Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(5): 107294, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636665

RESUMO

Exenatide, a promising cardioprotective agent, protects against cardiac structural remodeling and diastolic dysfunction. Combined blockade of sodium and potassium channels is valuable for managing atrial fibrillation (AF). Here, we explored whether exenatide displayed anti-AF effects by inhibiting human Kv1.5 and Nav1.5 channels. We used the whole-cell patch-clamp technique to investigate the effects of exenatide on hKv1.5 and hNav1.5 channels expressed in human embryonic kidney 293 cells and studied the effects of exenatide on action potential (AP) and other cardiac ionic currents in rat atrial myocytes. Additionally, an electrical mapping system was used to explore the effects of exenatide on electrical properties and AF activity in isolated rat hearts. Finally, a rat AF model, established using acetylcholine and calcium chloride, was employed to evaluate the anti-AF potential of exenatide in rats. Exenatide reversibly suppressed IKv1.5 with IC50 of 3.08 µM, preferentially blocked the hKv1.5 channel in its closed state, and positively shifted the voltage-dependent activation curve. Exenatide also reversibly inhibited INav1.5 with IC50 of 3.30 µM, negatively shifted the voltage-dependent inactivation curve, and slowed its recovery from inactivation with significant use-dependency at 5 and 10 Hz. Furthermore, exenatide prolonged AP duration and suppressed the sustained K+ current (Iss) and transient outward K+ current (Ito), but without inhibition of L-type Ca2+ current (ICa,L) in rat atrial myocytes. Exenatide prevented AF incidence and duration in rat hearts and rats. These findings demonstrate that exenatide inhibits IKv1.5 and INav1.5in vitro and reduces AF susceptibility in isolated rat hearts and rats.


Assuntos
Potenciais de Ação , Fibrilação Atrial , Exenatida , Canal de Potássio Kv1.5 , Miócitos Cardíacos , Canal de Sódio Disparado por Voltagem NAV1.5 , Bloqueadores do Canal de Sódio Disparado por Voltagem , Animais , Humanos , Masculino , Ratos , Potenciais de Ação/efeitos dos fármacos , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/metabolismo , Exenatida/farmacologia , Exenatida/uso terapêutico , Células HEK293 , Canal de Potássio Kv1.5/antagonistas & inibidores , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Ratos Sprague-Dawley , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/uso terapêutico
2.
Plants (Basel) ; 13(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38498537

RESUMO

Aboveground biomass (AGB) is a key indicator of the physiological status and productivity of grasslands, and its accurate estimation is essential for understanding regional carbon cycles. In this study, we developed a suitable AGB model for grasslands in Xinjiang based on the random forest algorithm, using AGB observation data, remote sensing vegetation indices, and meteorological data. We estimated the grassland AGB from 2000 to 2022, analyzed its spatiotemporal changes, and explored its response to climatic factors. The results showed that (1) the model was reliable (R2 = 0.55, RMSE = 64.33 g·m-2) and accurately estimated the AGB of grassland in Xinjiang; (2) the spatial distribution of grassland AGB in Xinjiang showed high levels in the northwest and low values in the southeast. AGB showed a growing trend in most areas, with a share of 61.19%. Among these areas, lowland meadows showed the fastest growth, with an average annual increment of 0.65 g·m-2·a-1; and (3) Xinjiang's climate exhibited characteristics of warm humidification, and grassland AGB showed a higher correlation with precipitation than temperature. Developing remote sensing models based on random forest algorithms proves an effective approach for estimating AGB, providing fundamental data for maintaining the balance between grass and livestock and for the sustainable use and conservation of grassland resources in Xinjiang, China.

4.
Front Pharmacol ; 14: 1177003, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324483

RESUMO

Introduction: As the third generation of epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), osimertinib has demonstrated more significant cardiotoxicity than previous generations of EGFR-TKIs. Investigating the mechanism of osimertinib cardiotoxicity can provide a reference for a comprehensive understanding of osimertinib-induced cardiotoxicity and the safety of the usage of this drug in clinical practice. Methods: Multichannel electrical mapping with synchronous ECG recording was used to investigate the effects of varying osimertinib concentrations on electrophysiological indicators in isolated Langendorff-perfused hearts of guinea pigs. Additionally, a whole-cell patch clamp was used to detect the impact of osimertinib on the currents of hERG channels transfected into HEK293 cells and the Nav1.5 channel transfected into Chinese hamster ovary cells and acute isolated ventricular myocytes from SD rats. Results: Acute exposure to varying osimertinib concentrations produced prolongation in the PR interval, QT interval, and QRS complex in isolated hearts of guinea pigs. Meanwhile, this exposure could concentration-dependently increase the conduction time in the left atrium, left ventricle, and atrioventricular without affecting the left ventricle conduction velocity. Osimertinib inhibited the hERG channel in a concentration-dependent manner, with an IC50 of 2.21 ± 1.29 µM. Osimertinib also inhibited the Nav1.5 channel in a concentration-dependent manner, with IC50 values in the absence of inactivation, 20% inactivation, and 50% inactivation of 15.58 ± 0.83 µM, 3.24 ± 0.09 µM, and 2.03 ± 0.57 µM, respectively. Osimertinib slightly inhibited the currents of L-type Ca2+ channels in a concentration-dependent manner in acutely isolated rat ventricular myocytes. Discussion: Osimertinib could prolong the QT interval; PR interval; QRS complex; left atrium, left ventricle, and atrioventricular conduction time in isolated guinea pig hearts. Furthermore, osimertinib could block the hERG, Nav1.5, and L-type Ca2+ channels in concentration-dependent manners. Therefore, these findings might be the leading cause of the cardiotoxicity effects, such as QT prolongation and decreased left ventricular ejection fraction.

5.
Oxid Med Cell Longev ; 2022: 9014155, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464763

RESUMO

Diabetes mellitus (DM) is associated with mitochondrial dysfunction and oxidative stress that can lead to diabetic cardiomyopathy (DCM), which can often remain undetected until late stages of the disease. However, myocardial injury occurs before the onset of measurable cardiac dysfunction, although its molecular correlates are poorly understood. In this study, we made a DM rat induced by a high-fat diet combined with low and high doses of streptozotocin (STZ) to emulate pre and early DCM. RNA-sequencing analysis of ventricular tissue revealed a differential transcriptome profile and abnormal activation of pathways involved in fatty acid metabolism, oxidative phosphorylation, cardiac structure and function, insulin resistance, calcium signalling, apoptosis, and TNF signalling. Moreover, using high glucose-treated human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM), we recapitulated the cardiac cellular phenotype of DM and identified several molecular correlates that may promote the development of DCM. In conclusion, we have developed an experimental framework to target pathways underlying the progression of DCM.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Células-Tronco Pluripotentes Induzidas , Animais , Apoptose , Diabetes Mellitus Experimental/tratamento farmacológico , Cardiomiopatias Diabéticas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Ratos , Estreptozocina/efeitos adversos
6.
ACS Pharmacol Transl Sci ; 4(5): 1639-1653, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34661080

RESUMO

Hydroxychloroquine (HCQ), clinically established in antimalarial and autoimmune therapy, recently raised cardiac arrhythmogenic concerns when used alone or with azithromycin (HCQ+AZM) in Covid-19. We report complementary, experimental, studies of its electrophysiological effects. In patch clamped HEK293 cells expressing human cardiac ion channels, HCQ inhibited IKr and IK1 at a therapeutic concentrations (IC50s: 10 ± 0.6 and 34 ± 5.0 µM). INa and ICaL showed higher IC50s; Ito and IKs were unaffected. AZM slightly inhibited INa, ICaL, IKs, and IKr, sparing IK1 and Ito. (HCQ+AZM) inhibited IKr and IK1 (IC50s: 7.7 ± 0.8 and 30.4 ± 3.0 µM), sparing INa, ICaL, and Ito. Molecular induced-fit docking modeling confirmed potential HCQ-hERG but weak AZM-hERG binding. Effects of µM-HCQ were studied in isolated perfused guinea-pig hearts by multielectrode, optical RH237 voltage, and Rhod-2 mapping. These revealed reversibly reduced left atrial and ventricular action potential (AP) conduction velocities increasing their heterogeneities, increased AP durations (APDs), and increased durations and dispersions of intracellular [Ca2+] transients, respectively. Hearts also became bradycardic with increased electrocardiographic PR and QRS durations. The (HCQ+AZM) combination accentuated these effects. Contrastingly, (HCQ+AZM) and not HCQ alone disrupted AP propagation, inducing alternans and torsadogenic-like episodes on voltage mapping during forced pacing. O'Hara-Rudy modeling showed that the observed IKr and IK1 effects explained the APD alterations and the consequently prolonged Ca2+ transients. The latter might then downregulate INa, reducing AP conduction velocity through recently reported INa downregulation by cytosolic [Ca2+] in a novel scheme for drug action. The findings may thus prompt future investigations of HCQ's cardiac safety under particular, chronic and acute, clinical situations.

7.
Br J Pharmacol ; 177(2): 402-419, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31625597

RESUMO

BACKGROUND AND PURPOSE: Hypertension has been the leading preventable cause of premature death worldwide. The aim of this study was to design a more efficient vaccine against novel targets for the treatment of hypertension. EXPERIMENTAL APPROACH: The epitope CE12, derived from the human L-type calcium channel (CaV 1.2), was designed and conjugated with Qß bacteriophage virus-like particles to test the efficacy in hypertensive animals. Further, the hepatitis B core antigen (HBcAg)-CE12-CQ10 vaccine, a bivalent vaccine based on HBcAg virus-like particles and targeting both human angiotensin AT1 receptors and CaV 1.2 channels, was developed and evaluated in hypertensive rodents. KEY RESULTS: The Qß-CE12 vaccine effectively decreased the BP in hypertensive rodents. A monoclonal antibody against CE12 specifically bound to L-type calcium channels and inhibited channel activity. Injection with monoclonal antibody against CE12 effectively reduced the BP in angiotensin II-induced hypertensive mice. The HBcAg-CE12-CQ10 vaccine showed antihypertensive effects in hypertensive mice and relatively superior antihypertensive effects in spontaneously hypertensive rats and ameliorated L-NAME-induced renal injury. In addition, no obvious immune-mediated damage or electrophysiological adverse effects were detected. CONCLUSION AND IMPLICATIONS: Immunotherapy against both AT1 receptors and CaV 1.2 channels decreased the BP in hypertensive rodents effectively and provided protection against hypertensive target organ damage without obvious feedback activation of renin-angiotensin system or induction of dominant antibodies against the carrier protein. Thus, the HBcAg-CE12-CQ10 vaccine may provide a novel and promising therapeutic approach for hypertension.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Canais de Cálcio Tipo L/imunologia , Hipertensão/prevenção & controle , Receptor Tipo 1 de Angiotensina/imunologia , Vacinas Combinadas/farmacologia , Vacinas de Partículas Semelhantes a Vírus/farmacologia , Angiotensina II , Animais , Canais de Cálcio Tipo L/metabolismo , Modelos Animais de Doenças , Epitopos , Hipertensão/imunologia , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Camundongos Endogâmicos BALB C , Ratos Endogâmicos SHR , Receptor Tipo 1 de Angiotensina/metabolismo , Vacinação
8.
J Pharmacol Sci ; 140(3): 284-290, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31481348

RESUMO

The human ether-a-go-go-related gene (hERG) encodes the K+ channel that carries the rapid component of the delayed rectifier current in the human heart. Reduction of hERG activity induced by gene mutations or pharmacological inhibition is responsible for the type 2 form of long QT syndrome in patients which can develop into ventricular arrhythmia and sudden cardiac death. Therefore, pharmacological activation of hERG may lead to therapeutic potential for cardiac arrhythmias. In this study we characterized a small and novel compound, N-(2-(tert-butyl)phenyl)-6-(4-chlorophenyl)-4-(trifluoromethyl) nicotinamide, HW-0168, that exhibits potent activation of hERG channel with an EC50 of 0.41 ± 0.2 µM. Using whole-cell patch clamp recording of HEK293 cells stably expressed hERG channels, we found that HW-0168 dramatically increased current amplitude about 2.5 folds and slowed down current inactivation about 4 folds. HW-0168 shifted the voltage-dependent channel activation to hyperpolarizing direction about 3.7 mV and the voltage-dependent channel inactivation to depolarizing direction about 9.4 mV. In addition, recording of guinea-pig ventricular cells confirmed that HW-0168 shortened the action potential duration. In conclusion, we identified a novel hERG channel activator HW-0168 that can be used for studying the physiological role of hERG in cardiac myocytes and may be beneficial for treating long QT syndrome.


Assuntos
Canais de Potássio Éter-A-Go-Go/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/metabolismo , Linhagem Celular , Cobaias , Células HEK293 , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Humanos , Síndrome do QT Longo/tratamento farmacológico , Síndrome do QT Longo/metabolismo , Masculino
9.
Mol Pharmacol ; 96(3): 393-400, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31308264

RESUMO

Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by cutaneous lesions and intense pruritus. The warm temperature-activated Ca2+-permeable transient receptor potential vanilloid (TRPV)3 channel is abundantly expressed in keratinocytes, and gain-of-function mutations of TRPV3 cause skin lesions and pruritus in rodents and humans, suggesting an involvement of TRPV3 in the pathogenesis of AD. Here we report that pharmacological and genetic inhibition of TRPV3 attenuates skin lesions and dermatitis in mice. We found that TRPV3 proteins, together with inflammatory factors tumor necrosis factor (TNF)-α and interleukin (IL)-6, were upregulated in the skin of mice in a AD-like model induced by topical application of chemical 2,4-dinitrofluorobenzene, as detected by Western blot analysis and immunostaining assays. Pharmacological activation of TRPV3 by channel agonist and skin sensitizer carvacrol resulted in the development of AD in wild-type mice but not in TRPV3 knockout mice. Furthermore, inhibition of TRPV3 by natural osthole reversed the severity of inflammatory dorsal skin and ear edema in a dose-dependent manner and also decreased expression of inflammatory factors TNF-α and IL-6. Taken together, our findings demonstrate the involvement of overactive TRPV3 in the progressive pathology of AD in mice, and topical inhibition of TRPV3 channel function may represent an effective option for preventing and treating AD or inflammatory skin diseases. SIGNIFICANCE STATEMENT: The overactive transient receptor potential vanilloid TRPV3 channel is critically involved in the pathogenesis of atopic dermatitis. Inhibition of TRPV3 channel function by topical natural osthole may represent an effective therapy for management of atopic dermatitis aimed at preventing or alleviating skin lesions and severe itching.


Assuntos
Cumarínicos/administração & dosagem , Cimenos/efeitos adversos , Dermatite Atópica/metabolismo , Dinitrofluorbenzeno/efeitos adversos , Canais de Cátion TRPV/metabolismo , Administração Tópica , Animais , Cumarínicos/farmacologia , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Temperatura Alta , Humanos , Interleucina-6/metabolismo , Masculino , Camundongos , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/efeitos dos fármacos
10.
J Pharmacol Exp Ther ; 370(2): 299-307, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31152005

RESUMO

Hair growth starts from hair follicles that reside in dermis, and abnormal hair growth is an early sign of hair follicle disease or systemic illness such as alopecia or hair loss. Therefore, identifying a target critical for dysfunctional hair follicles is fundamental to alleviating dermatologic or systemic diseases with hair abnormalities. The warm temperature-activated Ca2+-permeable transient receptor potential vanilloid 3 (TRPV3) channel protein is abundantly expressed in the skin keratinocytes, and dysfunctional TRPV3 causes human congenital Olmsted syndrome, characterized by skin diseases and alopecia, indicating an important role for TRPV3 in hair follicle development and hair growth. To validate TRPV3 as a therapeutic target, we investigated the impact of pharmacological modulation of TRPV3 on hair growth using a combination of biochemical and cell biology, immunohistochemical, whole-cell patch clamp, RNA interference, and pharmacological approaches. We found that functional TRPV3 channel proteins are highly expressed in hair follicle outer root sheath (ORS) cells as detected by Western blot analysis, immunohistochemical staining, and electrophysiological techniques. Pharmacological activation of TRPV3 by agonist natural carvacrol induces cell death of ORS cells, and topical application of carvacrol to mouse dorsal skin also inhibits hair growth. Conversely, specific inhibition of TRPV3 by inhibitor natural forsythoside B and short-hairpin RNA reverses the cell death induced by carvacrol-mediated TRPV3 activation in human ORS cells. Furthermore, forsythoside B results in a significant reversal of hair growth inhibition induced by agonist carvacrol. Altogether, our findings demonstrate that TRPV3 channel is critical for regulation of hair growth, and inhibition of TRPV3 may represent a promising therapy for hair loss or hair follicle-related skin diseases.


Assuntos
Morte Celular/efeitos dos fármacos , Folículo Piloso/citologia , Folículo Piloso/crescimento & desenvolvimento , Canais de Cátion TRPV/metabolismo , Temperatura , Animais , Ácidos Cafeicos/farmacologia , Cimenos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glucosídeos/farmacologia , Células HEK293 , Folículo Piloso/efeitos dos fármacos , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
Eur J Pharmacol ; 858: 172496, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31242440

RESUMO

A natural monoterpene alkaloid incarvillateine isolated from the plant Incarvillea sinensis is known to relieve inflammatory and neuropathic pain. However, the molecular target for the action of incarvillateine remains elusive. Here, we report that incarvillateine exacerbates epileptic seizures by inhibiting subtypes of γ-Aminobutyric acid type A (GABAA) receptors. Two-electrode voltage clamp recordings of α1ß3γ2, α2ß3γ2, α3ß3γ2 and α5ß3γ2 subtypes expressed in Xenopus oocytes revealed that incarvillateine inhibited the GABAA currents with IC50 of 25.1 µM, 43.1 µM, 105.1 µM and 93.7 µM, respectively. Whole-cell patch clamp recordings of hippocampal slices confirmed that incarvillateine inhibited spontaneous inhibitory postsynaptic currents (IPSCs), and miniature IPSCs and tonic currents. Moreover, inhibition of GABAA currents and spontaneous IPSCs by incarvillateine persisted even in the presence of blockers of adenosine receptors. In addition, incarvillateine enhanced epileptic discharges induced by Mg2+-free artificial cerebrospinal fluid (ACSF) in hippocampal slices. Furthermore, intracerebral ventricular injections of incarvillateine increased the severity of seizures induced by kainic acid in a dose-dependent manner. Taken together, our data demonstrate that incarvillateine aggravates seizures by inhibition of GABAA currents and GABAergic synaptic transmissions.


Assuntos
Alcaloides/efeitos adversos , Produtos Biológicos/efeitos adversos , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Antagonistas de Receptores de GABA-A/efeitos adversos , Monoterpenos/efeitos adversos , Receptores de GABA-A/metabolismo , Segurança , Convulsões/fisiopatologia , Animais , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Camundongos , Neurotransmissores/metabolismo , Ratos , Convulsões/induzido quimicamente , Convulsões/metabolismo , Transmissão Sináptica/efeitos dos fármacos
12.
Mol Pharmacol ; 94(4): 1164-1173, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30108138

RESUMO

Coumarin osthole is a dominant bioactive ingredient of the natural Cnidium monnieri plant commonly used for traditional Chinese herbal medicines for therapies and treatments including antipruritus and antidermatitis. However, the molecular mechanism underlying the action of osthole remains unclear. In this study, we report that osthole exerts an antipruritic effect through selective inhibition of Ca2+-permeable and thermosensitive transient receptor potential vanilloid 3 (TRPV3) cation channels that are primarily expressed in the keratinocytes of the skin. Coumarin osthole was identified as an inhibitor of TRPV3 channels transiently expressed in HEK293 cells in a calcium fluorescent assay. Inhibition of the TRPV3 current by osthole and its selectivity were further confirmed by whole-cell patch clamp recordings of TRPV3-expressing HEK293 cells and mouse primary cultured keratinocytes. Behavioral evaluation demonstrated that inhibition of TRPV3 by osthole or silencing by knockout of the TRPV3 gene significantly reduced the scratching induced by either acetone-ether-water or histamine in localized rostral neck skin in mice. Taken together, our findings provide a molecular basis for use of natural coumarin osthole from the C. monnieri plant in antipruritic or skin care therapy, thus establishing a significant role of the TRPV3 channel in chronic itch signaling or acute histamine-dependent itch sensation.


Assuntos
Antipruriginosos/farmacologia , Cumarínicos/farmacologia , Prurido/tratamento farmacológico , Pele/efeitos dos fármacos , Pele/metabolismo , Canais de Cátion TRPV/antagonistas & inibidores , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Linhagem Celular , Células HEK293 , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Prurido/metabolismo , Transdução de Sinais/efeitos dos fármacos
13.
Acta Pharmacol Sin ; 39(3): 331-335, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29094727

RESUMO

Itching is an intricate, common symptom of dermatologic and systemic diseases, and both TRPV3 and TRPA1 channels have been suggested to function as downstream effector targets. But the relative contributions of TRPV3 and TRPA1 to itch sensation in vivo remain unclear. To dissect the role of TRPA1 or TRPV3 in the cutaneous sensation of itching, we took the advantage of a natural compound carvacrol from oregano, and examined its effect on the induction of scratching behavior in mice. We showed that the intradermal injection of carvacrol (0.01%, 0.1% and 1%, 50 µL) induced scratching in a concentration-dependent manner. But in TRPV3-knockout mice, the scratching induced by carvacrol (1%, 50 µL) was markedly decreased by approximately 64% (from 275 scratching bouts down to 90) within 60 min. Further analysis revealed that TRPV3-knockout caused a reduction of scratching bouts for approximately 40% in the first 20 min (the initial phase), whereas the scratching bouts were reduced by approximately 90% in the last 40 min (the sustained phase). These results were in consistence with those in our whole-cell recordings in HEK-293T cells expressing either TRPA1 or TRPV3: carvacrol exhibited similar potencies in activating either TRPA1 or TRPV3, but carvacrol-activated TRPA1 current showed a rapid desensitization, which was reduced by approximately 90% within 5 min before a complete washout, whereas carvacrol-induced TRPV3 current showed a slow desensitization that caused less than 30% of current reduction in 10 min and left a significant residual TRPV3 current after washout. Our results demonstrate that carvacrol from plant oregano is a skin sensitizer or allergen; TRPV3 is involved in the initial phase and the sustained phase of pruritus, whereas TRPA1 likely contributes to the initial phase.


Assuntos
Monoterpenos/farmacologia , Prurido/induzido quimicamente , Prurido/fisiopatologia , Canal de Cátion TRPA1/fisiologia , Canais de Cátion TRPV/fisiologia , Animais , Células Cultivadas , Cimenos , Relação Dose-Resposta a Droga , Humanos , Injeções Intradérmicas , Masculino , Camundongos , Camundongos Knockout , Monoterpenos/administração & dosagem , Canais de Cátion TRPV/genética
14.
Mol Pharmacol ; 92(3): 193-200, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28377424

RESUMO

Temperature-sensitive transient receptor potential (TRP) channels such as TRPA1 and TRPV1 have been identified as downstream ion channel targets in the transduction of itch. As a member of the temperature-sensitive TRP family, the Ca2+-permeable nonselective cation channel TRPV3 is expressed abundantly in skin keratinocytes. Recent identification of gain-of-function mutations of human TRPV3 from patients with Olmsted syndrome, which is characterized by severe itching and palmoplantar and periorificial keratoderma, unveils its crucial role in chronic itch and skin diseases. In this review, we will focus on recent progress made in the understanding of TRPV3 that emerges as an attractive target for developing effective antipruritic therapy for chronic itch or skin-related diseases.


Assuntos
Prurido/tratamento farmacológico , Dermatopatias/tratamento farmacológico , Canais de Cátion TRPV/fisiologia , Animais , Dermatite/etiologia , Cabelo/crescimento & desenvolvimento , Humanos , Prurido/etiologia , Transdução de Sinais , Dermatopatias/etiologia , Canais de Cátion TRPV/antagonistas & inibidores
15.
Nanoscale Res Lett ; 7(1): 507, 2012 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-22963609

RESUMO

Uniform dumbbell-like ZnO microcrystals had been successfully fabricated on a large scale via a facile solution technique under mild conditions. Obtained ZnO, with length of 1.2 to 1.6 µm and diameters of 350 to 600 nm, exhibited well-defined dumbbell-like morphology and hexagonal wurtzite structure and grew along the [001] direction. Effects of the reactant concentration on the sizes and morphologies of the ZnO products had been investigated, indicating that the reactant concentration played a crucial role in determining final sizes and shapes of the samples. In addition, the growth process of the dumbbell-like ZnO microcrystals was studied, and a possible formation mechanism was proposed. Furthermore, the optical properties of ZnO samples obtained at various reaction times were also investigated by photoluminescence (PL) spectroscopy. The PL spectra of the as-prepared dumbbell-like ZnO microcrystals showed a strong UV emission peak.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA