Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell Rep ; 43(4): 113975, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38507411

RESUMO

The intestine is a highly metabolic tissue, but the metabolic programs that influence intestinal crypt proliferation, differentiation, and regeneration are still emerging. Here, we investigate how mitochondrial sirtuin 4 (SIRT4) affects intestinal homeostasis. Intestinal SIRT4 loss promotes cell proliferation in the intestine following ionizing radiation (IR). SIRT4 functions as a tumor suppressor in a mouse model of intestinal cancer, and SIRT4 loss drives dysregulated glutamine and nucleotide metabolism in intestinal adenomas. Intestinal organoids lacking SIRT4 display increased proliferation after IR stress, along with increased glutamine uptake and a shift toward de novo nucleotide biosynthesis over salvage pathways. Inhibition of de novo nucleotide biosynthesis diminishes the growth advantage of SIRT4-deficient organoids after IR stress. This work establishes SIRT4 as a modulator of intestinal metabolism and homeostasis in the setting of DNA-damaging stress.


Assuntos
Proliferação de Células , Neoplasias Intestinais , Intestinos , Sirtuínas , Animais , Humanos , Camundongos , Glutamina/metabolismo , Homeostase , Mucosa Intestinal/metabolismo , Neoplasias Intestinais/metabolismo , Neoplasias Intestinais/patologia , Neoplasias Intestinais/genética , Intestinos/metabolismo , Intestinos/patologia , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais , Nucleotídeos/metabolismo , Organoides/metabolismo , Sirtuínas/metabolismo
2.
Science ; 372(6543): 716-721, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33986176

RESUMO

Transcription and metabolism both influence cell function, but dedicated transcriptional control of metabolic pathways that regulate cell fate has rarely been defined. We discovered, using a chemical suppressor screen, that inhibition of the pyrimidine biosynthesis enzyme dihydroorotate dehydrogenase (DHODH) rescues erythroid differentiation in bloodless zebrafish moonshine (mon) mutant embryos defective for transcriptional intermediary factor 1 gamma (tif1γ). This rescue depends on the functional link of DHODH to mitochondrial respiration. The transcription elongation factor TIF1γ directly controls coenzyme Q (CoQ) synthesis gene expression. Upon tif1γ loss, CoQ levels are reduced, and a high succinate/α-ketoglutarate ratio leads to increased histone methylation. A CoQ analog rescues mon's bloodless phenotype. These results demonstrate that mitochondrial metabolism is a key output of a lineage transcription factor that drives cell fate decisions in the early blood lineage.


Assuntos
Eritropoese , Mitocôndrias/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Proteínas de Peixe-Zebra/metabolismo , Animais , Ciclo do Ácido Cítrico , Metilação de DNA , Di-Hidro-Orotato Desidrogenase , Transporte de Elétrons , Embrião não Mamífero/metabolismo , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica , Histonas/metabolismo , Leflunomida/farmacologia , Redes e Vias Metabólicas , Metilação , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Consumo de Oxigênio , Fatores de Transcrição/genética , Ubiquinona/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
3.
Cell Chem Biol ; 24(6): 656-658, 2017 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-28644956

RESUMO

In a recent issue of Cell Metabolism, Anderson et al. (2017) report that SIRT4 regulates insulin sensitivity in the pancreas via activation of methylcrotonyl-CoA carboxylase 1 (MCCC1) by removal of dicarboxyacyl-lysine modifications. Thus, SIRT4 activates leucine catabolism and causes decreased secretion of insulin from the pancreas.


Assuntos
Insulina/metabolismo , Sirtuínas/metabolismo , Animais , Carbono-Carbono Ligases/metabolismo , Resistência à Insulina , Secreção de Insulina , Camundongos , Pâncreas/metabolismo
4.
Cell ; 166(3): 555-566, 2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27471965

RESUMO

Mitochondria are bioenergetic, biosynthetic, and signaling organelles that are integral in stress sensing to allow for cellular adaptation to the environment. Therefore, it is not surprising that mitochondria are important mediators of tumorigenesis, as this process requires flexibility to adapt to cellular and environmental alterations in addition to cancer treatments. Multiple aspects of mitochondrial biology beyond bioenergetics support transformation, including mitochondrial biogenesis and turnover, fission and fusion dynamics, cell death susceptibility, oxidative stress regulation, metabolism, and signaling. Thus, understanding mechanisms of mitochondrial function during tumorigenesis will be critical for the next generation of cancer therapeutics.


Assuntos
Carcinogênese , Mitocôndrias/fisiologia , Animais , Humanos
5.
Aging Cell ; 14(5): 818-25, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26109058

RESUMO

The mitochondrial deacetylase SIRT3 regulates several important metabolic processes. SIRT3 is transcriptionally upregulated in multiple tissues during nutrient stresses such as dietary restriction and fasting, but the molecular mechanism of this induction is unclear. We conducted a bioinformatic study to identify transcription factor(s) involved in SIRT3 induction. Our analysis identified an enrichment of binding sites for nuclear respiratory factor 2 (NRF-2), a transcription factor known to play a role in the expression of mitochondrial genes, in the DNA sequences of SIRT3 and genes with closely correlated expression patterns. In vitro, knockdown or overexpression of NRF-2 modulated SIRT3 levels, and the NRF-2α subunit directly bound to the SIRT3 promoter. Our results suggest that NRF-2 is a regulator of SIRT3 expression and may shed light on how SIRT3 is upregulated during nutrient stress.


Assuntos
Fator de Transcrição de Proteínas de Ligação GA/metabolismo , Sirtuína 3/genética , Animais , Sítios de Ligação , Células Cultivadas , Biologia Computacional , Indução Enzimática/genética , Fator de Transcrição de Proteínas de Ligação GA/deficiência , Células HEK293 , Humanos , Regiões Promotoras Genéticas/genética , Sirtuína 3/biossíntese
6.
Nat Commun ; 5: 4426, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-25043379

RESUMO

The poly(adenosine diphosphate (ADP)-ribose) polymerase (PARP) protein family generates ADP-ribose (ADPr) modifications onto target proteins using NAD(+) as substrate. Based on the composition of three NAD(+) coordinating amino acids, the H-Y-E motif, each PARP is predicted to generate either poly(ADPr) (PAR) or mono(ADPr) (MAR). However, the reaction product of each PARP has not been clearly defined, and is an important priority since PAR and MAR function via distinct mechanisms. Here we show that the majority of PARPs generate MAR, not PAR, and demonstrate that the H-Y-E motif is not the sole indicator of PARP activity. We identify automodification sites on seven PARPs, and demonstrate that MAR and PAR generating PARPs modify similar amino acids, suggesting that the sequence and structural constraints limiting PARPs to MAR synthesis do not limit their ability to modify canonical amino-acid targets. In addition, we identify cysteine as a novel amino-acid target for ADP-ribosylation on PARPs.


Assuntos
Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/metabolismo , Adenosina Difosfato Ribose/metabolismo , Motivos de Aminoácidos , Células Cultivadas , Cisteína/metabolismo , Humanos , Lisina/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/genética
7.
Nat Rev Cancer ; 14(7): 502-9, 2014 07.
Artigo em Inglês | MEDLINE | ID: mdl-24898058

RESUMO

Poly(ADP-ribose) polymerases (PARPs) modify target proteins post-translationally with poly(ADP-ribose) (PAR) or mono(ADP-ribose) (MAR) using NAD(+) as substrate. The best-studied PARPs generate PAR modifications and include PARP1 and the tankyrase PARP5A, both of which are targets for cancer therapy with inhibitors in either clinical trials or preclinical development. There are 15 additional PARPs, most of which modify proteins with MAR, and their biology is less well understood. Recent data identify potentially cancer-relevant functions for these PARPs, which indicates that we need to understand more about these PARPs to effectively target them.


Assuntos
Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Poli(ADP-Ribose) Polimerases/metabolismo , Adenosina Difosfato Ribose/química , Adenosina Difosfato Ribose/metabolismo , Animais , Humanos , Neoplasias/genética , Poli Adenosina Difosfato Ribose/química , Poli Adenosina Difosfato Ribose/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/genética , Especificidade por Substrato
8.
Nat Commun ; 4: 2240, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23917125

RESUMO

The poly(ADP-ribose) polymerase (PARP) family of proteins use NAD(+) as their substrate to modify acceptor proteins with ADP-ribose modifications. The function of most PARPs under physiological conditions is unknown. Here, to better understand this protein family, we systematically analyse the cell cycle localization of each PARP and of poly(ADP-ribose), a product of PARP activity, then identify the knockdown phenotype of each protein and perform secondary assays to elucidate function. We show that most PARPs are cytoplasmic, identify cell cycle differences in the ratio of nuclear to cytoplasmic poly(ADP-ribose) and identify four phenotypic classes of PARP function. These include the regulation of membrane structures, cell viability, cell division and the actin cytoskeleton. Further analysis of PARP14 shows that it is a component of focal adhesion complexes required for proper cell motility and focal adhesion function. In total, we show that PARP proteins are critical regulators of eukaryotic physiology.


Assuntos
Fenômenos Fisiológicos Celulares , Poli(ADP-Ribose) Polimerases/metabolismo , Adesão Celular , Ciclo Celular , Movimento Celular , Núcleo Celular/enzimologia , Forma Celular , Adesões Focais/metabolismo , Regulação Enzimológica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Fenótipo , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
Mol Cell ; 42(4): 489-99, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21596313

RESUMO

Poly(ADP-ribose) is a major regulatory macromolecule in the nucleus, where it regulates transcription, chromosome structure, and DNA damage repair. Functions in the interphase cytoplasm are less understood. Here, we identify a requirement for poly(ADP-ribose) in the assembly of cytoplasmic stress granules, which accumulate RNA-binding proteins that regulate the translation and stability of mRNAs upon stress. We show that poly(ADP-ribose), six specific poly(ADP-ribose) polymerases, and two poly(ADP-ribose) glycohydrolase isoforms are stress granule components. A subset of stress granule proteins, including microRNA-binding Argonaute family members Ago1-4, are modified by poly(ADP-ribose), and such modification increases upon stress, a condition when both microRNA-mediated translational repression and microRNA-directed mRNA cleavage are relieved. Similar relief of repression is also observed upon overexpression of specific poly(ADP-ribose) polymerases or, conversely, upon knockdown of glycohydrolase. We conclude that poly(ADP-ribose) is a key regulator of posttranscriptional gene expression in the cytoplasm.


Assuntos
Citoplasma/metabolismo , Grânulos Citoplasmáticos/metabolismo , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Estresse Fisiológico/genética , Proteínas Argonautas , Fator de Iniciação 2 em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Glicosídeo Hidrolases/metabolismo , Células HeLa , Humanos , Isoenzimas/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA