Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Nutr Health Aging ; 28(9): 100322, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39067142

RESUMO

OBJECTIVES: This cohort study's aim was to assess the association between the weight-adjusted waist index (WWI) and frailty among middle-aged and elderly individuals in China. METHODS: Seven-year complete follow-up data from 10,349 adults aged ≥45 years, initially surveyed in 2 011 in the China Health and Retirement Longitudinal Study, were analyzed, including clinical demographic characteristics, anthropometric indices, frailty scores, and relevant covariates. The WWI was calculated as waist circumference divided by the square root of the body weight. Frailty was evaluated using the Frailty Index. Relationships between the WWI and frailty were evaluated via Cox proportional hazards modeling. Receiver operating characteristic curve analyses assessed the effectiveness of obesity-related indicators in predicting frailty. RESULTS: Over a median 84-month follow-up period, frailty occurred in 23.7% (2453/10,349) of participants. After potential confounder adjustment, the WWI positively correlated with frailty (adjusted hazard ratio: 1.14; 95% confidence interval: 1.08-1.20; p < 0.001). After WWI-stratification into quartiles based on frailty and covariate adjustment, regression analyses were conducted; the adjusted hazard ratios exhibited a significant upward trend (p < 0.001). The subgroup analyses revealed higher positive correlations between the WWI and frailty in males and those aged ≥65 years and lower correlations in those with a high school or higher educational level and in married or cohabiting individuals. The strong positive correlation was unaltered in the other subgroup analyses. The WWI outperformed all other obesity-related indicators as a frailty predictor. CONCLUSIONS: The WWI is a dependable and innovative obesity-related predictor of frailty and could help in mitigating its development.

2.
Front Med (Lausanne) ; 11: 1279697, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39026555

RESUMO

Objectives: Previous observational studies have reported a close association between socioeconomic status and pulmonary disease-related morbidity. However, the inherent causal effects remain unclear. Therefore, this bidirectional Mendelian randomization (MR) study aimed to identify the causal relationship between household income and genetic susceptibility to pulmonary diseases. Methods: An MR study was conducted on a large cohort of European individuals, using publicly available genome-wide association study datasets using a random-effects inverse-variance weighting model as the main standard. Simultaneously, MR-Egger regression, weighted median, and maximum likelihood estimation were applied as supplements. Sensitivity analysis, comprising a heterogeneity test and horizontal pleiotropy test, was performed using the Cochran's Q, MR-Egger intercept, and MR-PRESSO tests to ensure the reliability of the conclusion. Results: A higher household income tended to lower the risk of genetic susceptibility to chronic obstructive pulmonary disease (COPD, OR: 0.497, 95% CI = 0.337-0.733, p < 0.001), asthma (OR: 0.687, 95% CI = 0.540-0.876, p = 0.002), and lung cancer (OR: 0.569, 95% CI = 0.433-0.748, p < 0.001), and further indicated potential causality with pneumonia (OR: 0.817; 95% CI = 0.686-0.972, p = 0.022). No association was evident with COVID-19 (OR: 0.934, 95% CI = 0.764-1.142, p = 0.507), tuberculosis (OR: 0.597, 95% CI = 0.512-1.189, p = 0.120), or bronchiectasis (OR: 0.680, 95% CI = 0.311-1.489, p = 0.400). Reverse MR analysis suggested no reverse causal relationship between pulmonary disease and household income status, while sensitivity analysis verified the reliability of the results. Conclusion: The results revealed that the population with a higher household income tended to have a lower risk of genetic susceptibility to COPD, asthma, and lung cancer.

3.
Front Microbiol ; 15: 1373013, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835486

RESUMO

Background: This study aimed to clarify the relationship between the gut microbiota and osteoporosis combining Mendelian randomization (MR) analysis with animal experiments. Methods: We conducted an analysis on the relationship between differential bacteria and osteoporosis using open-access genome-wide association study (GWAS) data on gut microbe and osteoporosis obtained from public databases. The analysis was performed using two-sample MR analysis, and the causal relationship was examined through inverse variance weighting (IVW), MR Egger, weighted median, and weighted mode methods. Bilateral oophorectomy was employed to replicate the mouse osteoporosis model, which was assessed by micro computed tomography (CT), pathological tests, and bone transformation indexes. Additionally, 16S rDNA sequencing was conducted on fecal samples, while SIgA and indexes of IL-6, IL-1ß, and TNF-α inflammatory factors were examined in colon samples. Through immunofluorescence and histopathology, expression levels of tight junction proteins, such as claudin-1, ZO-1, and occludin, were assessed, and conduct correlation analysis on differential bacteria and related environmental factors were performed. Results: A positive correlation was observed between g_Ruminococcus1 and the risk of osteoporosis, while O_Burkholderiales showed a negative correlation with the risk of osteoporosis. Furthermore, there was no evidence of heterogeneity or pleiotropy. The successful replication of the mouse osteoporosis model was assessed, and it was found that the abundance of the O_Burkholderiales was significantly reduced, while the abundance of g_Ruminococcus was significantly increased in the ovariectomized (OVX)-mice. The intestinal SIgA level of OVX mice decreased, the expression level of inflammatory factors increased, barrier damage occurred, and the content of LPS in the colon and serum significantly increased. The abundance level of O_Burkholderiales is strongly positively correlated with bone formation factors, gut barrier indicators, bone density, bone volume fraction, and trabecular bone quantity, whereas it was strongly negatively correlated with bone resorption factors and intestinal inflammatory factors, The abundance level of g_Ruminococcus shows a strong negative correlation with bone formation factors, gut barrier indicators, and bone volume fraction, and a strong positive correlation with bone resorption factors and intestinal inflammatory factors. Conclusion: O_Burkholderiales and g_Ruminococcus may regulate the development of osteoporosis through the microbiota-gut-bone axis.

4.
Front Pharmacol ; 15: 1360589, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915463

RESUMO

Background: Sishen Pill (SSP) has good efficacy in diarrhea with deficiency kidney-yang syndrome (DKYS), but the mechanism of efficacy involving intestinal microecology has not been elucidated. Objective: This study investigated the mechanism of SSP in regulating intestinal microecology in diarrhea with DKYS. Methods: Adenine combined with Folium sennae was used to construct a mouse model of diarrhea with DKYS and administered with SSP. The behavioral changes and characteristics of gut content microbiota and short-chain fatty acids (SCFAs) of mice were analyzed to explore the potential association between the characteristic bacteria, SCFAs, intestinal inflammatory and kidney function-related indicators. Results: After SSP intervention, the body weight and anal temperature of diarrhea with DKYS gradually recovered and approached the normal level. Lactobacillus johnsonii was significantly enriched, and propionic, butyric, isobutyric and isovaleric acids were elevated. Serum creatinine (Cr), interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α) levels of the mice were reduced, while serum blood urea nitrogen (BUN) and secretory immunoglobulin A (sIgA) in the colonic tissues were increased. Moreover, there were correlations between L. johnsonii, SCFAs, intestinal inflammatory, and kidney function. Conclusion: SSP might suppress the intestinal inflammation by regulating the "L. johnsonii-propionic acid" pathway, thus achieving the effect of treating diarrhea with DKYS.

5.
BMC Endocr Disord ; 24(1): 30, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443895

RESUMO

BACKGROUND: The association between the triglyceride-glucose (TyG) index and arterial stiffness in individuals with normoglycaemia remains unclear. We aimed to evaluate the relationship between the TyG index and arterial stiffness in Japanese individuals with normoglycaemia, providing additional evidence for predicting early arterial stiffness. METHODS: This study included 15,453 adults who participated in the NAGALA Physical Examination Project of the Murakami Memorial Hospital in Gifu, Japan, from 2004 to 2015. Data on clinical demographic characteristics and serum biomarker levels were collected. The TyG index was calculated from the logarithmic transformation of fasting triglycerides multiplied by fasting glucose, and arterial stiffness was measured using the estimated pulse wave velocity calculated based on age and mean blood pressure. The association between the TyG index and arterial stiffness was analysed using a logistic regression model. RESULTS: The prevalence of arterial stiffness was 3.2% (500/15,453). After adjusting for all covariates, the TyG index was positively associated with arterial stiffness as a continuous variable (adjusted odds ratio (OR) = 1.86; 95% Confidence Interval = 1.45-2.39; P<0.001). Using the quartile as the cutoff point, a regression analysis was performed for arterial stiffness when the TyG index was converted into a categorical variable. After adjusting for all covariates, the OR showed an upward trend; the trend test was P<0.001. Subgroup analysis revealed a positive association between the TyG index and arterial stiffness in Japanese individuals with normoglycaemia and different characteristics. CONCLUSION: The TyG index in Japanese individuals with normoglycaemia is significantly correlated with arterial stiffness, and the TyG index may be a predictor of early arterial stiffness.


Assuntos
Análise de Onda de Pulso , Rigidez Vascular , Adulto , Humanos , Estudos Transversais , Japão/epidemiologia , Glucose , Triglicerídeos
6.
Insect Mol Biol ; 33(1): 41-54, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37740676

RESUMO

Caddisworms (Trichoptera) spin adhesive silks to construct a variety of underwater composite structures. Many studies have focused on the fibroin heavy chain of caddisworm silk and found that it contains heavy phosphorylation to maintain a stable secondary structure. Besides fibroins, recent studies have also identified some new silk proteins within caddisworm silk. To better understand the silk composition and its secretion process, this study reports the silk gland proteome of a retreat-building caddisworm, Stenopsyche angustata Martynov (Trichoptera, Stenopsychidae). Using liquid chromatography tandem mass spectrometry (LC-MS/MS), 2389 proteins were identified in the silk gland of S. angustata, among which 192 were predicted as secreted silk proteins. Twenty-nine proteins were found to be enriched in the front silk gland, whereas 109 proteins were enriched in the caudal silk gland. The fibroin heavy chain and nine uncharacterized silk proteins were identified as phosphorylated proteins. By analysing the sequence of the fibroin heavy chain, we found that it contains 13 Gly/Thr/Pro-rich regions, 12 Val/Ser/Arg-rich regions and a Gly/Arg/Thr-rich region. Three uncharacterized proteins were identified as sericin-like proteins due to their larger molecular weights, signal peptides and repetitive motifs rich in serine. This study provides valuable information for further clarifying the secretion and adhesion of underwater caddisworm silk.


Assuntos
Bombyx , Fibroínas , Animais , Seda/química , Fibroínas/genética , Fibroínas/química , Insetos/metabolismo , Larva/metabolismo , Proteoma/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Bombyx/metabolismo , Proteínas de Insetos/metabolismo
7.
Heliyon ; 9(12): e23010, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38076060

RESUMO

This study explored the effects of different doses of adenine intake on mice in terms of kidney function, oxidative stress and gut content microbiota to elucidate interactions between adenine-induced kidney function impairment and gut content microbiota disorder. Mice were gavaged with low-dosage adenine suspension (NML), middle-dosage adenine suspension (NMM), high-dosage adenine suspension (NMH) and sterile water (NC). Behaviour, kidney structure and function, colonic structure, oxidative stress and gut content microbiota were detected. Mice in NML, NMM, and NMH groups had significantly lower body weight, anal temperature and food intake, increased water intake, the mice had loose and deformed feces with obvious water stains through the paper. NMM mice presented significantly structural damage to kidney and colonic tissues, considerably higher BUN and Cr, MDA and lower SOD. MDA and SOD levels in NMM and NMH groups were closely associated with Cr and BUN. Moreover, different doses of adenine intake effected the mice gut content microbiota, and enriched the different characteristic bacteria. Characteristic bacteria Lactobacillus and Bifidobacterium presented significant correlations with MDA. Eventually, Lactobacillus and Bifidobacterium mediated oxidative stress pathway involved in the process of adenine-induced kidney injure in mice.

8.
Front Immunol ; 14: 1306375, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077358

RESUMO

Inflammatory bowel disease (IBD) is a complex group of chronic intestinal diseases, the cause of which has not yet been clarified, but it is widely believed that the disorder of the intestinal microenvironment and its related functional changes are key factors in the development of the disease. Houttuynia cordata thunb. is a traditional plant with abundant resources and long history of utilization in China, which has attracted widespread attention in recent years due to its potential in the treatment of IBD. However, its development and utilization are limited owing to the aristolochic acid alkaloids contained in it. Therefore, based on the relationship between the intestinal microenvironment and IBD, this article summarizes the potential mechanisms by which the main active ingredients of Houttuynia cordata thunb., such as volatile oils, polysaccharides, and flavonoids, and related traditional Chinese medicine preparations, such as Xiezhuo Jiedu Formula, alleviate IBD by regulating the intestinal microenvironment. At the same time, combined with current reports, the medicinal and edible safety of Houttuynia cordata thunb. is explained for providing ideas for further research and development of Houttuynia chordate thunb. in IBD disease, more treatment options for IBD patients, and more insights into the therapeutic potential of plants with homology of medicine and food in intestinal diseases, and even more diseases.


Assuntos
Alcaloides , Medicamentos de Ervas Chinesas , Houttuynia , Doenças Inflamatórias Intestinais , Humanos , Extratos Vegetais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico
9.
Mol Breed ; 43(6): 43, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37313220

RESUMO

Seed oil content is one of the most important quantitative traits in soybean (Glycine max) breeding. Here, we constructed a high-density single nucleotide polymorphism linkage map using two genetically similar parents, Heinong 84 and Kenfeng 17, that differ dramatically in their seed oil contents, and performed quantitative trait loci (QTL) mapping of seed oil content in a recombinant inbred line (RIL) population derived from their cross. We detected five QTL related to seed oil content distributed on five chromosomes. The QTL for seed oil content explained over 10% of the phenotypic variation over two years. This QTL was mapped to an interval containing 20 candidate genes, including a previously reported gene, soybean RING Finger 1a (RNF1a) encoding an E3 ubiquitin ligase. Notably, two short sequences were inserted in the GmRNF1a coding region of KF 17 compared to that of HN 84, resulting in a longer protein variant in KF 17. Our results thus provide information for uncovering the genetic mechanisms determining seed oil content in soybean, as well as identifying an additional QTL and highlighting GmRNF1a as candidate gene for modulating seed oil content in soybean. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01384-2.

10.
Medicine (Baltimore) ; 102(22): e33861, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37266646

RESUMO

While prior research has shown that consuming alcohol may raise the risk of hyperuricemia, little is known about how individual types of alcohol are linked to levels of uric acid in China. Therefore, this study aimed to investigate the independent impact of beer, wine, and liquor on serum uric acid (SUA) levels in the serum of Chinese adults. This study analyzed data from the 2009 China Health and Nutrition Survey and included 7083 participants (3418 men and 3665 women, ≥18 years of age). Multivariable logistic regression was used to analyze the potential association between alcohol intake and hyperuricemia risk, while linear regression analysis and general linear model were performed to examine the impact of alcohol consumption on SUA levels. This study revealed that men who drank alcohol daily had a greater odds ratio (1.68, 95% confidence interval: 1.01, 2.81) of hyperuricemia than those who drank alcohol no more than once a month. SUA levels of men significantly increased by 0.001 mg/dL for per additional gram of liquor consumed weekly. But men who drank ≤ 90.6 g of liquor per week had lower SUA levels compared with those in nondrinkers. SUA levels were inversely associated with wine intake in women (P = .03, P for trend = .02). Overall, consumption of beer, wine, and liquor differentially affected SUA levels in adult Chinese men and women.


Assuntos
Hiperuricemia , Ácido Úrico , Adulto , Feminino , Humanos , Masculino , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/epidemiologia , Bebidas Alcoólicas/efeitos adversos , China/epidemiologia , População do Leste Asiático , Hiperuricemia/epidemiologia , Hiperuricemia/etiologia , Inquéritos Nutricionais , Fatores de Risco
11.
Ecotoxicol Environ Saf ; 258: 114959, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37121079

RESUMO

The application of organic fertilizers caused large amounts of dissolved organic matter (DOM) entering the soil environment and influencing the behaviors and fates of heavy metals. Here, we investigated the molecular weight-dependent (high molecular weight [HMW], 1 kDa-0.7 µm; low molecular weight [LMW], <1 kDa) compositions and lead (Pb) binding behaviors of DOM derived from sheep manure-based (SMOF) and shrimp peptide-based organic fertilizers (SPOF) using chromophoric and fluorescent spectroscopy, Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and two-dimensional correlation spectroscopy (2D-COS). Results showed that SMOF released more DOM with higher aromaticity and hydrophobicity, containing more fluvic-like components, carboxylic-rich alicyclic molecules (CRAMs) and lignin phenolic compounds compared to SPOF-DOM with more microbially-transformed heteroatom-containing compounds (CHON, CHONS and CHOS). Furthermore, there was more aromatic compounds with ample carboxyl and hydroxyl groups in HMW-DOM but abundant protein-like components and heteroatom-containing compounds (CHONS and CHOS) in LMW-DOM. SMOF-DOM exhibited more obvious MW-dependent heterogeneity in molecular components compared to SPOF-DOM with higher molecular diversity. Moreover, 2D-COS indicated phenol and carboxyl groups in SMOF-DOM and polysaccharides in SPOF-DOM exhibited superior binding affinities for Pb. Pb binding to HMW-DOM derived from SMOF first occurred in the phenolic groups in fulvic-like substances, while polysaccharides in LMW-DOM first participated in the binding of Pb. In contrast, irrespective of MWs, polysaccharides and humic-like substances with aromatic (CC) groups in SPOF-DOM displayed a faster response to Pb. Furthermore, the polysaccharides which preferentially participated in the binding of Pb to SPOF-DOM and SMOF-derived LMW-DOM may pose a higher risk of Pb in the environment. These results were helpful to understand the effects of sources and size-dependent compositions of DOM on the associated risks of heavy metals in the environments.


Assuntos
Matéria Orgânica Dissolvida , Metais Pesados , Animais , Ovinos , Fertilizantes/análise , Chumbo , Substâncias Húmicas/análise , Metais Pesados/química , Espectrometria de Fluorescência/métodos
12.
Food Funct ; 14(8): 3880-3892, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37038883

RESUMO

Previous evidence has indicated that fatigue and a high-fat diet (HFD) cause the adaptive organism responses to be dysregulated, resulting in gastrointestinal (GI) disorders. Generally, gut microbiota plays a crucial role in GI disorders. However, the impact of fatigue and an HFD on the microbiome and GI disorders remains to be fully explored. Mice were randomly divided into the control group (CCN), standing group (CSD), lard group (CLD), and standing + lard group (CSLD). Mice in the CSD and CSLD groups stood on the multiple-platform apparatus for four h per day for 14 consecutive days. From the eighth day, mice in the CLD and CSLD groups were fed intragastric lard and the CCN and CSD groups were subjected to intragastric treatment with sterile water, 0.4 mL per each, twice a day for seven days. Subsequently, we analyzed the characteristics and interaction relationship of gut content microbiota (GCM), brain-gut peptides, and lipid metabolism. Mice in the CSLD group were in a fatigued state and had diarrhea. Compared with the CCN group, high-density lipoproteins were significantly lower, and the lipid droplet optical density value was substantially higher in the CSLD group (p < 0.05). CSLD mice presented significant structural damage to the small intestine and considerably higher ß-endorphin, cholecystokinin, and somatostatin (p < 0.05). Bacillus, Gemella, and Bosea were the characteristic bacteria of the CSLD group, and Gemella was significantly negatively correlated with total cholesterol. Gut microbiota dysbiosis and dysregulated lipid metabolism contribute to diarrhea caused by an HFD diet in a fatigued state.


Assuntos
Dieta Hiperlipídica , Microbioma Gastrointestinal , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Metabolismo dos Lipídeos , Microbioma Gastrointestinal/fisiologia , Disbiose/microbiologia , Diarreia , Camundongos Endogâmicos C57BL
13.
Mar Drugs ; 21(4)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37103359

RESUMO

Dyslipidemia is a common chronic disease that increases the risk of cardiovascular disease. Diet plays an important role in the development of dyslipidemia. As people pay increased attention to healthy eating habits, brown seaweed consumption is increasing, particularly in East Asian countries. The association between dyslipidemia and brown seaweed consumption has been previously demonstrated. We searched for keywords associated with brown seaweed and dyslipidemia in electronic databases such as PubMed, Embase, and Cochrane. Heterogeneity was estimated using the I2 statistic. The 95% confidence interval (CI) of the forest plot and heterogeneity were confirmed using meta-ANOVA and meta-regression. Funnel plots and publication bias statistical tests were used to determine publication bias. Statistical significance was set at p < 0.05. In this meta-analysis, we found that brown seaweed intake significantly decreased the levels of total cholesterol (mean difference (MD): -3.001; 95% CI: -5.770, -0.232) and low-density lipoprotein (LDL) cholesterol (MD: -6.519; 95% CI: -12.884, -0.154); nevertheless, the statistically significant association of brown seaweed intake with high-density lipoprotein (HDL) cholesterol and triglycerides were not observed in our study (MD: 0.889; 95% CI: -0.558, 2.335 and MD: 8.515; 95% CI: -19.354, 36.383). Our study demonstrated that brown seaweed and its extracts decreased total cholesterol and LDL cholesterol levels. The use of brown seaweeds may be a promising strategy to reduce the risk of dyslipidemia. Future studies involving a larger population are warranted to investigate the dose-response association of brown seaweed consumption with dyslipidemia.


Assuntos
Colesterol , Dislipidemias , Humanos , Triglicerídeos , Dislipidemias/epidemiologia , HDL-Colesterol , Verduras , Biomarcadores
14.
Artigo em Inglês | MEDLINE | ID: mdl-36636604

RESUMO

Background: Asthma is a chronic inflammatory disease of the airways with recurrent attacks, which seriously affects the patients' quality of life and even threatens their lives. The disease can even threaten the lives of patients. Sijunzi decoction (SJZD), a classical Chinese medicine formula with a long history of administration, is a basic formula used for the treatment of asthma and demonstrates remarkable efficacy. However, the underlying mechanism has not been elucidated. Materials and Methods: We aimed to integrate network pharmacology and intestinal flora sequencing analysis to study the mechanism of SJZD in the treatment of allergic asthmatic mice. The active compounds of SJZD and their asthma-related targets were predicted by various databases. We performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to identify potentially relevant pathways for target genes. Furthermore, the active compound-target and target-signaling pathway network maps were constructed by using Cytoscape 3.8.2. These results were combined with those of the intestinal flora sequencing analysis to study the influence of SJZD on airway inflammation in allergic asthmatic mice. Result: We obtained 137 active compounds from SJZD and associated them with 1445 asthma-related targets acquired from the databases. A total of 109 common targets were identified. We visualized active compound-target and target-signaling pathway network maps. The pathological analysis and inflammation score results suggested that SJZD could alleviate airway inflammation in asthmatic mice. Sequencing analysis of intestinal flora showed that SJZD could increase the relevant abundance of beneficial bacterial genus and maintain the balance of the intestinal flora. The core toll-like receptor (TLR) signaling pathway was identified based on network pharmacology analysis, and the important role TLRs play in intestinal flora and organismal immunity was also recognized. The analysis of the correlation between environmental factors and intestinal flora revealed that beneficial bacterial genera were negatively correlated with TLR2 and positively correlated with the TLR7 expression. Furthermore, they were positively correlated with IFN-γ and IL-10 levels and negatively correlated with IL-4 and IL-17 levels. Conclusion: SJZD alleviated the airway inflammation state in asthmatic mice. The findings suggest that increasing the relevant abundance of beneficial intestinal bacteria in mice with asthma, regulating intestinal flora, interfering with the level of TLR2 and TLR7 expression to adjust the secretion of inflammatory factors, and alleviating asthmatic airway inflammation may be the possible mechanism involved in the treatment of asthma by SJZD, providing a basis for further studies on SJZD.

15.
Food Chem ; 403: 134293, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36182858

RESUMO

Nanoliposomes are ideal nanocarriers for encapsulated active compounds used in the food industry as they provide stability and controlled release. However, cholesterol may pose risks in large intake, which is the commonly-used nanoliposome stabilizers. In this study, resveratrol was used instead of cholesterol as a novel nanoliposome stabilizer to construct a resveratrol blank liposome (RBL) system. The RBL system was used to protect the bacteriocin CAMT6 to create bacteriocin-loaded nanoliposomes (BLLs). The RBLs and BLLs had favourable particle sizes (172.71 nm and 150.47 nm), polydispersity index (PDI) values (0.150 and 0.120) and zeta potentials (-41.54 mV and -43.53 mV, respectively). According to Differential scanning colourimetry (DSC) and X-ray diffraction (XRD) analyses, resveratrol altered the structure of the phospholipid layer. The phospholipid layers of the RBLs and BLLs had higher mobility when resveratrol was used as a stabilizer instead of cholesterol. Structurally, resveratrol was inserted egg yolk lecithin to constitute an RBL. CAMT6 was loaded in BLLs with spherical and shell-core structures. The BLL encapsulation efficiency was 97.32 % and exhibited three release phases, with the release rates reaching 62 %. In experiments with milk, the BLLs effectively protected the anti-Listeria activity of CAMT6. In summary, resveratrol is a suitable nanoliposome stabilizer and the proposed RBL system is an excellent way to improve the stability of water-soluble preservatives, such as bacteriocins, in complex food environments.


Assuntos
Bacteriocinas , Resveratrol , Lipossomos/química , Tamanho da Partícula , Excipientes , Lecitinas , Colesterol
16.
Front Immunol ; 14: 1305656, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162665

RESUMO

Introduction: Obesity is a chronic disease in which the body stores excess energy in the form of fat, and intestinal bacterial metabolism and inflammatory host phenotypes influence the development of obesity. Walnut peptide (WP) is a small molecule biopeptide, and the mechanism of action of WP against metabolic disorders has not been fully elucidated. In this study, we explored the potential intervention mechanism of WP on high-fat diet (HFD)-induced obesity through bioinformatics combined with animal experiments. Methods: PPI networks of Amino acids and their metabolites in WP (AMWP) and "obesity" and "inflammation" diseases were searched and constructed by using the database, and their core targets were enriched and analyzed. Subsequently, Cytoscape software was used to construct the network diagram of the AMWP-core target-KEGG pathway and analyze the topological parameters. MOE2019.0102 was used to verify the molecular docking of core AMWP and core target. Subsequently, an obese Mice model induced by an HFD was established, and the effects of WP on obesity were verified by observing weight changes, glucose, and lipid metabolism levels, liver pathological changes, the size of adipocytes in groin adipose tissue, inflammatory infiltration of colon tissue, and intestinal microorganisms and their metabolites. Results: The network pharmacology and molecular docking showed that glutathione oxide may be the main active component of AMWP, and its main targets may be EGFR, NOS3, MMP2, PLG, PTGS2, AR. Animal experiments showed that WP could reduce weight gain and improve glucose-lipid metabolism in HFD-induced obesity model mice, attenuate hepatic lesions reduce the size of adipocytes in inguinal adipose tissue, and reduce the inflammatory infiltration in colonic tissue. In addition, the abundance and diversity of intestinal flora were remodeled, reducing the phylum Firmicutes/Bacteroidetes (F/B) ratio, while the intestinal mucosal barrier was repaired, altering the content of short-chain fatty acids (SCFAs), and alleviating intestinal inflammation in HFD-fed mice. These results suggest that WP intervenes in HFD-induced obesity and dyslipidemia by repairing the intestinal microenvironment, regulating flora metabolism and anti-inflammation. Discussion: Our findings suggest that WP intervenes in HFD-induced obesity and dyslipidemia by repairing the intestinal microenvironment, regulating flora metabolism, and exerting anti-inflammatory effects. Thus, WP may be a potential therapeutic strategy for preventing and treating metabolic diseases, and for alleviating the intestinal flora disorders induced by these diseases. This provides valuable insights for the development of WP therapies.


Assuntos
Dislipidemias , Microbioma Gastrointestinal , Juglans , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Simulação de Acoplamento Molecular , Obesidade/microbiologia , Inflamação/patologia , Glucose/farmacologia , Peptídeos/farmacologia
17.
J Proteomics ; 269: 104720, 2022 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-36089189

RESUMO

Loss of fragile X retardation protein (FMRP) leads to fragile X syndrome (FXS), a common cause of inherited intellectual disability. Protein lysine acetylation (K-ac), a reversible post-translational modification of proteins, is associated with the regulation of brain development and neuropathies. However, a comprehensive hippocampal K-ac protein profile in response to FMRP deficiency has not been reported until now. Using LC-MS/MS to analyze the enriched K-ac peptides, this study identified 1629 K-ac hits across 717 proteins in the mouse hippocampus, and these proteins were enriched in several metabolic processes. Of them, 51 K-ac hits across 45 proteins were significantly changed upon loss of FMRP. These altered K-ac proteins were enriched in energy metabolic processes including carboxylic acid metabolism process, aerobic respiration and citrate cycle, linking with several neurological disorders such as lactic acidosis, Lewy body disease, Leigh disease and encephalopathies. In the mouse hippocampus and the hippocampal HT-22 cells, FMRP deficiency could induce altered K-ac modification of several key enzymes, decrease in ATP and increase in lactate. Thus, this study identified a global hippocampal lysine acetylome and an altered K-ac protein profile upon loss of FMRP linked to abnormal energy metabolism, implicating in the pathogenesis of FXS. SIGNIFICANCE: Fragile X syndrome (FXS) is a common inherited neurodevelopment disorder characterized by intellectual disability and an increased risk for autism spectrum disorder. FXS is resulted from silencing of the FMR1 gene, which induces loss of its encoding protein FMRP. Molecular and metabolic changes of Fmr1-null animal models of FXS have been identified to potentially contribute to the pathogenesis of FXS. Here, we used a TMT-labeled quantitative proteomic analysis of the peptides enriched by anti-K-ac antibodies and identified a global K-ac protein profile in the mouse hippocampus with a total of 1629 K-ac peptides on 717 proteins. Of them, 51 K-ac peptides regarding 45 proteins altered in response to loss of FMRP, which were enriched in energy metabolic processes and were implicated in several neurological disorders. Thus this study for the first time provides a global hippocampal lysine acetylome upon FMRP deficiency linked to abnormal metabolic pathways, which may contribute to pathogenic mechanism of FXS.


Assuntos
Transtorno do Espectro Autista , Síndrome do Cromossomo X Frágil , Deficiência Intelectual , Trifosfato de Adenosina/metabolismo , Animais , Ácidos Carboxílicos , Cromatografia Líquida , Citratos , Modelos Animais de Doenças , Metabolismo Energético , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/patologia , Hipocampo/metabolismo , Lactatos , Lisina/metabolismo , Camundongos , Camundongos Knockout , Proteômica , Espectrometria de Massas em Tandem
18.
Front Med (Lausanne) ; 9: 927607, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847812

RESUMO

Chronic obstructive pulmonary disease (COPD) is one of the most common pulmonary diseases. Evidence suggests that dysbiosis of pulmonary microbiota leads to the COPD pathological process. Yifei Sanjie Formula (YS) is widely used to treat diseases in respiratory systems, yet little is known about its mechanisms. In the present study, we first established the fingerprint of YS as the background for UHPLC-QTOF-MS. Components were detected, including alkaloids, amino acid derivatives, phenylpropanoids, flavonoids, terpenoids, organic acids, phenols, and the like. The therapeutic effect of YS on COPD was evaluated, and the pulmonary function and ventilatory dysfunction (EF50, TV, and MV) were improved after the administration of YS. Further, the influx of lymphocytes was inhibited in pulmonary parenchyma, accompanied by down-regulation of inflammation cytokines via the NLRP3/caspase-1/IL-1ß signaling pathway. The severity of pulmonary pathological damage was reversed. Disturbed pulmonary microbiota was discovered to involve an increased relative abundance of Ralstonia and Mycoplasma and a decreased relative abundance of Lactobacillus and Bacteroides in COPD animals. However, the subversive effect was shown. The abundance and diversity of pulmonary microflora were remodeled, especially increasing beneficial genua Lactobacillus and Bacteroides, as well as downregulating pathogenic genua Ralstonia and Mycoplasma in the YS group. Environmental factor correlation analysis showed that growing pulmonary microbiota was positively correlated with the inflammatory factor, referring to Ralstonia and Mycoplasma, as well as negatively correlated with the inflammatory factor, referring to Lactobacillus and Bacteroides. These results suggest that the effects of YS involved remodeling lung microbes and anti-inflammatory signal pathways, revealing that intervention microbiota and an anti-inflammatory may be a potential therapeutic strategy for COPD.

19.
Front Chem ; 10: 845742, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360542

RESUMO

Alkali ion (Li, Na, and K) batteries as a new generation of energy storage devices are widely applied in portable electronic devices and large-scale energy storage equipment. The recent focus has been devoted to develop universal anodes for these alkali ion batteries with superior performance. Transition metal sulfides can accommodate alkaline ions with large radius to travel freely between layers due to its large interlayer spacing. Moreover, the composite with carbon material can further improve electrical conductivity of transition metal sulfides and reduce the electron transfer resistance, which is beneficial for the transport of alkali ions. Herein, we designed zeolitic imidazolate framework (ZIF)-derived hollow structures CoS/C for excellent alkali ion (Li, Na, and K) battery anodes. The porous carbon framework can improve the conductivity and effectively buffer the stress-induced structural damage. The ZIF-derived CoS/C anodes maintain a reversible capacity of 648.9, and 373.2, 224.8 mAh g-1 for Li, Na, and K ion batteries after 100 cycles, respectively. Its outstanding electrochemical performance is considered as a universal anode material for Li, Na, and K ion batteries.

20.
J Integr Plant Biol ; 64(5): 1076-1086, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35249256

RESUMO

Male-sterile plants are used in hybrid breeding to improve yield in soybean (Glycine max (L.) Merr.). Developing the capability to alter fertility under different environmental conditions could broaden germplasm resources and simplify hybrid production. However, molecular mechanisms potentially underlying such a system in soybean were unclear. Here, using positional cloning, we identified a gene, MALE STERILITY 3 (MS3), which encodes a nuclear-localized protein containing a plant homeodomain (PHD)-finger domain. A spontaneous mutation in ms3 causing premature termination of MS3 translation and partial loss of the PHD-finger. Transgenetic analysis indicated that MS3 knockout resulted in nonfunctional pollen and no self-pollinated pods, and RNA-seq analysis revealed that MS3 affects the expression of genes associated with carbohydrate metabolism. Strikingly, the fertility of mutant ms3 can restore under long-d conditions. The mutant could thus be used to create a new, more stable photoperiod-sensitive genic male sterility line for two-line hybrid seed production, with significant impact on hybrid breeding and production.


Assuntos
Glycine max , Infertilidade das Plantas , Fertilidade/genética , Proteínas de Homeodomínio , Melhoramento Vegetal , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glycine max/genética , Glycine max/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA