Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Subst Use Addctn J ; : 29767342241245095, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38606900

RESUMO

Many patients who receive treatment for opioid use disorder (OUD) report experiencing chronic pain (CP), which is associated with high levels of ongoing nonmedical opioid use and low retention in OUD treatment. In pilot studies of patients with OUD receiving buprenorphine or methadone who had CP, cognitive behavioral therapy (CBT) attenuated nonmedical opioid use compared with treatment-as-usual (TAU), but patients in both treatment arms exhibited similar pain improvements. Adding exercise and stress reduction to this model may augment pain-related outcomes. With funding from National Institutes of Health, we plan to conduct a randomized clinical trial of 316 patients with OUD and CP to test the effectiveness of TAU compared with Stepped Care for Patients to Optimize Whole Recovery (SC-POWR) to reduce nonmedical opioid use and pain (primary outcomes) (Aim 1) and decrease pain intensity and interference, alcohol use, anxiety, depression and stress, and improve sleep (secondary outcomes) (Aim 2). Eligible participants will be randomized to receive TAU (buprenorphine or methadone and at least once a month individual or group counseling) or SC-POWR (ie, TAU and up to 12 CBT sessions) for 24 weeks. Based on prespecified nonresponse criteria, SC-POWR may be stepped up at week 6 to receive onsite weekly group sessions of exercise (Wii Fit, Tai Chi) and "stepped up" again at week 15 to receive weekly group sessions of stress reduction (relaxation training, auricular acupuncture). They will be followed for another 24 weeks to evaluate durability of treatment response for illicit opioid use, alcohol use, pain, anxiety, depression, stress, sleep, and retention in medications for OUD (Aim 3).

2.
Nucleic Acid Ther ; 34(2): 90-99, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38215303

RESUMO

RNA interference (RNAi)-based therapeutics hold the potential for dominant genetic disorders, enabling sequence-specific inhibition of pathogenic gene products. We aimed to direct RNAi for the selective suppression of the heterozygous GNAO1 c.607 G > A variant causing GNAO1 encephalopathy. By screening short interfering RNA (siRNA), we showed that GNAO1 c.607G>A is a druggable target for RNAi. The si1488 candidate achieved at least twofold allelic discrimination and downregulated mutant protein to 35%. We created vectorized RNAi by incorporating the si1488 sequence into the short hairpin RNA (shRNA) in the adeno-associated virus (AAV) vector. The shRNA stem and loop were modified to improve the transcription, processing, and guide strand selection. All tested shRNA constructs demonstrated selectivity toward mutant GNAO1, while tweaking hairpin structure only marginally affected the silencing efficiency. The selectivity of shRNA-mediated silencing was confirmed in the context of AAV vector transduction. To conclude, RNAi effectors ranging from siRNA to AAV-RNAi achieve suppression of the pathogenic GNAO1 c.607G>A and discriminate alleles by the single-nucleotide substitution. For gene therapy development, it is crucial to demonstrate the benefit of these RNAi effectors in patient-specific neurons and animal models of the GNAO1 encephalopathy.


Assuntos
Encefalopatias , Terapia Genética , Animais , Humanos , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Alelos , Encefalopatias/genética , Vetores Genéticos/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética
3.
Mol Ther Methods Clin Dev ; 30: 161-180, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37457303

RESUMO

Duchenne muscular dystrophy (DMD) is a severe hereditary disease caused by a deficiency in the dystrophin protein. The most frequent types of disease-causing mutations in the DMD gene are frameshift deletions of one or more exons. Precision genome editing systems such as CRISPR-Cas9 have shown potential to restore open reading frames in numerous animal studies. Here, we applied an AAV-CRISPR double-cut strategy to correct a mutation in the DMD mouse model with exon 8-34 deletion, encompassing the N-terminal actin-binding domain. We report successful excision of the 100-kb genomic sequence, which includes exons 6 and 7, and partial improvement in cardiorespiratory function. While corrected mRNA was abundant in muscle tissues, only a low level of truncated dystrophin was produced, possibly because of protein instability. Furthermore, CRISPR-Cas9-mediated genome editing upregulated the Dp71f dystrophin isoform on the sarcolemma. Given the previously reported Dp71-associated muscle pathology, our results question the applicability of genome editing strategies for some DMD patients with N-terminal mutations. The safety and efficacy of CRISPR-Cas9 constructs require rigorous investigation in patient-specific animal models.

4.
Int J Mol Sci ; 24(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298068

RESUMO

Mutations that prevent the production of proteins in the DMD gene cause Duchenne muscular dystrophy. Most frequently, these are deletions leading to reading-frame shift. The "reading-frame rule" states that deletions that preserve ORF result in a milder Becker muscular dystrophy. By removing several exons, new genome editing tools enable reading-frame restoration in DMD with the production of BMD-like dystrophins. However, not every truncated dystrophin with a significant internal loss functions properly. To determine the effectiveness of potential genome editing, each variant should be carefully studied in vitro or in vivo. In this study, we focused on the deletion of exons 8-50 as a potential reading-frame restoration option. Using the CRISPR-Cas9 tool, we created the novel mouse model DMDdel8-50, which has an in-frame deletion in the DMD gene. We compared DMDdel8-50 mice to C57Bl6/CBA background control mice and previously generated DMDdel8-34 KO mice. We discovered that the shortened protein was expressed and correctly localized on the sarcolemma. The truncated protein, on the other hand, was unable to function like a full-length dystrophin and prevent disease progression. On the basis of protein expression, histological examination, and physical assessment of the mice, we concluded that the deletion of exons 8-50 is an exception to the reading-frame rule.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Camundongos , Animais , Distrofina/genética , Camundongos Endogâmicos CBA , Distrofia Muscular de Duchenne/metabolismo , Fenótipo , Éxons/genética , Deleção de Genes
5.
Front Genome Ed ; 5: 1034720, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077890

RESUMO

The development of personalized medicine for genetic diseases requires preclinical testing in the appropriate animal models. GNAO1 encephalopathy is a severe neurodevelopmental disorder caused by heterozygous de novo mutations in the GNAO1 gene. GNAO1 c.607 G>A is one of the most common pathogenic variants, and the mutant protein Gαo-G203R likely adversely affects neuronal signaling. As an innovative approach, sequence-specific RNA-based therapeutics such as antisense oligonucleotides or effectors of RNA interference are potentially applicable for selective suppression of the mutant GNAO1 transcript. While in vitro validation can be performed in patient-derived cells, a humanized mouse model to rule out the safety of RNA therapeutics is currently lacking. In the present work, we employed CRISPR/Cas9 technology to introduce a single-base substitution into exon 6 of the Gnao1 to replace the murine Gly203-coding triplet (GGG) with the codon used in the human gene (GGA). We verified that genome-editing did not interfere with the Gnao1 mRNA or Gαo protein synthesis and did not alter localization of the protein in the brain structures. The analysis of blastocysts revealed the off-target activity of the CRISPR/Cas9 complexes; however, no modifications of the predicted off-target sites were detected in the founder mouse. Histological staining confirmed the absence of abnormal changes in the brain of genome-edited mice. The created mouse model with the "humanized" fragment of the endogenous Gnao1 is suitable to rule out unintended targeting of the wild-type allele by RNA therapeutics directed at lowering GNAO1 c.607 G>A transcripts.

6.
Sci Rep ; 12(1): 848, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039573

RESUMO

High expectations have been set on gene therapy with an AAV-delivered shortened version of dystrophin (µDys) for Duchenne muscular dystrophy (DMD), with several drug candidates currently undergoing clinical trials. Safety concerns with this therapeutic approach include the immune response to introduced dystrophin antigens observed in some DMD patients. Recent reports highlighted microutrophin (µUtrn) as a less immunogenic functional dystrophin substitute for gene therapy. In the current study, we created a human codon-optimized µUtrn which was subjected to side-by-side characterization with previously reported mouse and human µUtrn sequences after rAAV9 intramuscular injections in mdx mice. Long-term studies with systemic delivery of rAAV9-µUtrn demonstrated robust transgene expression in muscles, with localization to the sarcolemma, functional improvement of muscle performance, decreased creatine kinase levels, and lower immunogenicity as compared to µDys. An extensive toxicity study in wild-type rats did not reveal adverse changes associated with high-dose rAAV9 administration and human codon-optimized µUtrn overexpression. Furthermore, we verified that muscle-specific promoters MHCK7 and SPc5-12 drive a sufficient level of rAAV9-µUtrn expression to ameliorate the dystrophic phenotype in mdx mice. Our results provide ground for taking human codon-optimized µUtrn combined with muscle-specific promoters into clinical development as safe and efficient gene therapy for DMD.


Assuntos
Códon , Terapia Genética/métodos , Distrofia Muscular de Duchenne/terapia , Utrofina/uso terapêutico , Animais , Creatina Quinase , Expressão Gênica , Humanos , Injeções Intramusculares , Camundongos , Camundongos Endogâmicos mdx , Músculos/metabolismo , Fenótipo , Utrofina/administração & dosagem , Utrofina/genética , Utrofina/metabolismo
7.
Exp Cell Res ; 392(2): 112033, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32360435

RESUMO

AAV-delivered microdystrophin genes hold great promise for Duchenne muscular dystrophy (DMD) treatment. It is anticipated that the optimization of engineered dystrophin genes will be required to increase the efficacy and reduce the immunogenicity of transgenic proteins. An in vitro system is required for the efficacy testing of genetically engineered dystrophin genes. We report here on the proof of concept for an in vitro assay based on the assessment of sarcolemma damage after repetitively applied electrical stimuli. The primary cell culture of myoblasts was established from wild-type C57BL/10ScSnJ and dystrophin-deficient mdx mice. The preparation parameters and the differentiation of contractile myotubes were optimized. DAPI and TO-PRO-3 dyes were used to assess myotubular membrane permeability in response to electrical pulse stimulation (EPS). Myotubes derived from mdx mice exhibited a greater increase in membrane damage, as assessed by TO-PRO-3-measured permeability after EPS, than was exhibited by the healthy control myotubes. AAV-DJ particles carrying the microdystrophin gene were used to transduce mdx-derived differentiated myotubes. Microdystrophin delivery ameliorated the disease phenotype and reduced the EPS-induced membrane damage to a level comparable to that of the healthy controls. Thus, the in vitro system was shown to be capable of supporting studies on DMD gene therapy.


Assuntos
Dependovirus/genética , Distrofina/genética , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Distrofia Muscular Animal/terapia , Distrofia Muscular de Duchenne/terapia , Mioblastos/patologia , Animais , Diferenciação Celular , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Contração Muscular , Distrofia Muscular Animal/genética , Distrofia Muscular de Duchenne/genética , Mioblastos/metabolismo
8.
Dis Model Mech ; 12(4)2019 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-31028078

RESUMO

Exon skipping is a promising strategy for Duchenne muscular dystrophy (DMD) disease-modifying therapy. To make this approach safe, ensuring that excluding one or more exons will restore the reading frame and that the resulting protein will retain critical functions of the full-length dystrophin protein is necessary. However, in vivo testing of the consequences of skipping exons that encode the N-terminal actin-binding domain (ABD) has been confounded by the absence of a relevant animal model. We created a mouse model of the disease recapitulating a novel human mutation, a large de novo deletion of exons 8-34 of the DMD gene, found in a Russian DMD patient. This mutation was achieved by deleting exons 8-34 of the X-linked mouse Dmd gene using CRISPR/Cas9 genome editing, which led to a reading frame shift and the absence of functional dystrophin production. Male mice carrying this deletion display several important signs of muscular dystrophy, including a gradual age-dependent decrease in muscle strength, increased creatine kinase, muscle fibrosis and central nucleation. The degrees of these changes are comparable to those observed in mdx mice, a standard laboratory model of DMD. This new model of DMD will be useful for validating therapies based on skipping exons that encode the N-terminal ABD and for improving our understanding of the role of the N-terminal domain and central rod domain in the biological function of dystrophin. Simultaneous skipping of exons 6 and 7 should restore the gene reading frame and lead to the production of a protein that might retain functionality despite the partial deletion of the ABD.


Assuntos
Pareamento de Bases/genética , Sistemas CRISPR-Cas/genética , Distrofina/genética , Distrofia Muscular de Duchenne/genética , Deleção de Sequência , Animais , Fenômenos Biomecânicos , Linhagem Celular , Criança , Cromatina/metabolismo , Modelos Animais de Doenças , Éxons/genética , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Músculos/fisiopatologia , Distrofia Muscular de Duchenne/fisiopatologia , Fenótipo , RNA Guia de Cinetoplastídeos/metabolismo
9.
PLoS One ; 7(6): e38645, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22701686

RESUMO

Two lineages of endoderm develop during mammalian embryogenesis, the primitive endoderm in the pre-implantation blastocyst and the definitive endoderm at gastrulation. This complexity of endoderm cell populations is mirrored during pluripotent cell differentiation in vitro and has hindered the identification and purification of the definitive endoderm for use as a substrate for further differentiation. The aggregation and differentiation of early primitive ectoderm-like (EPL) cells, resulting in the formation of EPL-cell derived embryoid bodies (EPLEBs), is a model of gastrulation that progresses through the sequential formation of primitive streak-like intermediates to nascent mesoderm and more differentiated mesoderm populations. EPL cell-derived EBs have been further analysed for the formation of definitive endoderm by detailed morphological studies, gene expression and a protein uptake assay. In comparison to embryoid bodies derived from ES cells, which form primitive and definitive endoderm, the endoderm compartment of embryoid bodies formed from EPL cells was comprised almost exclusively of definitive endoderm. Definitive endoderm was defined as a population of squamous cells that expressed Sox17, CXCR4 and Trh, which formed without the prior formation of primitive endoderm and was unable to endocytose horseradish peroxidase from the medium. Definitive endoderm formed in EPLEBs provides a substrate for further differentiation into specific endoderm lineages; these lineages can be used as research tools for understanding the mechanisms controlling lineage establishment and the nature of the transient intermediates formed. The similarity between mouse EPL cells and human ES cells suggests EPLEBs can be used as a model system for the development of technologies to enrich for the formation of human ES cell-derived definitive endoderm in the future.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Corpos Embrioides/ultraestrutura , Endoderma/ultraestrutura , Mesoderma/ultraestrutura , Células-Tronco Pluripotentes/ultraestrutura , Linha Primitiva/ultraestrutura , Animais , Primers do DNA/genética , Citometria de Fluxo , Perfilação da Expressão Gênica , Peroxidase do Rábano Silvestre/farmacocinética , Camundongos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Células-Tronco Pluripotentes/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Cell Reprogram ; 13(3): 205-13, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21548828

RESUMO

We report here the establishment and characterization of putative porcine embryonic stem cell (ESC) lines derived from somatic cell nuclear transfer embryos (NT-ESCs). These cells had a similar morphology to that described previously by us for ESCs derived from in vitro produced embryos, namely, a polygonal shape, a relatively small (10-15 µm) diameter, a small cytoplasmic/nuclear ratio, a single nucleus with multiple nucleoli and multiple lipid inclusions in the cytoplasm. NT-ESCs could be passaged at least 15 times and vitrified repeatedly without changes in their morphology, karyotype, or Oct-4 and Nanog expression. These cells formed embryoid bodies and could be directed to differentiate in vitro to cell types representative of all three germ layers. Following their injection into blastocysts, these cells preferentially localized in the inner cell mass. In conclusion, we have isolated putative porcine ESCs from cloned embryos that have the potential to be used for a variety of applications including as a model for human therapeutic cloning.


Assuntos
Embrião de Mamíferos/citologia , Embrião de Mamíferos/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Ácidos Hidroxâmicos/farmacologia , Animais , Blastocisto/citologia , Blastocisto/efeitos dos fármacos , Linhagem Celular , Separação Celular/métodos , Células Cultivadas , Clonagem de Organismos/métodos , Feminino , Inibidores de Histona Desacetilases/farmacologia , Cariotipagem , Modelos Animais , Suínos
11.
Cell Reprogram ; 12(2): 223-30, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20677936

RESUMO

We have developed a new method for the isolation of porcine embryonic stem cells (ESCs) from in vivo-derived and in vitro-produced embryos. Here we describe the isolation and characterization of several ESC lines established using this method. Cells from these lines were passaged up to 14 times, during which they were repeatedly cryopreserved. During this time, ESCs maintained their morphology and continued to express Oct 4, Nanog, and SSEA1. These cells formed embryoid bodies in suspension culture, and could be directed to differentiate into various lineages representative of all three germ layers in vitro. When injected into blastocysts these cells localized in the inner cell mass of blastocysts. To examine their pluripotency further, cells were injected into host blastocysts and transferred to recipient animals. Of the six transfers undertaken, one recipient became pregnant and gave birth to a litter of one male and three female piglets. Microsatellite analysis of DNA extracted from the tail tissue of these piglets indicated that two female piglets were chimaeric.


Assuntos
Células-Tronco Embrionárias/citologia , Animais , Blastocisto/citologia , Técnicas de Cultura de Células , Diferenciação Celular , Linhagem Celular , Linhagem da Célula , Criopreservação , Feminino , Genótipo , Modelos Genéticos , Ovário/metabolismo , Gravidez , Prenhez , Suínos
12.
J Reprod Dev ; 56(5): 546-51, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20519828

RESUMO

In the present study we examined the effect of culture media and protein source on the formation of pluripotent primary outgrowths from in vitro produced and in vivo derived porcine embryos as the first step towards the isolation of embryonic stem cells (ESCs). To do this we compared high glucose Dulbeccos Modified Eagles Medium (DMEM) with Minimal Essential Alpha Medium (αMEM) both supplemented with fetal bovine serum (FBS) or serum replacement (SR) in a 2 × 2 factorial design. Culture in DMEM or αMEM supplemented with 10% SR resulted in the establishment of homogenous populations of cells which expressed Oct 4 and Nanog. In contrast culture in either media with FBS resulted in the formation of embryonal outgrowths composed entirely of differentiated cells or a mixture of differentiated cells and putative ESCs which grew poorly and could not be passaged. Using αMEM medium containing 10% SR and culturing in 5% oxygen, putative ESC lines were isolated from in vitro and in vivo derived embryos at efficiencies of 2 and 10% respectively.


Assuntos
Blastocisto/citologia , Meios de Cultura/farmacologia , Técnicas de Cultura Embrionária/métodos , Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes/citologia , Animais , Blastocisto/efeitos dos fármacos , Proteínas Sanguíneas/farmacologia , Técnicas de Cultura Embrionária/veterinária , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/fisiologia , Feminino , Glucose/farmacologia , Gravidez , Suínos
13.
J Neurosci Res ; 76(2): 184-92, 2004 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15048916

RESUMO

The many and varied proposed applications of cell replacement therapies in the treatment of human disease states, particularly those arising from cell loss or dysfunction, have been discussed widely in both the scientific and popular press. Although an attractive concept, cell therapies require the development of a readily available source of donor cells suitable for transplantation. Embryonic stem (ES) cells, with proven ability to differentiate to all cell populations of the embryo and adult in vitro, provide a potential source of therapeutic cells. The differentiation capability of mouse ES cells in vitro has been studied extensively over the last 20 years and the formation of neural precursors and neural cell lineages from mouse ES cells is well established. Cell populations highly enriched/homogenous in neural precursors have been achieved using a variety of chemical or biological inducing agents coupled with selective growth conditions. Preliminary reports suggest that similar neural enrichment is seen when these methodologies are applied to primate and human ES cells. ES cell-derived neural precursors have been analyzed in vitro and in vivo and found to be functionally normal and, after introduction into rodent models of human neurodegenerative diseases, capable of effecting measurable disease recovery. We review progress in the formation of neural precursors from mouse ES cells, particularly the recent reports of directed differentiation of ES in response to biological inductive factors, and assess the transfer of these approaches to human ES cells.


Assuntos
Diferenciação Celular/fisiologia , Sistema Nervoso/citologia , Neurônios/fisiologia , Células-Tronco/fisiologia , Animais , Linhagem da Célula/fisiologia , Células Cultivadas/citologia , Células Cultivadas/metabolismo , Células Cultivadas/transplante , Embrião de Mamíferos , Substâncias de Crescimento/metabolismo , Humanos , Neurônios/transplante , Transplante de Células-Tronco/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA