Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
2.
Nature ; 620(7976): 1018-1024, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37612503

RESUMO

Coral reefs are highly diverse ecosystems that thrive in nutrient-poor waters, a phenomenon frequently referred to as the Darwin paradox1. The energy demand of coral animal hosts can often be fully met by the excess production of carbon-rich photosynthates by their algal symbionts2,3. However, the understanding of mechanisms that enable corals to acquire the vital nutrients nitrogen and phosphorus from their symbionts is incomplete4-9. Here we show, through a series of long-term experiments, that the uptake of dissolved inorganic nitrogen and phosphorus by the symbionts alone is sufficient to sustain rapid coral growth. Next, considering the nitrogen and phosphorus budgets of host and symbionts, we identify that these nutrients are gathered through symbiont 'farming' and are translocated to the host by digestion of excess symbiont cells. Finally, we use a large-scale natural experiment in which seabirds fertilize some reefs but not others, to show that the efficient utilization of dissolved inorganic nutrients by symbiotic corals established in our laboratory experiments has the potential to enhance coral growth in the wild at the ecosystem level. Feeding on symbionts enables coral animals to tap into an important nutrient pool and helps to explain the evolutionary and ecological success of symbiotic corals in nutrient-limited waters.


Assuntos
Antozoários , Ecossistema , Nitrogênio , Fósforo , Fotossíntese , Simbiose , Animais , Antozoários/crescimento & desenvolvimento , Antozoários/metabolismo , Antozoários/fisiologia , Nitrogênio/metabolismo , Fósforo/metabolismo , Simbiose/fisiologia , Aves/fisiologia
4.
Sci Adv ; 9(4): eabq0110, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36696500

RESUMO

Quantitative reconstructions of hydrological change during ancient greenhouse warming events provide valuable insight into warmer-than-modern hydrological cycles but are limited by paleoclimate proxy uncertainties. We present sea surface temperature (SST) records and seawater oxygen isotope (δ18Osw) estimates for the Middle Eocene Climatic Optimum (MECO), using coupled carbonate clumped isotope (Δ47) and oxygen isotope (δ18Oc) data of well-preserved planktonic foraminifera from the North Atlantic Newfoundland Drifts. These indicate a transient ~3°C warming across the MECO, with absolute temperatures generally in accordance with trace element (Mg/Ca)-based SSTs but lower than biomarker-based SSTs for the same interval. We find a transient ~0.5‰ shift toward higher δ18Osw, which implies increased salinity in the North Atlantic subtropical gyre and potentially a poleward expansion of its northern boundary in response to greenhouse warming. These observations provide constraints on dynamic ocean response to warming events, which are consistent with theory and model simulations predicting an enhanced hydrological cycle under global warming.

5.
Thorax ; 77(9): 929-932, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35790388

RESUMO

Despite good evidence of impaired innate antiviral responses in asthma, trials of inhaled interferon-ß given during exacerbations showed only modest benefits in moderate/severe asthma. Using human experimental rhinovirus infection, we observe robust in vivo induction of bronchial epithelial interferon response genes 4 days after virus inoculation in 25 subjects with asthma but not 11 control subjects. This signature correlated with virus loads and lower respiratory symptoms. Our data indicate that the in vivo innate antiviral response is dysregulated in asthma and open up the potential that prophylactic rather than therapeutic interferon therapy may have greater clinical benefit.


Assuntos
Asma , Imunidade Inata , Interferons , Infecções por Picornaviridae , Asma/imunologia , Asma/virologia , Células Epiteliais/imunologia , Humanos , Interferons/imunologia , Infecções por Picornaviridae/genética , Infecções por Picornaviridae/imunologia , Rhinovirus
6.
PLoS One ; 16(10): e0258316, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34673799

RESUMO

RORγt is an isoform of RORC, preferentially expressed in Th17 cells, that functions as a critical regulator of type 3 immunity. As murine Th17-driven inflammatory disease models were greatly diminished in RORC knock-out mice, this receptor was prioritised as an attractive therapeutic target for the treatment of several autoimmune diseases. Human genetic studies indicate a significant contributory role for RORC in several human disease conditions. Furthermore, genome-wide association studies (GWAS) report a significant association between inflammatory bowel disease (IBD) and the RORC regulatory variant rs4845604. To investigate if the rs4845604 variant may affect CD4+ T cell differentiation events, naïve CD4+ T cells were isolated from eighteen healthy subjects homozygous for the rs4845604 minor (A) or major (G) allele). Isolated cells from each subject were differentiated into distinct T cell lineages by culturing in either T cell maintenance medium or Th17 driving medium conditions for six days in the presence of an RORC inverse agonist (to prevent constitutive receptor activity) or an inactive diastereomer (control). Our proof of concept study indicated that genotype had no significant effect on the mean number of naïve CD4 T cells isolated, nor the frequency of Th1-like and Th17-like cells following six days of culture in any of the four culture conditions. Analysis of the derived RNA-seq count data identified genotype-driven transcriptional effects in each of the four culture conditions. Subsequent pathway enrichment analysis of these profiles reported perturbation of metabolic signalling networks, with the potential to affect the cellular detoxification response. This investigation reveals that rs4845604 genotype is associated with transcriptional effects in CD4+ T cells that may perturb immune and metabolic pathways. Most significantly, the rs4845604 GG, IBD risk associated, genotype may be associated with a differential detoxification response. This observation justifies further investigation in a larger cohort of both healthy and IBD-affected individuals.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Hipersensibilidade/genética , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/imunologia , Ativação Linfocitária/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Polimorfismo de Nucleotídeo Único/genética , Transcriptoma/genética , Proliferação de Células , Regulação da Expressão Gênica , Predisposição Genética para Doença , Homozigoto , Humanos , Doenças Inflamatórias Intestinais/patologia , Receptores CXCR3/metabolismo
8.
Proc Natl Acad Sci U S A ; 117(49): 30980-30987, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229561

RESUMO

Sea-level rise resulting from the instability of polar continental ice sheets represents a major socioeconomic hazard arising from anthropogenic warming, but the response of the largest component of Earth's cryosphere, the East Antarctic Ice Sheet (EAIS), to global warming is poorly understood. Here we present a detailed record of North Atlantic deep-ocean temperature, global sea-level, and ice-volume change for ∼2.75 to 2.4 Ma ago, when atmospheric partial pressure of carbon dioxide (pCO2) ranged from present-day (>400 parts per million volume, ppmv) to preindustrial (<280 ppmv) values. Our data reveal clear glacial-interglacial cycles in global ice volume and sea level largely driven by the growth and decay of ice sheets in the Northern Hemisphere. Yet, sea-level values during Marine Isotope Stage (MIS) 101 (∼2.55 Ma) also signal substantial melting of the EAIS, and peak sea levels during MIS G7 (∼2.75 Ma) and, perhaps, MIS G1 (∼2.63 Ma) are also suggestive of EAIS instability. During the succeeding glacial-interglacial cycles (MIS 100 to 95), sea levels were distinctly lower than before, strongly suggesting a link between greater stability of the EAIS and increased land-ice volumes in the Northern Hemisphere. We propose that lower sea levels driven by ice-sheet growth in the Northern Hemisphere decreased EAIS susceptibility to ocean melting. Our findings have implications for future EAIS vulnerability to a rapidly warming world.

9.
Artigo em Inglês | MEDLINE | ID: mdl-33081654

RESUMO

BACKGROUND: An apparent increase in the incidence of severe community-acquired pneumonia (CAP) caused by Streptococcus pyogenes (group A Streptococcus - GAS) was observed during 2017 in the Newcastle area. The study was undertaken to establish whether there was a true increase in severe S. pyogenes pneumonia and to explore its epidemiology and clinical features. METHODS: The study was a retrospective descriptive study of S. pyogenes pneumonia set in two tertiary referral hospitals in Newcastle, a large regional city, during the period 2007 to 2018. Subjects were adults identified as having S. pyogenes pneumonia by searching a database of severe CAP (defined as requiring intensive care unit [ICU] admission) for the period 2007-2018. Laboratory records were also searched for sterile site isolates of S. pyogenes to identify patients not requiring ICU admission. RESULTS: There were 13 cases of S. pyogenes CAP identified during the study period, of whom 12 (92%) required ICU admission. S. pyogenes accounted for 12/728 (1.6%) cases of severe CAP during the study period. The severity of S. pyogenes pneumonia was high despite a mean patient age of 48 years and 7/13 (54%) having no significant past medical history. The mortality rate was 2/13 (15%). Viral co-infection was found in 6/12 (50%) of patients tested. Overall 7/12 (58%) of the patients with severe S. pyogenes CAP during the study period presented in the winter or spring of 2017. CONCLUSIONS: Streptococcus pyogenes is a rare cause of severe CAP in the Newcastle area, but there was a marked increase in frequency observed during the 2017 influenza season. Further study of the epidemiology of invasive GAS (iGAS) disease in Newcastle is warranted to identify emerging trends in this severe infection.


Assuntos
Infecções Comunitárias Adquiridas/microbiologia , Pneumonia Bacteriana/microbiologia , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes , Adolescente , Adulto , Idoso , Infecções Comunitárias Adquiridas/epidemiologia , Infecções Comunitárias Adquiridas/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , New South Wales/epidemiologia , Pneumonia Bacteriana/epidemiologia , Pneumonia Bacteriana/patologia , Estudos Retrospectivos , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/patologia , Adulto Jovem
10.
Science ; 369(6509): 1383-1387, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32913105

RESUMO

Much of our understanding of Earth's past climate comes from the measurement of oxygen and carbon isotope variations in deep-sea benthic foraminifera. Yet, long intervals in existing records lack the temporal resolution and age control needed to thoroughly categorize climate states of the Cenozoic era and to study their dynamics. Here, we present a new, highly resolved, astronomically dated, continuous composite of benthic foraminifer isotope records developed in our laboratories. Four climate states-Hothouse, Warmhouse, Coolhouse, Icehouse-are identified on the basis of their distinctive response to astronomical forcing depending on greenhouse gas concentrations and polar ice sheet volume. Statistical analysis of the nonlinear behavior encoded in our record reveals the key role that polar ice volume plays in the predictability of Cenozoic climate dynamics.

11.
Sci Rep ; 10(1): 11002, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647351

RESUMO

The Piacenzian stage of the Pliocene (2.6 to 3.6 Ma) is the most recent past interval of sustained global warmth with mean global temperatures markedly higher (by ~2-3 °C) than today. Quantifying CO2 levels during the mid-Piacenzian Warm Period (mPWP) provides a means, therefore, to deepen our understanding of Earth System behaviour in a warm climate state. Here we present a new high-resolution record of atmospheric CO2 using the δ11B-pH proxy from 3.35 to 3.15 million years ago (Ma) at a temporal resolution of 1 sample per 3-6 thousand years (kyrs). Our study interval covers both the coolest marine isotope stage of the mPWP, M2 (~3.3 Ma) and the transition into its warmest phase including interglacial KM5c (centered on ~3.205 Ma) which has a similar orbital configuration to present. We find that CO2 ranged from [Formula: see text]ppm to [Formula: see text]ppm, with CO2 during the KM5c interglacial being [Formula: see text]ppm (at 95% confidence). Our findings corroborate the idea that changes in atmospheric CO2 levels played a distinct role in climate variability during the mPWP. They also facilitate ongoing data-model comparisons and suggest that, at present rates of human emissions, there will be more CO2 in Earth's atmosphere by 2025 than at any time in at least the last 3.3 million years.

12.
Rapid Commun Mass Spectrom ; 34(11): e8762, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32067285

RESUMO

RATIONALE: To detect the small changes in past pH, the boron isotope ratio of coral carbonates, expressed as the δ11 B value, needs to be both precise and accurate (2sd <<1‰). Boron measurements by Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS) require the boron to be carefully purified before analysis, which is time consuming, and requires specialist training. Here, we use the prepFAST-MC method that enables the automatic extraction of B (up to 25 ng load) from a CaCO3 matrix. METHODS: Samples were purified using the prepFAST-MC automated system with a ~25-µL column of Amberlite IRA743 resin. Boron isotope measurements were performed by MC-ICPMS. The effects of matrix load, speed of sample loading onto the column, and blank contamination were tested to evaluate the effects on the purification process. The optimised protocol was tested on various standards and samples of aragonite corals. RESULTS: The blank contribution for the approach is ~60 pg and is negligible given our sample size (<0.2% sample size). Efficiency of matrix removal is demonstrated with the addition of up to 1.6 mg of dissolved low-B calcium carbonate to NIST SRM 951 with no impact on the accuracy of δ11 B values. The Japanese Geological Survey Porites reference material JCp-1, boric acid standard NIST SRM 951, and seawater, all processed on the prepFAST-MC system, give δ11 B values within error of literature values (δ11 BJCp-1 = 24.31 ± 0.20‰ (2sd, n = 20); δ11 BNIST 951 = -0.02 ± 0.15‰ (2sd, n = 13) and δ11 BSeawater = 39.50 ± 0.06‰ (2sd, n = 2)). Results obtained from the coral Siderastrea siderea purified with the prepFAST-MC system show an average offset from the manual ion-exchange protocols of Δδ11 B = 0.01 ± 0.28‰ (2sd, n = 12). CONCLUSIONS: Our study demonstrates the capacity of the prepFAST-MC method to generate accurate and reproducible δ11 B values for a range of materials, without fractionation, with efficient matrix removal and with negligible blank contribution.


Assuntos
Antozoários/química , Boro , Espectrometria de Massas/métodos , Animais , Automação , Boro/análise , Boro/química , Carbonato de Cálcio/análise , Carbonato de Cálcio/química , Concentração de Íons de Hidrogênio , Isótopos/análise , Isótopos/química , Água do Mar/química
13.
Science ; 367(6475): 266-272, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31949074

RESUMO

The cause of the end-Cretaceous mass extinction is vigorously debated, owing to the occurrence of a very large bolide impact and flood basalt volcanism near the boundary. Disentangling their relative importance is complicated by uncertainty regarding kill mechanisms and the relative timing of volcanogenic outgassing, impact, and extinction. We used carbon cycle modeling and paleotemperature records to constrain the timing of volcanogenic outgassing. We found support for major outgassing beginning and ending distinctly before the impact, with only the impact coinciding with mass extinction and biologically amplified carbon cycle change. Our models show that these extinction-related carbon cycle changes would have allowed the ocean to absorb massive amounts of carbon dioxide, thus limiting the global warming otherwise expected from postextinction volcanism.


Assuntos
Ciclo do Carbono , Extinção Biológica , Erupções Vulcânicas , Dióxido de Carbono/análise , Aquecimento Global , México , Modelos Teóricos
14.
Aging Cell ; 17(5): e12825, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30094915

RESUMO

Chronic kidney disease and associated comorbidities (diabetes, cardiovascular diseases) manifest with an accelerated ageing phenotype, leading ultimately to organ failure and renal replacement therapy. This process can be modulated by epigenetic and environmental factors which promote loss of physiological function and resilience to stress earlier, linking biological age with adverse outcomes post-transplantation including delayed graft function (DGF). The molecular features underpinning this have yet to be fully elucidated. We have determined a molecular signature for loss of resilience and impaired physiological function, via a synchronous genome, transcriptome and proteome snapshot, using human renal allografts as a source of healthy tissue as an in vivo model of ageing in humans. This comprises 42 specific transcripts, related through IFNγ signalling, which in allografts displaying clinically impaired physiological function (DGF) exhibited a greater magnitude of change in transcriptional amplitude and elevated expression of noncoding RNAs and pseudogenes, consistent with increased allostatic load. This was accompanied by increased DNA methylation within the promoter and intragenic regions of the DGF panel in preperfusion allografts with immediate graft function. Pathway analysis indicated that an inability to sufficiently resolve inflammatory responses was enabled by decreased resilience to stress and resulted in impaired physiological function in biologically older allografts. Cross-comparison with publically available data sets for renal pathologies identified significant transcriptional commonality for over 20 DGF transcripts. Our data are clinically relevant and important, as they provide a clear molecular signature for the burden of "wear and tear" within the kidney and thus age-related physiological capability and resilience.


Assuntos
Função Retardada do Enxerto/genética , Perfilação da Expressão Gênica , Adulto , Idoso , Processamento Alternativo/genética , Senescência Celular/genética , Estudos de Coortes , Função Retardada do Enxerto/imunologia , Função Retardada do Enxerto/patologia , Epigênese Genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Perfusão , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Traumatismo por Reperfusão/genética , Reprodutibilidade dos Testes , Análise de Sequência de RNA
15.
Proc Biol Sci ; 285(1883)2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-30051846

RESUMO

Changes in biodiversity at all levels from molecules to ecosystems are often linked to climate change, which is widely represented univariately by temperature. A global environmental driving mechanism of biodiversity dynamics is thus implied by the strong correlation between temperature proxies and diversity patterns in a wide variety of fauna and flora. Yet climate consists of many interacting variables. Species probably respond to the entire climate system as opposed to its individual facets. Here, we examine ecological and morphological traits of 12 633 individuals of two species of planktonic foraminifera with similar ecologies but contrasting evolutionary outcomes. Our results show that morphological and ecological changes are correlated to the interactions between multiple environmental factors. Models including interactions between climate variables explain at least twice as much variation in size, shape and abundance changes as models assuming that climate parameters operate independently. No dominant climatic driver can be identified: temperature alone explains remarkably little variation through our highly resolved temporal sequences, implying that a multivariate approach is required to understand evolutionary response to abiotic forcing. Our results caution against the use of a 'silver bullet' environmental parameter to represent global climate while studying evolutionary responses to abiotic change, and show that more comprehensive reconstruction of palaeobiological dynamics requires multiple biotic and abiotic dimensions.


Assuntos
Evolução Biológica , Mudança Climática , Foraminíferos/citologia , Foraminíferos/fisiologia , Características de História de Vida , Animais , Temperatura , Zooplâncton/citologia , Zooplâncton/fisiologia
16.
Paleoceanogr Paleoclimatol ; 33(5): 511-529, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-31058259

RESUMO

Pelagic sediments from the subtropical South Atlantic Ocean contain geographically extensive Oligocene ooze and chalk layers that consist almost entirely of the calcareous nannofossil Braarudosphaera. Poor recovery and the lack of precise dating of these horizons in previous studies has limited the understanding of the number of acmes, their timing and durations, and therefore their likely cause. Here we present a high-resolution, astronomically tuned stratigraphy of Braarudosphaera oozes (29.5-27.9 Ma) from Ocean Drilling Program Site 1264 in the southeastern Atlantic Ocean. We identify seven episodes with highly abundant Braarudosphaera. Four of these acme events coincide with maxima and three with minima in the ~110 and 405-kyr paced eccentricity cycles. The longest lasting acme event corresponds to a pronounced minimum in the ~2.4-Myr eccentricity cycle. In the modern ocean, Braarudosphaera occurrences are limited to shallow marine and neritic settings, and the calcified coccospheres of Braarudosphaera are probably produced during a resting stage in the algal life cycle. Therefore, we hypothesize that the Oligocene acmes point to extensive and episodic (hyper) stratified surface water conditions, with a shallow pycnocline that may have served as a virtual seafloor and (partially/temporarily) prevented the coccospheres from sinking in the pelagic realm. We speculate that hyperstratification was either extended across large areas of the South Atlantic basin, through the formation of relatively hyposaline surface waters, or eddy contained through strong isopycnals at the base of eddies. Astronomical forcing of atmospheric and/or oceanic circulation could have triggered these conditions through either sustained rainfall over the open ocean and adjacent land masses or increased Agulhas Leakage.

17.
Proc Natl Acad Sci U S A ; 114(50): 13114-13119, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29180424

RESUMO

During the Mid-Pleistocene Transition (MPT; 1,200-800 kya), Earth's orbitally paced ice age cycles intensified, lengthened from ∼40,000 (∼40 ky) to ∼100 ky, and became distinctly asymmetrical. Testing hypotheses that implicate changing atmospheric CO2 levels as a driver of the MPT has proven difficult with available observations. Here, we use orbitally resolved, boron isotope CO2 data to show that the glacial to interglacial CO2 difference increased from ∼43 to ∼75 µatm across the MPT, mainly because of lower glacial CO2 levels. Through carbon cycle modeling, we attribute this decline primarily to the initiation of substantive dust-borne iron fertilization of the Southern Ocean during peak glacial stages. We also observe a twofold steepening of the relationship between sea level and CO2-related climate forcing that is suggestive of a change in the dynamics that govern ice sheet stability, such as that expected from the removal of subglacial regolith or interhemispheric ice sheet phase-locking. We argue that neither ice sheet dynamics nor CO2 change in isolation can explain the MPT. Instead, we infer that the MPT was initiated by a change in ice sheet dynamics and that longer and deeper post-MPT ice ages were sustained by carbon cycle feedbacks related to dust fertilization of the Southern Ocean as a consequence of larger ice sheets.

18.
Mol Ther Nucleic Acids ; 8: 383-394, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28918038

RESUMO

Antisense oligonucleotide (ASO) gapmers downregulate gene expression by inducing enzyme-dependent degradation of targeted RNA and represent a promising therapeutic platform for addressing previously undruggable genes. Unfortunately, their therapeutic application, particularly that of the more potent chemistries (e.g., locked-nucleic-acid-containing gapmers), has been hampered by their frequent hepatoxicity, which could be driven by hybridization-mediated interactions. An early de-risking of this liability is a crucial component of developing safe, ASO-based drugs. To rank ASOs based on their effect on the liver, we have developed an acute screen in the mouse that can be applied early in the drug development cycle. A single-dose (3-day) screen with streamlined endpoints (i.e., plasma transaminase levels and liver weights) was observed to be predictive of ASO hepatotoxicity ranking established based on a repeat-dose (15 day) study. Furthermore, to study the underlying mechanisms of liver toxicity, we applied transcriptome profiling and pathway analyses and show that adverse in vivo liver phenotypes correlate with the number of potent, hybridization-mediated off-target effects (OTEs). We propose that a combination of in silico OTE predictions, streamlined in vivo hepatotoxicity screening, and a transcriptome-wide selectivity screen is a valid approach to identifying and progressing safer compounds.

19.
Am Nat ; 190(3): 350-362, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28829645

RESUMO

The influence of within-species variation and covariation on evolutionary patterns is well established for generational and macroevolutionary processes, most prominently through genetic lines of least resistance. However, it is not known whether intraspecific phenotypic variation also directs microevolutionary trajectories into the long term when a species is subject to varying environmental conditions. Here we present a continuous, high-resolution bivariate record of size and shape changes among 12,633 individual planktonic foraminifera of a surviving and an extinct-going species over 500,000 years. Our study interval spans the late Pliocene to earliest Pleistocene intensification of northern hemisphere glaciation, an interval of profound climate upheaval that can be divided into three phases of increasing glacial intensity. Within each of these three Plio-Pleistocene climate phases, the within-population allometries predict evolutionary change from one time step to the next and that the within-phase among-population (i.e., evolutionary) allometries match their corresponding static (within-population) allometries. However, the evolutionary allometry across the three climate phases deviates significantly from the static and phase-specific evolutionary allometries in the extinct-going species. Although intraspecific variation leaves a clear signature on mean evolutionary change from one time step to the next, our study suggests that the link between intraspecific variation and longer-term micro- and macroevolutionary phenomena is prone to environmental perturbation that can overcome constraints induced by within-species trait covariation.


Assuntos
Evolução Biológica , Meio Ambiente , Fenótipo , Animais , Clima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA