Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nat Commun ; 14(1): 5804, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726325

RESUMO

Prosaposin (PSAP) modulates glycosphingolipid metabolism and variants have been linked to Parkinson's disease (PD). Here, we find altered PSAP levels in the plasma, CSF and post-mortem brain of PD patients. Altered plasma and CSF PSAP levels correlate with PD-related motor impairments. Dopaminergic PSAP-deficient (cPSAPDAT) mice display hypolocomotion and depression/anxiety-like symptoms with mildly impaired dopaminergic neurotransmission, while serotonergic PSAP-deficient (cPSAPSERT) mice behave normally. Spatial lipidomics revealed an accumulation of highly unsaturated and shortened lipids and reduction of sphingolipids throughout the brains of cPSAPDAT mice. The overexpression of α-synuclein via AAV lead to more severe dopaminergic degeneration and higher p-Ser129 α-synuclein levels in cPSAPDAT mice compared to WT mice. Overexpression of PSAP via AAV and encapsulated cell biodelivery protected against 6-OHDA and α-synuclein toxicity in wild-type rodents. Thus, these findings suggest PSAP may maintain dopaminergic lipid homeostasis, which is dysregulated in PD, and counteract experimental parkinsonism.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , Camundongos , alfa-Sinucleína/genética , Dopamina , Neurônios Dopaminérgicos , Doença de Parkinson/genética , Saposinas/genética , Esfingolipídeos
2.
Alzheimers Res Ther ; 15(1): 137, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596686

RESUMO

BACKGROUND: Alzheimer's disease (AD) is an age-related disease characterized by altered cognition, neuroinflammation, and neurodegeneration against which there is presently no effective cure. Brain-derived neurotrophic factor (BDNF) is a key neurotrophin involved in the learning and memory process, with a crucial role in synaptic plasticity and neuronal survival. Several findings support that a reduced BDNF expression in the human brain is associated with AD pathogenesis. BDNF has been proposed as a potential therapy for AD, but BDNF has low brain penetration. In this study, we used an innovative encapsulated cell biodelivery (ECB) device, containing genetically modified cells capable of releasing BDNF and characterized its feasibility and therapeutic effects in the novel App knock-in AD mouse model (AppNL-G-F). METHODS: ECB's containing human ARPE-19 cells genetically modified to release BDNF (ECB-BDNF devices) were stereotactically implanted bilaterally into hippocampus of 3-month-old AppNL-G-F mice. The stability of BDNF release and its effect on AD pathology were evaluated after 1, 2-, and 4-months post-implantation by immunohistochemical and biochemical analyses. Exploratory and memory performance using elevated plus maze (EPM) and Y-maze test were performed in the 4-months treatment group. Immunological reaction towards ECB-BDNF devices were studied under ex vivo and in vivo settings. RESULTS: The surgery and the ECB-BDNF implants were well tolerated without any signs of unwanted side effects or weight loss. ECB-BDNF devices did not induce host-mediated immune response under ex vivo set-up but showed reduced immune cell attachment when explanted 4-months post-implantation. Elevated BDNF staining around ECB-BDNF device proximity was detected after 1, 2, and 4 months treatment, but the retrieved devices showed variable BDNF release. A reduction of amyloid-ß (Aß) plaque deposition was observed around ECB-BDNF device proximity after 2-months of BDNF delivery. CONCLUSIONS: The result of this study supports the use of ECB device as a promising drug-delivery approach to locally administer BBB-impermeable factors for treating neurodegenerative conditions like AD. Optimization of the mouse-sized devices to reduce variability of BDNF release is needed to employ the ECB platform in future pre-clinical research and therapy development studies.


Assuntos
Doença de Alzheimer , Fator Neurotrófico Derivado do Encéfalo , Sistemas de Liberação de Medicamentos , Animais , Camundongos , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides , Fator Neurotrófico Derivado do Encéfalo/uso terapêutico , Estudos de Viabilidade , Sistemas de Liberação de Medicamentos/métodos
3.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36012296

RESUMO

There is no cure yet available for Alzheimer's disease (AD). We recently optimized encapsulated cell biodelivery (ECB) devices releasing human mature nerve growth factor (hmNGF), termed ECB-NGF, to the basal forebrain of AD patients. The ECB-NGF delivery resulted in increased CSF cholinergic markers, improved glucose metabolism, and positive effects on cognition in AD patients. However, some ECB-NGF implants showed altered hmNGF release post-explantation. To optimize the ECB-NGF platform for future therapeutic purposes, we initiated in-vitro optimization studies by exposing ECB-NGF devices to physiological factors present within the AD brain. We report here that microglia cells can impair hmNGF release from ECB-NGF devices in-vitro, which can be reversed by transferring the devices to fresh culture medium. Further, we exposed the hmNGF secreting human ARPE-19 cell line (NGC0211) to microglia (HMC3) conditioned medium (MCM; untreated or treated with IL-1ß/IFNγ/Aß40/Aß42), and evaluated biochemical stress markers (ROS, GSH, ΔΨm, and Alamar Blue assay), cell death indicators (Annexin-V/PI), cell proliferation (CFSE retention and Ki67) and senescence markers (SA-ß-gal) in NGC0211 cells. MCMs from activated microglia reduced cell proliferation and induced cell senescence in NGC0211 cells, which otherwise resist biochemical alterations and cell death. These data indicate a critical but reversible impact of activated microglia on NGC0211 cells.


Assuntos
Doença de Alzheimer , Prosencéfalo Basal , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Prosencéfalo Basal/metabolismo , Biomarcadores , Proliferação de Células , Humanos , Microglia/metabolismo , Fator de Crescimento Neural/metabolismo
4.
Cells ; 10(11)2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34831056

RESUMO

Alzheimer's disease (AD) treatment is constrained due to the inability of peripherally administered therapeutic molecules to cross the blood-brain barrier. Encapsulated cell biodelivery (ECB) devices, a tissue-targeted approach for local drug release, was previously optimized for human mature nerve growth factor (hmNGF) delivery in AD patients but was found to have reduced hmNGF release over time. To understand the reason behind reduced ECB efficacy, we exposed hmNGF-releasing cells (NGC0211) in vitro to human cerebrospinal fluid (CSF) obtained from Subjective Cognitive Impairment (SCI), Lewy Body Dementia (LBD), and AD patients. Subsequently, we exposed NGC0211 cells directly to AD-related factors like amyloid-ß peptides (Aß40/42) or activated astrocyte-conditioned medium (Aß40/42/IL-1ß/TNFα-treated) and evaluated biochemical stress markers, cell death indicators, cell proliferation marker (Ki67), and hmNGF release. We found that all patients' CSF significantly reduced hmNGF release from NGC0211 cells in vitro. Aß40/42, inflammatory molecules, and activated astrocytes significantly affected NGC0211 cell proliferation without altering hmNGF release or other parameters important for essential functions of the NGC0211 cells. Long-term constant cell proliferation within the ECB device is critically important to maintain a steady cell population needed for stable mNGF release. These data show hampered proliferation of NGC0211 cells, which may lead to a decline of the NGC0211 cell population in ECBs, thereby reducing hmNGF release. Our study highlights the need for future studies to strengthen ECB-mediated long-term drug delivery approaches.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Astrócitos/metabolismo , Células Imobilizadas/citologia , Fator de Crescimento Neural/metabolismo , Doença de Alzheimer/líquido cefalorraquidiano , Linhagem Celular , Proliferação de Células , Disfunção Cognitiva/líquido cefalorraquidiano , Meios de Cultivo Condicionados/farmacologia , Humanos , Doença por Corpos de Lewy/líquido cefalorraquidiano , Peptídeos/metabolismo , Estresse Fisiológico
5.
Front Behav Neurosci ; 15: 661973, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34366802

RESUMO

Historically, many investigations into neurodegenerative diseases have focused on alterations in specific neuronal populations such as, for example, the loss of midbrain dopaminergic neurons in Parkinson's disease (PD) and loss of cholinergic transmission in Alzheimer's disease (AD). However, it has become increasingly clear that mammalian brain activities, from executive and motor functioning to memory and emotional responses, are strictly regulated by the integrity of multiple interdependent neuronal circuits. Among subcortical structures, the dopaminergic nigrostriatal and mesolimbic pathways as well as cholinergic innervation from basal forebrain and brainstem, play pivotal roles in orchestrating cognitive and non-cognitive symptoms in PD and AD. Understanding the functional interactions of these circuits and the consequent neurological changes that occur during degeneration provides new opportunities to understand the fundamental inter-workings of the human brain as well as develop new potential treatments for patients with dysfunctional neuronal circuits. Here, excerpted from a session of the European Behavioral Pharmacology Society meeting (Braga, Portugal, August 2019), we provide an update on our recent work in behavioral and cellular neuroscience that primarily focuses on interactions between cholinergic and dopaminergic systems in PD models, as well as stress in AD. These brief discussions include descriptions of (1) striatal cholinergic interneurons (CINs) and PD, (2) dopaminergic and cholinergic modulation of impulse control, and (3) the use of an implantable cell-based system for drug delivery directly the into brain and (4) the mechanisms through which day life stress, a risk factor for AD, damage protein and RNA homeostasis leading to AD neuronal malfunction.

6.
Alzheimers Res Ther ; 12(1): 51, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375872

RESUMO

BACKGROUND: The heterogeneity within Alzheimer's disease (AD) seriously challenges the development of disease-modifying treatments. We investigated volume of the basal forebrain, hippocampus, and precuneus in atrophy subtypes of AD and explored the relevance of subtype stratification in a small clinical trial on encapsulated cell biodelivery (ECB) of nerve growth factor (NGF) to the basal forebrain. METHODS: Structural MRI data was collected for 90 amyloid-positive patients and 69 amyloid-negative healthy controls at baseline, 6-, 12-, and 24-month follow-up. The effect of the NGF treatment was investigated in 10 biopsy-verified AD patients with structural MRI data at baseline and at 6- or 12-month follow-up. Patients were classified as typical, limbic-predominant, hippocampal-sparing, or minimal atrophy AD, using a validated visual assessment method. Volumetric analyses were performed using a region-of-interest approach. RESULTS: All AD subtypes showed reduced basal forebrain volume as compared with the healthy controls. The limbic-predominant subtype showed the fastest basal forebrain atrophy rate, whereas the minimal atrophy subtype did not show any significant volume decline over time. Atrophy rates of the hippocampus and precuneus also differed across subtypes. Our preliminary data from the small NGF cohort suggest that the NGF treatment seemed to slow the rate of atrophy in the precuneus and hippocampus in some hippocampal-sparing AD patients and in one typical AD patient. CONCLUSIONS: The cholinergic system is differentially affected in distinct atrophy subtypes of AD. Larger studies in the future should confirm that this differential involvement of the cholinergic system may contribute to subtype-specific response to cholinergic treatment. Our preliminary findings suggest that future clinical trials should target specific subtypes of AD, or at least report treatment effects stratified by subtype. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT01163825. Registered 14 July 2010.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Atrofia/patologia , Colinérgicos , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética
7.
Curr Res Pharmacol Drug Discov ; 1: 19-29, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34909639

RESUMO

Delivering glial cell line-derived neurotrophic factor (GDNF) to the brain is a potential treatment for Parkinson's Disease (PD). Here we use an implantable encapsulated cell technology that uses modified human clonal ARPE-19 â€‹cells to deliver of GDNF to the brain. In vivo studies demonstrated sustained delivery of GDNF to the rat striatum over 6 months. Anatomical benefits and behavioral efficacy were shown in 6-OHDA lesioned rats where nigral dopaminergic neurons were preserved in neuroprotection studies and dopaminergic fibers were restored in neurorecovery studies. When larger, clinical-sized devices were implanted for 3 months into the putamen of Göttingen minipigs, GDNF was widely distributed throughout the putamen and caudate producing a significant upregulation of tyrosine hydroxylase immunohistochemistry. These results are the first to provide clear evidence that implantation of encapsulated GDNF-secreting cells deliver efficacious and biologically relevant amounts of GDNF in a sustained and targeted manner that is scalable to treat the large putamen in patients with Parkinson's disease.

8.
Neural Plast ; 2019: 6286197, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30984255

RESUMO

Methods: Human ARPE-19 cells engineered to secrete high levels of the glial cell line-derived neurotrophic factor (GDNF) were encapsulated into hollow fiber membranes. The devices were implanted into the rat striatum 1 week prior to striatal quinolinic acid injections. Animals were evaluated using a battery of validated motor tests, and histology was performed to determine the extent of GDNF diffusion and associated prevention of neuronal cell loss and behavioral deficits. Results: Encapsulated cell-based delivery of GDNF produced widespread distribution of GDNF throughout the entire implanted striatum. Stereological estimates of striatal neuron number and volume of lesion size revealed that GDNF delivery resulted in near complete neuroprotection. Conclusions: Delivery of neurotrophic molecules such as GDNF using encapsulated cells has reached a technological point where clinical evaluation is justified. Because GDNF has been effective in animal models of Parkinson's disease, stroke, epilepsy, and Huntington's disease, among other debilitating neurodegenerative diseases, encapsulated cell-based delivery of GDNF might represent one innovative means of slowing the neural degeneration seen in a myriad of currently untreatable neurological diseases.


Assuntos
Corpo Estriado/efeitos dos fármacos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Ácido Quinolínico/toxicidade , Animais , Encapsulamento de Células , Linhagem Celular , Sistemas de Liberação de Medicamentos , Humanos , Células LLC-PK1 , Masculino , Doenças Neurodegenerativas/tratamento farmacológico , Neurônios/efeitos dos fármacos , Ratos Sprague-Dawley , Suínos
9.
J Neurosci ; 39(11): 2144-2156, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30665947

RESUMO

Neurotrophic factors are candidates for treating epilepsy, but their development has been hampered by difficulties in achieving stable and targeted delivery of efficacious concentrations within the desired brain region. We have developed an encapsulated cell technology that overcomes these obstacles by providing a targeted, continuous, de novo synthesized source of high levels of neurotrophic molecules from human clonal ARPE-19 cells encapsulated into hollow fiber membranes. Here we illustrate the potential of this approach for delivering glial cell line-derived neurotrophic factor (GDNF) directly to the hippocampus of epileptic rats. In vivo studies demonstrated that bilateral intrahippocampal implants continued to secrete GDNF that produced high hippocampal GDNF tissue levels in a long-term manner. Identical implants robustly reduced seizure frequency in the pilocarpine model. Seizures were reduced rapidly, and this effect increased in magnitude over 3 months, ultimately leading to a reduction of seizures by 93%. This effect persisted even after device removal, suggesting potential disease-modifying benefits. Importantly, seizure reduction was associated with normalized changes in anxiety and improved cognitive performance. Immunohistochemical analyses revealed that the neurological benefits of GDNF were associated with the normalization of anatomical alterations accompanying chronic epilepsy, including hippocampal atrophy, cell degeneration, loss of parvalbumin-positive interneurons, and abnormal neurogenesis. These effects were associated with the activation of GDNF receptors. All in all, these results support the concept that the implantation of encapsulated GDNF-secreting cells can deliver GDNF in a sustained, targeted, and efficacious manner, paving the way for continuing preclinical evaluation and eventual clinical translation of this approach for epilepsy.SIGNIFICANCE STATEMENT Epilepsy is one of the most common neurological conditions, affecting millions of individuals of all ages. These patients experience debilitating seizures that frequently increase over time and can associate with significant cognitive decline and psychiatric disorders that are generally poorly controlled by pharmacotherapy. We have developed a clinically validated, implantable cell encapsulation system that delivers high and consistent levels of GDNF directly to the brain. In epileptic animals, this system produced a progressive and permanent reduction (>90%) in seizure frequency. These benefits were accompanied by improvements in cognitive and anxiolytic behavior and the normalization of changes in CNS anatomy that underlie chronic epilepsy. Together, these data suggest a novel means of tackling the frequently intractable neurological consequences of this devastating disorder.


Assuntos
Epilepsia/tratamento farmacológico , Fator Neurotrófico Derivado de Linhagem de Célula Glial/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Convulsões/tratamento farmacológico , Animais , Encapsulamento de Células , Linhagem Celular , Sistemas de Liberação de Medicamentos/métodos , Epilepsia/induzido quimicamente , Humanos , Masculino , Pilocarpina/administração & dosagem , Ratos Sprague-Dawley , Convulsões/induzido quimicamente
10.
Mol Ther Methods Clin Dev ; 9: 211-224, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29766029

RESUMO

Brain-derived neurotrophic factor (BDNF) may represent a therapeutic for chronic epilepsy, but evaluating its potential is complicated by difficulties in its delivery to the brain. Here, we describe the effects on epileptic seizures of encapsulated cell biodelivery (ECB) devices filled with genetically modified human cells engineered to release BDNF. These devices, implanted into the hippocampus of pilocarpine-treated rats, highly decreased the frequency of spontaneous seizures by more than 80%. These benefits were associated with improved cognitive performance, as epileptic rats treated with BDNF performed significantly better on a novel object recognition test. Importantly, long-term BDNF delivery did not alter normal behaviors such as general activity or sleep/wake patterns. Detailed immunohistochemical analyses revealed that the neurological benefits of BDNF were associated with several anatomical changes, including reduction in degenerating cells and normalization of hippocampal volume, neuronal counts (including parvalbumin-positive interneurons), and neurogenesis. In conclusion, the present data suggest that BDNF, when continuously released in the epileptic hippocampus, reduces the frequency of generalized seizures, improves cognitive performance, and reverts many histological alterations associated with chronic epilepsy. Thus, ECB device-mediated long-term supplementation of BDNF in the epileptic tissue may represent a valid therapeutic strategy against epilepsy and some of its co-morbidities.

11.
J Control Release ; 270: 275-281, 2018 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-29269144

RESUMO

For patients with profound hearing loss a cochlear implant (CI) is the only treatment today. The function of a CI depends in part of the function and survival of the remaining spiral ganglion neurons (SGN). It is well known from animal models that inner ear infusion of neurotrophic factors prevents SGN degeneration and maintains electrical responsiveness in deafened animals. The purpose with this study was to investigate the effects of a novel encapsulated cell (EC) device releasing neurotrophic factors in the deafened guinea pig. The results showed that an EC device releasing glial cell line-derived neurotrophic factor (GDNF) or brain-derived neurotrophic factor (BDNF) implanted for four weeks in deafened guinea pigs significantly preserved the SGNs and maintained their electrical responsiveness. There was a significant difference between BDNF and GDNF in favour of GDNF. This study, demonstrating positive structural and functional effects in the deafened inner ear, suggests that an implanted EC device releasing biologically protective substances offers a feasible approach for treating progressive hearing impairment.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/administração & dosagem , Surdez/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/administração & dosagem , Animais , Surdez/fisiopatologia , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico , Feminino , Cobaias , Masculino
12.
J Comp Neurol ; 525(3): 553-573, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27490949

RESUMO

Central cholinergic structures within the brain of the even-toed hoofed Goettingen miniature domestic pig (Sus scrofa domesticus) were evaluated by immunohistochemical visualization of choline acetyltransferase (ChAT) and the low-affinity neurotrophin receptor, p75NTR . ChAT-immunoreactive (-ir) perikarya were seen in the olfactory tubercle, striatum, medial septal nucleus, vertical and horizontal limbs of the diagonal band of Broca, and the nucleus basalis of Meynert, medial habenular nucleus, zona incerta, neurosecretory arcuate nucleus, cranial motor nuclei III and IV, Edinger-Westphal nucleus, parabigeminal nucleus, pedunculopontine nucleus, and laterodorsal tegmental nucleus. Cholinergic ChAT-ir neurons were also found within transitional cortical areas (insular, cingulate, and piriform cortices) and hippocampus proper. ChAT-ir fibers were seen throughout the dentate gyrus and hippocampus, in the mediodorsal, laterodorsal, anteroventral, and parateanial thalamic nuclei, the fasciculus retroflexus of Meynert, basolateral and basomedial amygdaloid nuclei, anterior pretectal and interpeduncular nuclei, as well as select laminae of the superior colliculus. Double immunofluorescence demonstrated that virtually all ChAT-ir basal forebrain neurons were also p75NTR -positive. The present findings indicate that the central cholinergic system in the miniature pig is similar to other mammalian species. Therefore, the miniature pig may be an appropriate animal model for preclinical studies of neurodegenerative diseases where the cholinergic system is compromised. J. Comp. Neurol. 525:553-573, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Encéfalo/metabolismo , Colina O-Acetiltransferase/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Porco Miniatura/metabolismo , Animais , Encéfalo/anatomia & histologia , Feminino , Imuno-Histoquímica , Modelos Animais , Suínos , Porco Miniatura/anatomia & histologia
13.
Trends Pharmacol Sci ; 36(8): 537-46, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26067102

RESUMO

Treating many chronic diseases will require a tight, minute-to-minute regulation of therapeutic molecules that is currently not achievable with most pharmaceutical therapies. For these diseases, implantable living cellular systems may be able to provide unlimited drug delivery, enabling seamless matching of treatment duration with disease longevity. Cell encapsulation is an advanced technology that achieves this goal and represents a viable therapeutic option. The advanced state of the field has allowed researchers to inch forward into therapeutic domains previously untouchable because of the myriad disparate fields that intersect biomaterials and cells. Here, we discuss the next generation of clinical trials and potential approaches, 'smart' and responsive encapsulation systems, sophisticated and multifunctional devices, and novel imaging tools, together with the future challenges in the field.


Assuntos
Cápsulas/química , Transplante de Células/métodos , Alginatos/química , Aloenxertos/transplante , Animais , Cápsulas/efeitos adversos , Xenoenxertos/transplante , Humanos
14.
Epilepsia ; 55(1): 167-74, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24245512

RESUMO

PURPOSE: Encapsulated cell biodelivery (ECB) is a relatively safe approach, since the devices can be removed in the event of adverse effects. The main objectives of the present study were to evaluate whether ECB could be a viable alternative of cell therapy for epilepsy. We therefore developed a human cell line producing galanin, a neuropeptide that has been shown to exert inhibitory effects on seizures, most likely acting via decreasing glutamate release from excitatory synapses. To explore whether ECB of genetically modified galanin-producing human cell line could provide seizure-suppressant effects, and test possible translational prospect for clinical application, we implanted ECB devices bilaterally into the hippocampus of rats subjected to rapid kindling, a model for recurrent temporal lobe seizures. METHODS: Two clones from a genetically modified human cell line secreting different levels of galanin were tested. Electroencephalography (EEG) recordings and stimulations were performed by electrodes implanted into the hippocampus at the same surgical session as ECB devices. One week after the surgery, rapid kindling stimulations were initiated. KEY FINDINGS: Enzyme-linked immunosorbent assay (ELISA) measurements prior to device implantation showed a release of galanin on average of 8.3 ng/mL/24 h per device for the low-releasing clone and 12.6 ng/mL/24 h per device for the high-releasing clone. High-releasing galanin-producing ECB devices moderately decreased stimulation-induced focal afterdischarge duration, whereas low-releasing ECB devices had no significant effect. SIGNIFICANCE: Our study shows that galanin-releasing ECB devices moderately suppress focal stimulation-induced recurrent seizures. Despite this moderate effect, the study provides conceptual proof that ECB could be a viable alternative approach to cell therapy in humans, with the advantage that the treatment could be terminated by removing these devices from the brain. Thereby, this strategy provides a higher level of safety for future therapeutic applications, in which genetically modified human cell lines that are optimized to produce and release antiepileptic compounds could be clinically evaluated for their seizure-suppressant effects.


Assuntos
Transplante de Células/métodos , Epilepsias Parciais/tratamento farmacológico , Galanina/uso terapêutico , Hipocampo/efeitos dos fármacos , Animais , Linhagem Celular , Modelos Animais de Doenças , Portadores de Fármacos/administração & dosagem , Eletroencefalografia , Ensaio de Imunoadsorção Enzimática , Epilepsias Parciais/fisiopatologia , Galanina/administração & dosagem , Galanina/análise , Glicosídeo Hidrolases , Hipocampo/química , Hipocampo/fisiopatologia , Humanos , Masculino , Córtex Motor/fisiopatologia , Ratos , Ratos Sprague-Dawley
15.
Adv Drug Deliv Rev ; 67-68: 131-41, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23880505

RESUMO

Delivering therapeutic molecules, including trophic factor proteins, across the blood brain barrier to the brain parenchyma to treat chronic neurodegenerative diseases remains one of the great challenges in biology. To be effective, delivery needs to occur in a long-term and stable manner at sufficient quantities directly to the target region in a manner that is selective but yet covers enough of the target site to be efficacious. One promising approach uses cellular implants that produce and deliver therapeutic molecules directly to the brain region of interest. Implanted cells can be precisely positioned into the desired region and can be protected from host immunological attack by encapsulating them and by surrounding them within an immunoisolatory, semipermeable capsule. In this approach, cells are enclosed within a semiporous capsule with a perm selective membrane barrier that admits oxygen and required nutrients and releases bioactive cell secretions while restricting passage of larger cytotoxic agents from the host immune defense system. Recent advances in human cell line development have increased the levels of secreted therapeutic molecules from encapsulated cells, and membrane extrusion techniques have led to the first ever clinical demonstrations of long-term survival and function of encapsulated cells in the brain parenchyma. As such, cell encapsulation is capable of providing a targeted, continuous, de novo synthesized source of very high levels of therapeutic molecules that can be distributed over significant portions of the brain.


Assuntos
Transplante de Células/métodos , Doenças Neurodegenerativas/terapia , Doença de Alzheimer/terapia , Animais , Transplante de Células/instrumentação , Humanos , Doença de Huntington/terapia , Fator de Crescimento Neural/metabolismo , Doença de Parkinson/terapia , Alicerces Teciduais
16.
Exp Neurol ; 237(2): 260-6, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22766205

RESUMO

Neuropathic pain is caused by a lesion or disease to the somatosensory nervous system and current treatment merely reduces symptoms. Here, we investigate the potential therapeutic effect of the neurotrophic factor Meteorin on multiple signs of neuropathic pain in two distinct rat models. In a first study, two weeks of intermittent systemic administration of recombinant Meteorin led to a dose-dependent reversal of established mechanical and cold hypersensitivity in rats after photochemically-induced sciatic nerve injury. Moreover, analgesic efficacy lasted for at least one week after treatment cessation. In rats with a chronic constriction injury (CCI) of the sciatic nerve, five systemic injections of Meteorin over 9 days dose-dependently reversed established mechanical and thermal hypersensitivity as well as weight bearing deficits taken as a surrogate marker of spontaneous pain. The beneficial effects of systemic Meteorin were sustained for at least three weeks after treatment ended and no adverse side effects were observed. Pharmacokinetic analysis indicated that plasma Meteorin exposure correlated well with dosing and was no longer detectable after 24 hours. This pharmacokinetic profile combined with a delayed time of onset and prolonged duration of analgesic efficacy on multiple parameters suggests a disease-modifying mechanism rather than symptomatic pain relief. In sciatic nerve lesioned rats, delivery of recombinant Meteorin by intrathecal injection was also efficacious in reversing mechanical and cold hypersensitivity. Together, these data demonstrate that Meteorin represents a novel treatment strategy for the effective and long lasting relief from the debilitating consequences of neuropathic pain.


Assuntos
Analgésicos/farmacologia , Hiperalgesia/tratamento farmacológico , Proteínas do Tecido Nervoso/farmacologia , Neuralgia/tratamento farmacológico , Animais , Modelos Animais de Doenças , Hiperalgesia/etiologia , Masculino , Neuralgia/complicações , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/farmacologia , Nervo Isquiático/lesões
17.
J Neurosurg ; 117(2): 340-7, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22655593

RESUMO

OBJECT: The authors describe the first clinical trial with encapsulated cell biodelivery (ECB) implants that deliver nerve growth factor (NGF) to the cholinergic basal forebrain with the intention of halting the degeneration of cholinergic neurons and the associated cognitive decline in patients with Alzheimer disease (AD). The NsG0202 implant (NsGene A/S) consists of an NGF-producing, genetically engineered human cell line encapsulated behind a semipermeable hollow fiber membrane that allows the influx of nutrients and the efflux of NGF. The centimeter-long capsule is attached to an inert polymer tether that is used to guide the capsule to the target via stereotactic techniques and is anchored to the skull at the bur hole. METHODS: Six patients with mild to moderate AD were included in this Phase Ib open-label safety study and were divided into 2 dose cohorts. The first cohort of 3 patients received single implants targeting the basal nucleus of Meynert (Ch4 region) bilaterally (2 implants per patient), and after a safety evaluation, a second cohort of 3 patients received bilateral implants (a total of 4 implants per patient) targeting both the Ch4 region and the vertical limb of the diagonal band of Broca (Ch2 region). Stereotactic implantation of the devices was successfully accomplished in all patients. Despite extensive brain atrophy, all targets could be reached without traversing sulci, the insula, or lateral ventricles. RESULTS: Postoperative CT scans allowed visualization of the barium-impregnated tethers, and fusion of the scans with stereotactic MR images scan was used to verify the intended positions of the implants. Follow-up MRI at 3 and 12 months postimplantation showed no evidence of inflammation or device displacement. At 12 months, implants were successfully retrieved, and low but persistent NGF secretion was detected in half of the patients. CONCLUSIONS: With refinement, the ECB technology is positioned to become an important therapeutic platform in restorative neurosurgery and, in combination with other therapeutic factors, may be relevant for the treatment of a variety of neurological disorders. Clinical trial registration no.: NCT01163825.


Assuntos
Doença de Alzheimer/cirurgia , Fibras Colinérgicas/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/instrumentação , Implantes de Medicamento , Engenharia Genética , Fator de Crescimento Neural/administração & dosagem , Procedimentos Neurocirúrgicos/instrumentação , Procedimentos Neurocirúrgicos/métodos , Prosencéfalo/efeitos dos fármacos , Idoso , Idoso de 80 Anos ou mais , Núcleo Basal de Meynert/efeitos dos fármacos , Cápsulas , Linhagem Celular , Estudos de Coortes , Feixe Diagonal de Broca/efeitos dos fármacos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Desenho de Equipamento , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/diagnóstico por imagem , Técnicas Estereotáxicas/instrumentação , Âncoras de Sutura , Tomografia Computadorizada por Raios X
18.
Restor Neurol Neurosci ; 30(3): 225-36, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22426041

RESUMO

PURPOSE: Encapsulated cell (EC) biodelivery is a promising, clinically relevant technology platform to safely target the delivery of therapeutic proteins to the central nervous system. The purpose of this study was to evaluate EC biodelivery of the novel neurotrophic factor, Meteorin, to the striatum of rats and to investigate its neuroprotective effects against quinolinic acid (QA)-induced excitotoxicity. METHODS: Meteorin-producing ARPE-19 cells were loaded into EC biodelivery devices and implanted into the striatum of rats. Two weeks after implantation, QA was injected into the ipsilateral striatum followed by assessment of neurological performance two and four weeks after QA administration. RESULTS: Implant-delivered Meteorin effectively protected against QA-induced toxicity, as manifested by both near-normal neurological performance and reduction of brain cell death. Morphological analysis of the Meteorin-treated brains showed a markedly reduced striatal lesion size. The EC biodelivery devices produced stable or even increasing levels of Meteorin throughout the study over 6 weeks. CONCLUSIONS: Stereotactically implanted EC biodelivery devices releasing Meteorin could offer a feasible strategy in the treatment of neurological diseases with an excitotoxic component such as Huntington's disease. In a broader sense, the EC biodelivery technology is a promising therapeutic protein delivery platform for the treatment of a wide range of diseases of the central nervous system.


Assuntos
Implantes Absorvíveis/normas , Citoproteção/efeitos dos fármacos , Modelos Animais de Doenças , Doença de Huntington/tratamento farmacológico , Proteínas do Tecido Nervoso/administração & dosagem , Quinolinas/toxicidade , Animais , Transplante de Tecido Encefálico/métodos , Cápsulas/administração & dosagem , Linhagem Celular , Citoproteção/fisiologia , Humanos , Doença de Huntington/induzido quimicamente , Doença de Huntington/genética , Masculino , Camundongos , Fatores de Crescimento Neural/administração & dosagem , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/metabolismo , Ratos , Ratos Sprague-Dawley
19.
Exp Neurol ; 233(1): 172-81, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21985865

RESUMO

Neurotrophic factors are secreted proteins responsible for migration, growth and survival of neurons during development, and for maintenance and plasticity of adult neurons. Here we present a novel secreted protein named Cometin which together with Meteorin defines a new evolutionary conserved protein family. During early mouse development, Cometin is found exclusively in the floor plate and from E13.5 also in dorsal root ganglions and inner ear but apparently not in the adult nervous system. In vitro, Cometin promotes neurite outgrowth from dorsal root ganglion cells which can be blocked by inhibition of the Janus or MEK kinases. In this assay, additive effects of Cometin and Meteorin are observed indicating separate receptors. Furthermore, Cometin supports migration of neuroblasts from subventricular zone explants to the same extend as stromal cell derived factor 1a. Given the neurotrophic properties in vitro, combined with the restricted inner ear expression during development, we further investigated Cometin in relation to deafness. In neomycin deafened guinea pigs, two weeks intracochlear infusion of recombinant Cometin supports spiral ganglion neuron survival and function. In contrast to the control group receiving artificial perilymph, Cometin treated animals retain normal electrically-evoked brainstem response which is maintained several weeks after treatment cessation. Neuroprotection is also evident from stereological analysis of the spiral ganglion. Altogether, these studies show that Cometin is a potent new neurotrophic factor with therapeutic potential.


Assuntos
Movimento Celular/efeitos dos fármacos , Fatores de Crescimento Neural/uso terapêutico , Células-Tronco Neurais/efeitos dos fármacos , Neuritos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Gânglio Espiral da Cóclea/citologia , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Sistema Nervoso Central/embriologia , Sistema Nervoso Central/metabolismo , Ventrículos Cerebrais/citologia , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Meios de Cultivo Condicionados/química , Surdez/induzido quimicamente , Surdez/tratamento farmacológico , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Proteínas do Domínio Duplacortina , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Cobaias , Humanos , Técnicas In Vitro , Masculino , Camundongos , Microscopia Eletrônica de Varredura/métodos , Proteínas Associadas aos Microtúbulos/metabolismo , Neomicina/toxicidade , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/farmacologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/farmacologia , Células-Tronco Neurais/ultraestrutura , Neuritos/ultraestrutura , Neurônios/citologia , Neurônios/ultraestrutura , Neuropeptídeos/metabolismo , Ratos , Espectrometria de Massas em Tandem , Transfecção/métodos
20.
Neurobiol Dis ; 41(1): 160-8, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20840868

RESUMO

Meteorin is a newly discovered secreted protein involved in both glial and neuronal cell differentiation, as well as in cerebral angiogenesis during development; but effects in the adult nervous system are unknown. The growth factor-like properties and expression of Meteorin during the development of the nervous system raises the possibility that it might possess important neuroprotective or regenerative capabilities. This report is the first demonstration that Meteorin has potent neuroprotective effects in vivo. Lentiviral-mediated striatal delivery of Meteorin to rats two weeks prior to injections of quinolinic acid (QA) dramatically reduced the loss of striatal neurons. The cellular protection afforded by Meteorin was associated with normalization of neurological performance on spontaneous forelimb placing and cylinder behavioral tests and a complete protection against QA-induced weight loss. These benefits were comparable in magnitude to those obtained with lentiviral-mediated delivery of ciliary neurotrophic factor (CNTF), a protein with known neuroprotective properties in the same model system. In naive animals, endogenous levels of both Meteorin and CNTF were increased in glial cells in response to QA lesion indicating that Meteorin may exert its protective effects as part of the reactive gliosis cascade in the injured brain. In summary, these data demonstrate that Meteorin strongly protects striatal neurons and deserves additional evaluation as a novel therapeutic for the treatment of neurological disorders with an excitotoxic component such as Huntington's Disease.


Assuntos
Corpo Estriado/metabolismo , Terapia Genética/métodos , Doença de Huntington/terapia , Lentivirus/genética , Transtornos dos Movimentos/terapia , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Corpo Estriado/patologia , Modelos Animais de Doenças , Vetores Genéticos/genética , Vetores Genéticos/uso terapêutico , Células HEK293 , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Masculino , Camundongos , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/patologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA