Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Br J Pharmacol ; 179(14): 3815-3830, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35170015

RESUMO

BACKGROUND AND PURPOSE: Acute intermittent porphyria (AIP) is a rare disease caused by a genetic mutation in the hepatic activity of the porphobilinogen-deaminase. We aimed to develop a mechanistic model of the enzymatic restoration effects of a novel therapy based on the administration of different formulations of recombinant human-PBGD (rhPBGD) linked to the ApoAI lipoprotein. This fusion protein circulates in blood, incorporating into HDL and penetrating hepatocytes. EXPERIMENTAL APPROACH: Single i.v. dose of different formulations of rhPBGD linked to ApoAI were administered to AIP mice in which a porphyric attack was triggered by i.p. phenobarbital. Data consist on 24 h urine excreted amounts of heme precursors, 5-aminolevulinic acid (ALA), PBG and total porphyrins that were analysed using non-linear mixed-effects analysis. KEY RESULTS: The mechanistic model successfully characterized over time the amounts excreted in urine of the three heme precursors for different formulations of rhPBGD and unravelled several mechanisms in the heme pathway, such as the regulation in ALA synthesis by heme. Treatment with rhPBGD formulations restored PBGD activity, increasing up to 51 times the value of the rate of tPOR formation estimated from baseline. Model-based simulations showed that several formulation prototypes provided efficient protective effects when administered up to 1 week prior to the occurrence of the AIP attack. CONCLUSION AND IMPLICATIONS: The model developed had excellent performance over a range of doses and formulation type. This mechanistic model warrants use beyond ApoAI-conjugates and represents a useful tool towards more efficient drug treatments of other enzymopenias as well as for acute intermittent porphyria.


Assuntos
Porfiria Aguda Intermitente , Ácido Aminolevulínico/farmacologia , Ácido Aminolevulínico/urina , Animais , Modelos Animais de Doenças , Heme , Camundongos , Camundongos Endogâmicos C57BL , Porfiria Aguda Intermitente/tratamento farmacológico , Porfiria Aguda Intermitente/genética , Porfiria Aguda Intermitente/metabolismo , Proteínas Recombinantes
2.
Br J Clin Pharmacol ; 88(1): 166-177, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34087010

RESUMO

AIMS: The aims of this work were to build a semi-mechanistic tumour growth inhibition (TGI) model for metastatic colorectal cancer (mCRC) patients receiving either cetuximab + chemotherapy or chemotherapy alone and to identify early predictors of overall survival (OS). METHODS: A total of 1716 patients from 4 mCRC clinical studies were included in the analysis. The TGI model was built with 8973 tumour size measurements where the probability of drop-out was also included and modelled as a time-to-event variable using parametric survival models, as it was the case in the OS analysis. The effects of patient- and tumour-related covariates on model parameters were explored. RESULTS: Chemotherapy and cetuximab effects were included in an additive form in the TGI model. Development of resistance was found to be faster for chemotherapy (drug effect halved at wk 8) compared to cetuximab (drug effect halved at wk 12). KRAS wild-type status and presenting a right-sided primary lesion were related to a 3.5-fold increase in cetuximab drug effect and a 4.7× larger cetuximab resistance, respectively. The early appearance of a new lesion (HR = 4.14), a large tumour size at baseline (HR = 1.62) and tumour heterogeneity (HR = 1.36) were the main predictors of OS. CONCLUSIONS: Semi-mechanistic TGI and OS models have been developed in a large population of mCRC patients receiving chemotherapy in combination or not with cetuximab. Tumour-related predictors, including a machine learning derived-index of tumour heterogeneity, were linked to changes in drug effect, resistance to treatment or OS, contributing to the understanding of the variability in clinical response.


Assuntos
Neoplasias Colorretais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Cetuximab/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Intervalo Livre de Doença , Humanos , Mutação , Análise de Sobrevida
3.
Br J Pharmacol ; 177(14): 3168-3182, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32133631

RESUMO

BACKGROUND AND PURPOSE: Acute intermittent porphyria (AIP) results from haplo-insufficiency of the porphobilinogen deaminase (PBGD) gene encoding the third enzyme in the haem biosynthesis pathway. As liver is the main organ of pathology for AIP, emerging therapies that restore enzyme hepatic levels are appealing. The objective of this work was to develop a mechanistic-based computational framework to describe the effects of novel PBGD mRNA therapy on the accumulation of neurotoxic haem precursors in small and large animal models. EXPERIMENTAL APPROACH: Liver PBGD activity data and/or 24-hr urinary haem precursors were obtained from genetic AIP mice and wild-type mice, rats, rabbits, and macaques. To mimic acute attacks, porphyrogenic drugs were administered over one or multiple challenges, and animals were used as controls or treated with different PBGD mRNA products. Available experimental data were sequentially used to build and validate a semi-mechanistic mathematical model using non-linear mixed-effects approach. KEY RESULTS: The developed framework accounts for the different biological processes involved (i.e., mRNA sequence, release from lipid nanoparticle and degradation, mRNA translation, increased PBGD activity in liver, and haem precursor metabolism) in a simplified mechanistic fashion. The model, validated using external data, shows robustness in the extrapolation of PBGD activity data in rat, rabbit, and non-human primate species. CONCLUSION AND IMPLICATIONS: This quantitative framework provides a valuable tool to compare PBGD mRNA drug products during early preclinical stages, optimize the amount of experimental data required, and project results to humans, thus supporting drug development and clinical dose and dosing regimen selection.


Assuntos
Porfiria Aguda Intermitente , Animais , Heme , Hidroximetilbilano Sintase/genética , Camundongos , Porfiria Aguda Intermitente/tratamento farmacológico , Porfiria Aguda Intermitente/genética , RNA Mensageiro , Coelhos , Ratos
4.
AAPS J ; 22(3): 58, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32185612

RESUMO

Total tumor size (TS) metrics used in TS models in oncology do not consider tumor heterogeneity, which could help to better predict drug efficacy. We analyzed individual target lesions (iTLs) of patients with metastatic colorectal carcinoma (mCRC) to determine differences in TS dynamics by using the ClassIfication Clustering of Individual Lesions (CICIL) methodology. Results from subgroup analyses comparing genetic mutations and TS metrics were assessed and applied to survival analyses. Data from four mCRC clinical studies were analyzed (1781 patients, 6369 iTLs). CICIL was used to assess differences in lesion TS dynamics within a tissue (intra-class) or across different tissues (inter-class). First, lesions were automatically classified based on their location. Cross-correlation coefficients (CCs) determined if each pair of lesions followed similar or opposite dynamics. Finally, CCs were grouped by using the K-means clustering method. Heterogeneity in tumor dynamics was lower in the intra-class analysis than in the inter-class analysis for patients receiving cetuximab. More tumor heterogeneity was found in KRAS mutated patients compared to KRAS wild-type (KRASwt) patients and when using sum of longest diameters versus sum of products of diameters. Tumor heterogeneity quantified as the median patient's CC was found to be a predictor of overall survival (OS) (HR = 1.44, 95% CI 1.08-1.92), especially in KRASwt patients. Intra- and inter-tumor tissue heterogeneities were assessed with CICIL. Derived metrics of heterogeneity were found to be a predictor of OS time. Considering differences between lesions' TS dynamics could improve oncology models in favor of a better prediction of OS.


Assuntos
Carcinoma/patologia , Neoplasias Colorretais/patologia , Aprendizado de Máquina , Metástase Neoplásica , Antineoplásicos/uso terapêutico , Carcinoma/tratamento farmacológico , Carcinoma/genética , Carcinoma/mortalidade , Estudos Clínicos como Assunto , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/mortalidade , Humanos , Modelos de Riscos Proporcionais
5.
Mol Genet Metab ; 128(3): 367-375, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30639045

RESUMO

INTRODUCTION: Acute intermittent porphyria (AIP) is characterized by hepatic over-production of the heme precursors when aminolevulinic acid (ALA)-synthase 1 is induced by endogenous or environmental factors. The aim of this study was to develop a semi-mechanistic computational model to characterize urine accumulation of heme precursors during acute attacks based on experimental pharmacodynamics data and support the development of new therapeutic strategies. METHODS: Male AIP mice received recurrent phenobarbital challenge starting on days 1, 9, 16 and 30. 24-h urine excretion of ALA, porphobilinogen (PBG) and porphyrins from challenges D1, D9 and D30 constituted the training data set to build the mechanistic model using the population approach. In a second study, porphyrin and porphyrin precursor excretion from challenge D16 were used as a validation data set. RESULTS: The computational model presented the following features: (i) urinary excretion of ALA, PBG and porphyrins was governed by unmeasured circulating heme precursor amounts, (ii) the circulating amounts of ALA and PBG were the precursors of circulating amounts of PBG and porphyrins, respectively, and (iii) the phenobarbital effect linearly increased the synthesis of circulating ALA and PBG levels. The model displayed good parameter precision (coefficient of variation below 32% in all parameters), and adequately described the experimental data. Finally, a theoretical hemin effect was implemented to illustrate the applicability of the model to dosage optimization in drug therapies. CONCLUSIONS: A semi-mechanistic disease model was successfully developed to describe the temporal evolution of urinary heme precursor excretion during recurrent biochemical-induced acute attacks in AIP mice. This model represents the first computational approach to explore and optimize current and new therapies.


Assuntos
Simulação por Computador , Modelos Animais de Doenças , Fenobarbital/administração & dosagem , Porfiria Aguda Intermitente/induzido quimicamente , Ácido Aminolevulínico/urina , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Porfobilinogênio/urina , Porfiria Aguda Intermitente/urina , Porfirinas/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA