Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
BMC Neurol ; 24(1): 213, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909175

RESUMO

BACKGROUND: After spinal cord injury (SCI), a large number of survivors suffer from severe motor dysfunction (MD). Although the injury site is in the spinal cord, excitability significantly decreases in the primary motor cortex (M1), especially in the lower extremity (LE) area. Unfortunately, M1 LE area-targeted repetitive transcranial magnetic stimulation (rTMS) has not achieved significant motor improvement in individuals with SCI. A recent study reported that the M1 hand area in individuals with SCl contains a compositional code (the movement-coding component of neural activity) that links matching movements from the upper extremities (UE) and the LE. However, the correlation between bilateral M1 hand area excitability and overall functional recovery is unknown. OBJECTIVE: To clarify the changes in the excitability of the bilateral M1 hand area after SCI and its correlation with motor recovery, we aim to specify the therapeutic parameters of rTMS for SCI motor rehabilitation. METHODS: This study is a 12-month prospective cohort study. The neurophysiological and overall functional status of the participants will be assessed. The primary outcomes included single-pulse and paired-pulse TMS. The second outcome included functional near-infrared spectroscopy (fNIRS) measurements. Overall functional status included total motor score, modified Ashworth scale score, ASIA Impairment Scale grade, spinal cord independence measure and modified Barthel index. The data will be recorded for individuals with SCI at disease durations of 1 month, 2 months, 4 months, 6 months and 12 months. The matched healthy controls will be measured during the same period of time after recruitment. DISCUSSION: The present study is the first to analyze the role of bilateral M1 hand area excitability changes in the evaluation and prediction of overall functional recovery (including motor function and activities of daily living) after SCI, which will further expand the traditional theory of the predominant role of M1, optimize the current rTMS treatment, and explore the brain-computer interface design for individuals with SCI. TRIAL REGISTRATION NUMBER: ChiCTR2300068831.


Assuntos
Mãos , Córtex Motor , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal , Estimulação Magnética Transcraniana , Humanos , Traumatismos da Medula Espinal/reabilitação , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/terapia , Recuperação de Função Fisiológica/fisiologia , Mãos/fisiopatologia , Estimulação Magnética Transcraniana/métodos , Córtex Motor/fisiopatologia , Estudos Prospectivos , Potencial Evocado Motor/fisiologia , Masculino , Adulto , Feminino , Estudos de Coortes , Pessoa de Meia-Idade , Espectroscopia de Luz Próxima ao Infravermelho/métodos
2.
ACS Nano ; 18(22): 14000-14019, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38764194

RESUMO

While surface-enhanced Raman spectroscopy (SERS) has experienced substantial advancements since its discovery in the 1970s, it is an opportunity to celebrate achievements, consider ongoing endeavors, and anticipate the future trajectory of SERS. In this perspective, we encapsulate the latest breakthroughs in comprehending the electromagnetic enhancement mechanisms of SERS, and revisit CT mechanisms of semiconductors. We then summarize the strategies to improve sensitivity, selectivity, and reliability. After addressing experimental advancements, we comprehensively survey the progress on spectrum-structure correlation of SERS showcasing their important role in promoting SERS development. Finally, we anticipate forthcoming directions and opportunities, especially in deepening our insights into chemical or biological processes and establishing a clear spectrum-structure correlation.

3.
Medicine (Baltimore) ; 103(18): e38038, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701277

RESUMO

The present study aimed to establish an effective prognostic nomogram model based on the Naples prognostic score (NPS) for resectable thoracic esophageal squamous cell carcinoma (ESCC). A total of 277 patients with ESCC, who underwent standard curative esophagectomy and designated as study cohort, were retrospectively analyzed. The patients were divided into different groups, including NPS 0, NPS 1, NPS 2, and NPS 3 or 4 groups, for further analysis, and the results were validated in an external cohort of 122 ESCC patients, who underwent surgery at another cancer center. In our multivariate analysis of the study cohort showed that the tumor-node-metastasis (TNM) stage, systemic inflammation score, and NPS were the independent prognostic factors for the overall survival (OS) and progression-free survival (PFS) durations. In addition, the differential grade was also an independent prognostic factor for the OS in the patients with ESCC after surgery (all P < .05). The area under the curve of receiver operator characteristics for the PFS and OS prediction with systemic inflammation score and NPS were 0.735 (95% confidence interval [CI] 0.676-0.795, P < .001) and 0.835 (95% CI 0.786-0.884, P < .001), and 0.734 (95% CI 0.675-0.793, P < .001) and 0.851 (95% CI 0.805-0.896, P < .001), respectively. The above independent predictors for OS or PFS were all selected in the nomogram model. The concordance indices (C-indices) of the nomogram models for predicting OS and PFS were 0.718 (95% CI 0.681-0.755) and 0.669 (95% CI 0.633-0.705), respectively, which were higher than that of the 7th edition of American Joint Committee on Cancer TNM staging system [C-index 0.598 (95% CI 0.558-0.638) for OS and 0.586 (95% CI 0.546-0.626) for PFS]. The calibration curves for predicting the 5-year OS or PFS showed a good agreement between the prediction by nomogram and actual observation. In the external validation cohort, the nomogram discrimination for OS was better than that of the 7th edition of TNM staging systems [C-index: 0.697 (95% CI 0.639-0.755) vs 0.644 (95% CI 0.589-0.699)]. The calibration curves showed good consistency in predicting the 5-year survival between the actual observation and nomogram predictions. The decision curve also showed a higher potential of the clinical application of predicting the 5-years OS of the proposed nomogram model as compared to that of the 7th edition of TNM staging systems. The preoperative NPS-based nomogram model had a certain potential role for predicting the prognosis of ESCC patients.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Esofagectomia , Nomogramas , Humanos , Masculino , Feminino , Estudos Retrospectivos , Carcinoma de Células Escamosas do Esôfago/cirurgia , Carcinoma de Células Escamosas do Esôfago/mortalidade , Carcinoma de Células Escamosas do Esôfago/patologia , Pessoa de Meia-Idade , Neoplasias Esofágicas/cirurgia , Neoplasias Esofágicas/mortalidade , Neoplasias Esofágicas/patologia , Prognóstico , Esofagectomia/métodos , Idoso , Estadiamento de Neoplasias , Adulto
4.
Inorg Chem ; 63(18): 8329-8335, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38648287

RESUMO

Most of the porous materials used for acetylene/carbon dioxide separation have the problems of poor stability and high energy requirements for regeneration, which significantly hinder their practical application in industries. Here, we report a novel calcium-based metal-organic framework (NKM-123) with excellent chemical stability against water, acids, and bases. Additionally, it has exceptional thermal stability, retaining its structural integrity at temperatures up to 300 °C. This material exhibits promising potential for separating C2H2 and CO2 gases. Furthermore, it demonstrates an adsorption heat of 29.3 kJ mol-1 for C2H2, which is lower than that observed in the majority of MOFs used for C2H2/CO2 separations. The preferential adsorption of C2H2 over that of CO2 is confirmed by dispersion-corrected density functional theory (DFT-D) calculations. In addition, the potential of industrial feasibility of NKM-123 for C2H2/CO2 separation is confirmed by transient breakthrough tests. The robust cycle performance and structural stability of NKM-123 during multiple breakthrough tests show great potential in the industrial separation of light hydrocarbons.

5.
Nutr Neurosci ; : 1-11, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662341

RESUMO

Malnutrition is a highly prevalent complication in patients with traumatic brain injury (TBI), and it is closely related to the prognosis of patients. Accurate identification of patients at high risk of malnutrition is essential. Therefore, we analyzed the risk factors of malnutrition in patients with TBI and developed a model to predict the risk of malnutrition. A retrospective collection of 345 patients with TBI, and they were divided into malnutrition and comparison groups according to the occurrence of malnutrition. Univariate correlation and multifactor logistic regression analyses were performed to determine patients' malnutrition risk factors. We used univariate and logistic regression (forward stepwise method) analyses to identify significant predictors associated with malnutrition in patients with TBI and developed a predictive model for malnutrition prediction. The model's discrimination, calibration, and clinical utility were evaluated using the receiver operating characteristic (ROC) curve, calibration plots, and decision curve analysis (DCA). A total of 216 patients (62.6%) developed malnutrition. Multifactorial logistic regression analysis showed that pulmonary infection, urinary tract infection, dysphagia, application of NGT, GCS score ≤ 8, and low ADL score were independent risk factors for malnutrition in patients with TBI (P < 0.05). The area under the curve of the model was 0.947. Calibration plots showed good discrimination of model calibration. DCA showed that the column line plot models were all clinically meaningful when nutritional interventions were performed over a considerable range of threshold probabilities (0-0.98). Malnutrition is widespread in patients with TBI, and the nomogram is a good predictor of whether patients develop malnutrition.

6.
Angew Chem Int Ed Engl ; 63(22): e202403646, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38494740

RESUMO

Organic piezochromic materials that manifest pressure-stimuli-responses are important in various fields such as data storage and anticounterfeiting. The manipulation of piezofluorochromic behaviors for these materials is promising but remains a great challenge. Herein, a non-luminous components regulated strategy is developed and organic molecular cages (OMCs), a burgeoning class of crystalline organic materials with structural dynamics, are first explored for the design of piezofluorochromic materials with tunable luminescence. A series of OMCs based on aggregation-induced emission (AIE) chromophores, termed Cage 1-3, are synthesized and their piezofluorochromic behaviors are investigated by diamond anvil cell technique. Due to the sufficient voids between its flexible chromophores offered by the OMC structure, Cage 1 exhibits thermofluorochromic and piezofluorochromic properties. Moreover, the piezofluorochromic performance of this OMC could be further promoted by replacing its non-luminous components with improved flexibilities, and a remarkable luminescence peak shift by 150 nm together with a response sensitivity of 13.8 nm GPa-1 was achieved upon hydrostatic compression. The cage structure plays a vital role in facilitating efficient and reversible piezofluorochromic behaviors. This study has shed light on the rational design and exploitation of OMCs as an exceptional platform to accomplish customizable piezofluorochromic behaviors and enlarge their potential applications in pressure-based luminescence.

7.
Chem Sci ; 15(12): 4529-4537, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38516073

RESUMO

The rational design and construction of hydrogen-bonded organic frameworks (HOFs) are crucial for enabling their practical applications, but controlling their structure and preparation as intended remains challenging. Inspired by reticular chemistry, two novel blue-emitting NKM-HOF-1 and NKM-HOF-2 were successfully constructed based on two judiciously designed peripherally extended pentiptycene carboxylic acids, namely H8PEP-OBu and H8PEP-OMe, respectively. The large pores within these two HOFs can adsorb fluorescent molecules such as diketopyrrolopyrrole (DPP) and 9-anthraldehyde (AnC) to form HOFs ⊃ DPP/AnC composites, subsequently used in the fabrication of white-light-emitting devices (WLEDs). Specifically, two WLEDs were assembled by coating NKM-HOF-1 ⊃ DPP-0.13/AnC-3.5 and NKM-HOF-2 ⊃ DPP-0.12/AnC-3 on a 330 nm ultraviolet LED bulb, respectively. The corresponding CIE coordinates were (0.29, 0.33) and (0.32, 0.34), along with corresponding color temperatures of 7815 K and 6073 K. This work effectively demonstrates the feasibility of employing reticular chemistry strategies to predict and design HOFs with specific topologies for targeted applications.

8.
Biomolecules ; 14(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38540769

RESUMO

Cyclic dinucleotides (CDNs) are cyclic molecules consisting of two nucleoside monophosphates linked by two phosphodiester bonds, which act as a second messenger and bind to the interferon gene stimulating factor (STING) to activate the downstream signaling pathway and ultimately induce interferon secretion, initiating an anti-infective immune response. Cyclic dinucleotides and their analogs are lead compounds in the immunotherapy of infectious diseases and tumors, as well as immune adjuvants with promising applications. Many agonists of pathogen recognition receptors have been developed as effective adjuvants to optimize vaccine immunogenicity and efficacy. In this work, the binding mechanism of human-derived interferon gene-stimulating protein and its isoforms with cyclic dinucleotides and their analogs was theoretically investigated using computer simulations and combined with experimental results in the hope of providing guidance for the subsequent synthesis of cyclic dinucleotide analogs.


Assuntos
Proteínas de Membrana , Nucleotídeos Cíclicos , Humanos , Proteínas de Membrana/metabolismo , Sistemas do Segundo Mensageiro , Interferons , Transdução de Sinais , Adjuvantes Imunológicos
9.
J Am Chem Soc ; 146(8): 5414-5422, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38353405

RESUMO

Molecular-based multiferroic materials that possess ferroelectric and ferroelastic orders simultaneously have attracted tremendous attention for their potential applications in multiple-state memory devices, molecular switches, and information storage systems. However, it is still a great challenge to effectively construct novel molecular-based multiferroic materials with multifunctionalities. Generally, the structure of these materials possess high symmetry at high temperatures, while processing an obvious order-disorder or displacement-type ferroelastic or ferroelectric phase transition triggered by symmetry breaking during the cooling processes. Therefore, these materials can only function below the Curie temperature (Tc), the low of which is a severe impediment to their practical application. Despite great efforts to elevate Tc, designing single-phase crystalline materials that exhibit multiferroic orders above room temperature remains a challenge. Here, an inverse temperature symmetry-breaking phenomenon was achieved in [FPM][Fe3(µ3-O)(µ-O2CH)8] (FPM stands for 3-(3-formylamino-propyl)-3,4,5,6-tetrahydropyrimidin-1-ium, which acts as the counterions and the rotor component in the network), enabling a ferroelastoelectric phase at a temperature higher than Tc (365 K). Upon heating from room temperature, two-step distinct symmetry breaking with the mm2Fm species leads to the coexistence of ferroelasticity and ferroelectricity in the temperature interval of 365-426 K. In the first step, the FPM cations undergo a conformational flip-induced inverse temperature symmetry breaking; in the second step, a typical ordered-disordered motion-induced symmetry breaking phase transition can be observed, and the abnormal inverse temperature symmetry breaking is unprecedented. Except for the multistep ferroelectric and ferroelastic switching, this complex also exhibits fascinating nonlinear optical switching properties. These discoveries not only signify an important step in designing novel molecular-based multiferroic materials with high working temperatures, but also inspire their multifunctional applications such as multistep switches.

10.
Brain Res ; 1831: 148826, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38403036

RESUMO

Mitochondrial transfer occurs between cells, and it is important for damaged cells to receive healthy mitochondria to maintain their normal function and protect against cell death. Accumulating evidence suggests that the functional mitochondria of astrocytes are released and transferred to oxygen-glucose deprivation/reoxygenation (OGD/R)-injured neurons. Mild hypothermia (33 °C) is capable of promoting this process, which partially restores the function of damaged neurons. However, the pathways and mechanisms by which mild hypothermia facilitates mitochondrial transfer remain unclear. We are committed to studying the role of mild hypothermia in neuroprotection to provide reliable evidences and insights for the clinical application of mild hypothermia in brain protection. Tunneling nanotubes (TNTs) are considered to be one of the routes through which mitochondria are transferred between cells. In this study, an OGD/R-injured neuronal model was successfully established, and TNTs, mitochondria, neurons and astrocytes were double labeled using immunofluorescent probes. Our results showed that TNTs were present and involved in the transfer of mitochondria between cells in the mixed-culture system of neurons and astrocytes. When neurons were subjected to OGD/R exposure, TNT formation and mitochondrial transportation from astrocytes to injured neurons were facilitated. Further analysis revealed that mild hypothermia increased the quantity of astrocytic mitochondria transferred into damaged neurons through TNTs, raised the mitochondrial membrane potential (MMP), and decreased the neuronal damage and death during OGD/R. Altogether, our data indicate that TNTs play an important role in the endogenous neuroprotection of astrocytic mitochondrial transfer. Furthermore, mild hypothermia enhances astrocytic mitochondrial transfer into OGD/R-injured neurons via TNTs, thereby promoting neuroprotection and neuronal recovery.


Assuntos
Estruturas da Membrana Celular , Hipotermia , Nanotubos , Oxigênio , Humanos , Oxigênio/metabolismo , Glucose/metabolismo , Astrócitos/metabolismo , Hipotermia/metabolismo , Células Cultivadas , Neurônios/metabolismo , Mitocôndrias/metabolismo
11.
CNS Neurosci Ther ; 30(2): e14628, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38421138

RESUMO

AIMS: Neurogenic bladder (NB) is a prevalent and debilitating consequence of spinal cord injury (SCI). Indeed, the accurate prognostication of early bladder outcomes is crucial for patient counseling, rehabilitation goal setting, and personalized intervention planning. METHODS: A retrospective exploratory analysis was conducted on a cohort of consecutive SCI patients admitted to a rehabilitation facility in China from May 2016 to December 2022. Demographic, clinical, and electrophysiological data were collected within 40 days post-SCI, with bladder outcomes assessed at 3 months following SCI onset. RESULTS: The present study enrolled 202 SCI patients with a mean age of 40.3 ± 12.3 years. At 3 months post-SCI, 79 participants exhibited complete bladder emptying. Least absolute shrinkage and selection operator (LASSO) and multivariate logistic regression analyses identified the H-reflex of the soleus muscle, the American Spinal Injury Association Lower Extremity Motor Score (ASIA-LEMS), and the time from lesion to rehabilitation facility (TLRF) as significant independent predictors for bladder emptying. A scoring system named HALT was developed, yielding a strong discriminatory performance with an area under the receiver operating characteristics curve (aROC) of 0.878 (95% CI: 0.823-0.933). A simplified model utilizing only the H-reflex exhibited excellent discriminatory ability with an aROC of 0.824 (95% CI: 0.766-0.881). Both models demonstrated good calibration via the Hosmer-Lemeshow test and favorable clinical net benefits through decision curve analysis (DCA). In comparison to ASIA-LEMS, both the HALT score and H-reflex showed superior predictive accuracy for bladder outcome. Notably, in individuals with incomplete injuries, the HALT score (aROC = 0.973, 95% CI: 0.940-1.000) and the H-reflex (aROC = 0.888, 95% CI: 0.807-0.970) displayed enhanced performance. CONCLUSION: Two reliable models, the HALT score and the H-reflex, were developed to predict bladder outcomes as early as 3 months after SCI onset. Importantly, this study provides hitherto undocumented evidence regarding the predictive significance of the soleus H-reflex in relation to bladder outcomes in SCI patients.


Assuntos
Traumatismos da Medula Espinal , Bexiga Urinária , Humanos , Adulto , Pessoa de Meia-Idade , Estudos Retrospectivos , Traumatismos da Medula Espinal/diagnóstico , Traumatismos da Medula Espinal/terapia , Músculo Esquelético , Curva ROC
12.
Ann Coloproctol ; 40(1): 3-12, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37004990

RESUMO

Sarcopenia, which is characterized by progressive and generalized loss of skeletal muscle mass and strength, has been well described to be associated with numerous poor postoperative outcomes, such as increased perioperative mortality, postoperative sepsis, prolonged length of stay, increased cost of care, decreased functional outcome, and poorer oncological outcomes in cancer surgery. Multimodal prehabilitation, as a concept that involves boosting and optimizing the preoperative condition of a patient prior to the upcoming stressors of a surgical procedure, has the purported benefits of reversing the effects of sarcopenia, shortening hospitalization, improving the rate of return to bowel activity, reducing the costs of hospitalization, and improving quality of life. This review aims to present the current literature surrounding the concept of sarcopenia, its implications pertaining to colorectal cancer and surgery, a summary of studied multimodal prehabilitation interventions, and potential future advances in the management of sarcopenia.

13.
World J Microbiol Biotechnol ; 39(12): 352, 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37864750

RESUMO

Formate dehydrogenase (FDH) is a D-2-hydroxy acid dehydrogenase, which can reversibly reduce CO2 to formate and thus act as non-photosynthetic CO2 reductase. In order to increase catalytic efficiency of formate dehydrogenase for CO2 reduction, two mutants V328I/F285W and V354G/F285W were obtained of which reduction activity was about two times more than the parent CbFDHM2, and the formate production from CO2 catalyzed by mutants were 2.9 and 2.7-fold higher than that of the parent CbFDHM2. The mutants had greater potential in CO2 reduction. The optimal temperature for V328I/F285W and V354G/F285W was 55 °C, and they showed increasement of relative activity under 45 °C to 55 °C compared with parent. The optimal pH for the mutants was 9.0, and they showed excellent stability in pH 4.0-11.5. The kcat/Km values of mutants were 1.75 times higher than that of the parent. Then the molecular basis for its improvement of biochemical characteristics were preliminarily elucidated by computer-aided methods. All of these results further established a solid foundation for molecular modification of formate dehydrogenase and CO2 reduction.


Assuntos
Dióxido de Carbono , Formiato Desidrogenases , Dióxido de Carbono/metabolismo , Formiato Desidrogenases/genética , Formiato Desidrogenases/química , Formiato Desidrogenases/metabolismo , Catálise , Formiatos/metabolismo
14.
ACS Appl Mater Interfaces ; 15(43): 49931-49942, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37856675

RESUMO

The skin secretion of Andrias davidianus (SSAD) is a novel biological adhesive raw material under development. This material exhibits robust adhesion while maintaining the flexibility of the wound. It also has the potential for large-scale production, making it promising for practical application explore. Hence, in-depth research on methods to fine-tune SSAD properties is of great importance to promote its practical applications. Herein, we aim to enhance the adhesive and healing properties of SSAD by incorporating functional components. To achieve this goal, we selected 3,4-dihydroxy-l-phenylalanine and vaccarin as the functional components and mixed them with SSAD, resulting in a new bioadhesive, namely, a formulation termed "enhanced SSAD" (ESSAD). We found that the ESSAD exhibited superior adhesive properties, and its adhesive strength was improved compared with the SSAD. Moreover, ESSAD demonstrated a remarkable ability to promote wound healing. This study presents an SSAD-based bioadhesive formulation with enhanced properties, affirming the feasibility of developing SSAD-based adhesive materials with excellent performance and providing new evidence for the application of SSAD. This study also aims to show that SSAD can be mixed with other substances, and addition of effective components to SSAD can be studied to further adjust or improve its performance.


Assuntos
Adesivos Teciduais , Cicatrização , Humanos , Adesivos/farmacologia , Pele , Adesivos Teciduais/farmacologia , Aderências Teciduais , Muco , Hidrogéis
15.
Eur J Med Chem ; 261: 115865, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37839342

RESUMO

The EGFRC797S mutation is a dominant mechanism of acquired resistance after the treatment of non-small cell lung cancer (NSCLC) with osimertinib in clinic. To date, there is no inhibitor approved to overcome the resistance caused by osimertinib. In this study, a series of compounds with phenylamino-pyrimidine scaffold deriving from osimertinib were designed, synthesized and evaluated as fourth-generation EGFRC797S-TK inhibitors. Consequently, compound Os30 exhibited potent inhibitory activities against both EGFRDel19/T790M/C797S TK and EGFRL858R/T790M/C797S TK with IC50 values of 18 nM and 113 nM, respectively. Moreover, Os30 can powerfully inhibit the proliferation of KC-0116 (BaF3-EGFRDel19/T790M/C797S) and KC-0122 (BaF3-EGFRL858R/T790M/C797S) cells. In addition, Os30 can suppress EGFR phosphorylation in a concentration-dependent manner in KC-0116 cells, arrest KC-0116 cells at G1 phase and induce the apoptosis of KC-0116 cells. More importantly, Os30 showed potent antitumor efficacy in the KC-0116 cells xenograft nude mice tumor model with the tumor growth inhibitory rate of 77.6% at a dosage of 40 mg/kg. These findings demonstrate that modification of osimertinib can discover new potent EGFRC797S-TK inhibitors, and compound Os30 is a potent fourth-generation EGFR inhibitor to treat NSCLC with EGFmRC797S mutation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Inibidores de Proteínas Quinases/farmacologia , Neoplasias Pulmonares/patologia , Receptores ErbB/genética , Mutação , Camundongos Nus , Compostos de Anilina/farmacologia , Resistencia a Medicamentos Antineoplásicos
16.
J Hypertens ; 41(10): 1645-1652, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37642593

RESUMO

BACKGROUND: This study aimed to explore whether 99mTc-radiolabeled fibroblast activation protein inhibitor (99mTc-HFAPi) imaging can detect early myocardial fibrosis in the hypertensive heart. METHODS: In the experimental model, spontaneously hypertensive rats (SHRs) and age-matched Wistar Kyoto rats (WKYs) were randomly divided into three groups (8, 16, and 28 weeks). The animals underwent 99mTc-HFAPi imaging and echocardiography. Autoradiography and histological analyses were performed in the left ventricle. The mRNA and protein expression level of the fibroblast activation protein (FAP) and collagen I were measured using quantitative PCR and western blot. In the clinical investigation, a total of 106 patients with essential hypertension and 20 gender-matched healthy controls underwent 99mTc-HFAPi imaging and echocardiography. RESULTS: In-vivo and in-vitro autographic images demonstrated diffusely enhanced 99mTc-HFAPi uptake in the SHR heart starting at week 8, before irreversible collagen deposition. The mRNA and protein levels of FAP in SHRs began to increase from week 8, whereas changes in collagen I levels were not detected until week 28. In the clinical investigation, even in hypertensive patients with normal diastolic indicators, normal left ventricular geometry, and normal global longitudinal strain (GLS), the prevalence of increased 99mTc-HFAPi uptake reached 34, 41, and 20%, respectively, indicating that early fibrogenesis precedes structural and functional myocardial abnormalities. CONCLUSION: In hypertension, 99mTc-HFAPi imaging can detect early fibrotic process before myocardial functional and structural changes.


Assuntos
Coração , Hipertensão , Ratos , Animais , Ratos Endogâmicos WKY , Coração/diagnóstico por imagem , Hipertensão/complicações , Hipertensão/diagnóstico por imagem , Miocárdio , Ventrículos do Coração , Colágeno Tipo I
17.
Bioorg Med Chem Lett ; 91: 129381, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37336419

RESUMO

The clinical use of epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) in the treatment of non-small cell lung cancer was limited by the drug resistance caused by EGFRC797S mutation. Therefore, in order to overcome the drug resistance, we designed and synthesized a series of 2-aminopyrimidine derivatives as EGFRC797S-TKIs. Among these compounds, compounds A5 and A13 showed significant anti-proliferative activity against the KC-0116 (EGFRdel19/T790M/C797S) cell line with high selectivity. A5 inhibited EGFR phosphorylation and induced apoptosis of KC-0116 cell, arrested KC-0116 cell at G2/M phase. Molecular docking results showed that A5 and brigatinib bind to EGFR in a similar pattern. In addition to forming two important hydrogen bonds with Met793 residue, A5 also formed a hydrogen bond with Lys745 residues, which may play an important role for the potent inhibitory activity against EGFRdel19/T790M/C797S. Based on these results, A5 turned out to be effective reversible EGFRC797S-TKIs which can be further developed.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB , Neoplasias Pulmonares/tratamento farmacológico , Antineoplásicos/química , Simulação de Acoplamento Molecular , Mutação , Inibidores de Proteínas Quinases/química , Pirimidinas/química , Resistencia a Medicamentos Antineoplásicos
18.
Zhongguo Zhong Yao Za Zhi ; 48(1): 256-264, 2023 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-36725278

RESUMO

Currently,the research or publications related to the clinical comprehensive evaluation of Chinese patent medicine are increasing,which attracts the broad attention of all circles. According to the completed clinical evaluation report on Chinese patent medicine,there are still practical problems and technical difficulties such as unclear responsibility of the evaluation organization,unclear evaluation subject,miscellaneous evaluation objects,and incomplete and nonstandard evaluation process. In terms of evaluation standards and specifications,there are different types of specifications or guidelines with different emphases issued by different academic groups or relevant institutions. The professional guideline is required to guide the standardized and efficient clinical comprehensive evaluation of Chinese patent medicine and further improve the authority and quality of evaluation. In combination with the characteristics of Chinese patent medicine and the latest research achievement at home and abroad,the detailed specifications were formulated from six aspects including design,theme selection,content and index,outcome,application and appraisal,and quality control. The guideline was developed based on the guideline development requirements of China Assoication of Chinese medicine. After several rounds of expert consensus and public consultation,the current version of the guideline has been developed.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Medicamentos sem Prescrição , Consenso , China , Padrões de Referência
20.
Radiology ; 306(2): e221052, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36219116

RESUMO

Background Myocardial fibrosis contributes to adverse cardiovascular events in hypertrophic cardiomyopathy (HCM). Purpose To explore the characteristics of cardiac fibroblast activation protein inhibitor (FAPI) PET/CT imaging and its relationship with the risk of sudden cardiac death (SCD) in HCM. Materials and Methods In this prospective study from July 2021 to January 2022, participants with HCM and healthy control participants underwent cardiac fluorine 18 (18F)-labeled FAPI PET/CT imaging. Myocardial FAPI activity was quantified as intensity (target-to-background uptake ratio), extent (the percent of FAPI-avid myocardium of the left ventricle [LV]), and amount (the percent of FAPI-avid myocardium of LV × target-to-background ratio). Regional wall thickness was analyzed at cardiac MRI. The 5-year SCD risk score was calculated from the 2014 European Society of Cardiology guidelines. Univariable and multivariable linear regression analyses were used to identify factors related to the FAPI amount. The correlation between FAPI amount and 5-year SCD risk was explored. Results Fifty study participants with HCM (mean age, 43 years ± 13 [SD]; 32 men) and 22 healthy control participants (mean age, 45 years ± 17; 14 men) were included. All participants with HCM had intense and inhomogeneous cardiac FAPI activity in the LV myocardium that was higher than that in healthy control participants (median target-to-background ratio, 8.8 vs 2.1, respectively; P < .001). In HCM, more segments with FAPI activity were detected than the number of hypertrophic segments (median, 14 vs five, respectively; P < .001); 84% of nonhypertrophic segments showed FAPI activity. Log-transformed FAPI amount had a positive relationship with log-transformed N-terminal probrain natriuretic peptide, high-sensitive troponin I, and left atrial diameter and a negative relationship with LV ejection fraction z-score. Degree of FAPI activity positively correlated with the 5-year SCD risk score (r = 0.32; P = .03). Conclusion Fibroblast activation protein inhibitor (FAPI) PET/CT imaging indicated intense and heterogeneous activity in hypertrophic cardiomyopathy, and FAPI uptake was associated with 5-year risk of sudden cardiac death. © RSNA, 2022 Online supplemental material is available for this article.


Assuntos
Cardiomiopatia Hipertrófica , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , Estudos Prospectivos , Miocárdio , Fatores de Risco , Morte Súbita Cardíaca
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA