameters of pulse plating. Higher energy pulses caused stronger self-annealing effect on grain recrystallization and growth, thus leading to enhanced fiber textures, while lower energy pulses gave rise to more random microstructure in the deposits and rougher surface topography. However in the extremes of pulse currents we applied, the twin densities were not as high as those resulted from the medium or relatively high pulse currents. The highest amount of nanoscale twinning was found to form from a proper degree of self-annealing induced grain structure evolution. The driving force behind the self-annealing is discussed.

19.
Nano Lett ; 8(3): 913-8, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18266331

RESUMO

We report the formation of PtSi nanowires, PtSi/Si/PtSi nanowire heterostructures, and nanodevices from such heterostructures. Scanning electron microscopy studies show that silicon nanowires can be converted into PtSi nanowires through controlled reactions between lithographically defined platinum pads and silicon nanowires. High-resolution transmission electron microscopy studies show that PtSi/Si/PtSi heterostructure has an atomically sharp interface with epitaxial relationships of Si[110]//PtSi[010] and Si(111)//PtSi(101). Electrical measurements show that the pure PtSi nanowires have low resistivities approximately 28.6 microOmega.cm and high breakdown current densities>1x10(8) A/cm2. Furthermore, using single crystal PtSi/Si/PtSi nanowire heterostructures with atomically sharp interfaces, we have fabricated high-performance nanoscale field-effect transistors from intrinsic silicon nanowires, in which the source and drain contacts are defined by the metallic PtSi nanowire regions, and the gate length is defined by the Si nanowire region. Electrical measurements show nearly perfect p-channel enhancement mode transistor behavior with a normalized transconductance of 0.3 mS/microm, field-effect hole mobility of 168 cm2/V.s, and on/off ratio>10(7), demonstrating the best performing device from intrinsic silicon nanowires.

20.
Nanotechnology ; 19(21): 215602, 2008 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-21730575

RESUMO

Twinning has been recognized to be an important microstructural defect in nanoscale materials. Periodically twinned SiC nanowires were largely synthesized by the carbothermal reduction of a carbonaceous silica xerogel prepared from tetraethoxysilane and biphenyl with iron nitrate as an additive. The twinned ß-SiC nanowires, with a hexagonal cross section, a diameter of 50-300 nm and a length of tens to hundreds of micrometers, feature a zigzag arrangement of periodically twinned segments with a rather uniform thickness along the entire growth length. Computer simulation has been used to generate three-dimensional atomic structures of the zigzag columnar twin structure by the stacking of hexagonal discs of {111} planes of SiC. A minimum surface energy and strain energy argument is proposed to explain the formation of periodic twins in the SiC nanowires. The thickness of the periodic twinned segments is found to be linearly proportional to the nanowire diameter, and a constant volume model is proposed to explain the relation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA