Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Neuron ; 112(3): 362-383.e15, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38016472

RESUMO

Neurodegeneration is a protracted process involving progressive changes in myriad cell types that ultimately results in the death of vulnerable neuronal populations. To dissect how individual cell types within a heterogeneous tissue contribute to the pathogenesis and progression of a neurodegenerative disorder, we performed longitudinal single-nucleus RNA sequencing of mouse and human spinocerebellar ataxia type 1 (SCA1) cerebellar tissue, establishing continuous dynamic trajectories of each cell population. Importantly, we defined the precise transcriptional changes that precede loss of Purkinje cells and, for the first time, identified robust early transcriptional dysregulation in unipolar brush cells and oligodendroglia. Finally, we applied a deep learning method to predict disease state accurately and identified specific features that enable accurate distinction of wild-type and SCA1 cells. Together, this work reveals new roles for diverse cerebellar cell types in SCA1 and provides a generalizable analysis framework for studying neurodegeneration.


Assuntos
Ataxias Espinocerebelares , Animais , Camundongos , Humanos , Ataxina-1/genética , Camundongos Transgênicos , Ataxias Espinocerebelares/metabolismo , Cerebelo/metabolismo , Células de Purkinje/metabolismo , Modelos Animais de Doenças
2.
Exp Mol Med ; 55(9): 2005-2024, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37653039

RESUMO

The lack of physiological parity between 2D cell culture and in vivo culture has led to the development of more organotypic models, such as organoids. Organoid models have been developed for a number of tissues, including the liver. Current organoid protocols are characterized by a reliance on extracellular matrices (ECMs), patterning in 2D culture, costly growth factors and a lack of cellular diversity, structure, and organization. Current hepatic organoid models are generally simplistic and composed of hepatocytes or cholangiocytes, rendering them less physiologically relevant compared to native tissue. We have developed an approach that does not require 2D patterning, is ECM independent, and employs small molecules to mimic embryonic liver development that produces large quantities of liver-like organoids. Using single-cell RNA sequencing and immunofluorescence, we demonstrate a liver-like cellular repertoire, a higher order cellular complexity, presenting with vascular luminal structures, and a population of resident macrophages: Kupffer cells. The organoids exhibit key liver functions, including drug metabolism, serum protein production, urea synthesis and coagulation factor production, with preserved post-translational modifications such as N-glycosylation and functionality. The organoids can be transplanted and maintained long term in mice producing human albumin. The organoids exhibit a complex cellular repertoire reflective of the organ and have de novo vascularization and liver-like function. These characteristics are a prerequisite for many applications from cellular therapy, tissue engineering, drug toxicity assessment, and disease modeling to basic developmental biology.


Assuntos
Fígado , Organoides , Humanos , Animais , Camundongos , Engenharia Tecidual , Hepatócitos , Células Cultivadas
3.
Sci Adv ; 9(31): eadf2245, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37540754

RESUMO

Three-dimensional (3D) genomics shows immense promise for studying X chromosome inactivation (XCI) by interrogating changes to the X chromosomes' 3D states. Here, we sought to characterize the 3D state of the X chromosome in naïve and primed human pluripotent stem cells (hPSCs). Using chromatin tracing, we analyzed X chromosome folding conformations in these cells with megabase genomic resolution. X chromosomes in female naïve hPSCs exhibit folding conformations similar to the active X chromosome (Xa) and the inactive X chromosome (Xi) in somatic cells. However, naïve X chromosomes do not exhibit the chromatin compaction typically associated with these somatic X chromosome states. In H7 naïve human embryonic stem cells, XIST accumulation observed on damaged X chromosomes demonstrates the potential for naïve hPSCs to activate XCI-related mechanisms. Overall, our findings provide insight into the X chromosome status of naïve hPSCs with a single-chromosome resolution and are critical in understanding the unique epigenetic regulation in early embryonic cells.


Assuntos
Células-Tronco Pluripotentes , RNA Longo não Codificante , Humanos , Feminino , Epigênese Genética , Cromossomos Humanos X/genética , RNA Longo não Codificante/genética , Cromatina/genética
4.
J Clin Invest ; 133(16)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37384409

RESUMO

Protein aggregation is a hallmark of many neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). Although mutations in TARDBP, encoding transactive response DNA-binding protein 43 kDa (TDP-43), account for less than 1% of all ALS cases, TDP-43-positive aggregates are present in nearly all ALS patients, including patients with sporadic ALS (sALS) or carrying other familial ALS-causing (fALS-causing) mutations. Interestingly, TDP-43 inclusions are also present in subsets of patients with frontotemporal dementia, Alzheimer's disease, and Parkinson's disease; therefore, methods of activating intracellular protein quality control machinery capable of clearing toxic cytoplasmic TDP-43 species may alleviate disease-related phenotypes. Here, we identify a function of nemo-like kinase (Nlk) as a negative regulator of lysosome biogenesis. Genetic or pharmacological reduction of Nlk increased lysosome formation and improved clearance of aggregated TDP-43. Furthermore, Nlk reduction ameliorated pathological, behavioral, and life span deficits in 2 distinct mouse models of TDP-43 proteinopathy. Because many toxic proteins can be cleared through the autophagy/lysosome pathway, targeted reduction of Nlk represents a potential approach to therapy development for multiple neurodegenerative disorders.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Animais , Camundongos , Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Lisossomos/metabolismo , Doenças Neurodegenerativas/genética , Humanos
5.
Cell Rep ; 42(6): 112546, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37224015

RESUMO

Ruptured ectopic pregnancy (REP), a pregnancy complication caused by aberrant implantation, deep invasion, and overgrowth of embryos in fallopian tubes, could lead to rupture of fallopian tubes and accounts for 4%-10% of pregnancy-related deaths. The lack of ectopic pregnancy phenotypes in rodents hampers our understanding of its pathological mechanisms. Here, we employed cell culture and organoid models to investigate the crosstalk between human trophoblast development and intravillous vascularization in the REP condition. Compared with abortive ectopic pregnancy (AEP), the size of REP placental villi and the depth of trophoblast invasion are correlated with the extent of intravillous vascularization. We identified a key pro-angiogenic factor secreted by trophoblasts, WNT2B, that promotes villous vasculogenesis, angiogenesis, and vascular network expansion in the REP condition. Our results reveal the important role of WNT-mediated angiogenesis and an organoid co-culture model for investigating intricate communications between trophoblasts and endothelial/endothelial progenitor cells.


Assuntos
Gravidez Ectópica , Trofoblastos , Gravidez , Humanos , Feminino , Placenta/patologia , Gravidez Ectópica/patologia , Implantação do Embrião , Organoides
6.
Cell Stem Cell ; 30(5): 677-688.e5, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37019105

RESUMO

Human brain organoids provide unique platforms for modeling several aspects of human brain development and pathology. However, current brain organoid systems mostly lack the resolution to recapitulate the development of finer brain structures with subregional identity, including functionally distinct nuclei in the thalamus. Here, we report a method for converting human embryonic stem cells (hESCs) into ventral thalamic organoids (vThOs) with transcriptionally diverse nuclei identities. Notably, single-cell RNA sequencing revealed previously unachieved thalamic patterning with a thalamic reticular nucleus (TRN) signature, a GABAergic nucleus located in the ventral thalamus. Using vThOs, we explored the functions of TRN-specific, disease-associated genes patched domain containing 1 (PTCHD1) and receptor tyrosine-protein kinase (ERBB4) during human thalamic development. Perturbations in PTCHD1 or ERBB4 impaired neuronal functions in vThOs, albeit not affecting the overall thalamic lineage development. Together, vThOs present an experimental model for understanding nuclei-specific development and pathology in the thalamus of the human brain.


Assuntos
Núcleos Talâmicos , Tálamo , Humanos , Núcleos Talâmicos/patologia , Núcleos Talâmicos/fisiologia , Neurônios/fisiologia , Organoides
7.
Cell Rep ; 42(1): 111942, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36640327

RESUMO

Mutations in the MECP2 gene underlie a spectrum of neurodevelopmental disorders, most commonly Rett syndrome (RTT). We ask whether MECP2 mutations interfere with human astrocyte developmental maturation, thereby affecting their ability to support neurons. Using human-based models, we show that RTT-causing MECP2 mutations greatly impact the key role of astrocytes in regulating overall brain bioenergetics and that these metabolic aberrations are likely mediated by dysfunctional mitochondria. During post-natal maturation, astrocytes rely on neurons to induce their complex stellate morphology and transcriptional changes. While MECP2 mutations cause cell-intrinsic aberrations in the astrocyte transcriptional landscape, surprisingly, they do not affect the neuron-induced astrocyte gene expression. Notably, however, astrocytes are unable to develop complex mature morphology due to cell- and non-cell-autonomous aberrations caused by MECP2 mutations. Thus, MECP2 mutations critically impact key cellular and molecular features of human astrocytes and, hence, their ability to interact and support the structural and functional maturation of neurons.


Assuntos
Astrócitos , Síndrome de Rett , Humanos , Astrócitos/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Neurônios/metabolismo , Encéfalo/metabolismo , Mutação/genética
8.
Front Cell Dev Biol ; 10: 967147, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36016658

RESUMO

Dyslexia, also known as reading disability, is defined as difficulty processing written language in individuals with normal intellectual capacity and educational opportunity. The prevalence of dyslexia is between 5 and 17%, and the heritability ranges from 44 to 75%. Genetic linkage analysis and association studies have identified several genes and regulatory elements linked to dyslexia and reading ability. However, their functions and molecular mechanisms are not well understood. Prominent among these is KIAA0319, encoded in the DYX2 locus of human chromosome 6p22. The association of KIAA0319 with reading performance has been replicated in independent studies and different languages. Rodent models suggest that kiaa0319 is involved in neuronal migration, but its role throughout the cortical development is largely unknown. In order to define the function of KIAA0319 in human cortical development, we applied the neural developmental model of a human embryonic stem cell. We knocked down KIAA0319 expression in hESCs and performed the cortical neuroectodermal differentiation. We found that neuroepithelial cell differentiation is one of the first stages of hESC differentiation that are affected by KIAA0319 knocked down could affect radial migration and thus differentiation into diverse neural populations at the cortical layers.

10.
Cell Regen ; 11(1): 1, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34982276

RESUMO

Studying the etiology of human neurodevelopmental diseases has long been a challenging task due to the brain's complexity and its limited accessibility. Human pluripotent stem cells (hPSCs)-derived brain organoids are capable of recapitulating various features and functionalities of the human brain, allowing the investigation of intricate pathogenesis of developmental abnormalities. Over the past years, brain organoids have facilitated identifying disease-associated phenotypes and underlying mechanisms for human neurodevelopmental diseases. Integrating with more cutting-edge technologies, particularly gene editing, brain organoids further empower human disease modeling. Here, we review the latest progress in modeling human neurodevelopmental disorders with brain organoids.

11.
Nat Commun ; 13(1): 430, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058453

RESUMO

Microglia play a role in the emergence and preservation of a healthy brain microenvironment. Dysfunction of microglia has been associated with neurodevelopmental and neurodegenerative disorders. Investigating the function of human microglia in health and disease has been challenging due to the limited models of the human brain available. Here, we develop a method to generate functional microglia in human cortical organoids (hCOs) from human embryonic stem cells (hESCs). We apply this system to study the role of microglia during inflammation induced by amyloid-ß (Aß). The overexpression of the myeloid-specific transcription factor PU.1 generates microglia-like cells in hCOs, producing mhCOs (microglia-containing hCOs), that we engraft in the mouse brain. Single-cell transcriptomics reveals that mhCOs acquire a microglia cell cluster with an intact complement and chemokine system. Functionally, microglia in mhCOs protect parenchyma from cellular and molecular damage caused by Aß. Furthermore, in mhCOs, we observed reduced expression of Aß-induced expression of genes associated with apoptosis, ferroptosis, and Alzheimer's disease (AD) stage III. Finally, we assess the function of AD-associated genes highly expressed in microglia in response to Aß using pooled CRISPRi coupled with single-cell RNA sequencing in mhCOs. In summary, we provide a protocol to generate mhCOs that can be used in fundamental and translational studies as a model to investigate the role of microglia in neurodevelopmental and neurodegenerative disorders.


Assuntos
Córtex Cerebral/metabolismo , Microglia/metabolismo , Organoides/citologia , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/toxicidade , Animais , Sistemas CRISPR-Cas/genética , Linhagem da Célula/efeitos dos fármacos , Células Cultivadas , Proteínas de Fluorescência Verde/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/ultraestrutura , Humanos , Camundongos , Microglia/efeitos dos fármacos , Microglia/ultraestrutura , Organoides/metabolismo , Fagocitose/efeitos dos fármacos , Análise de Célula Única
12.
Transl Psychiatry ; 11(1): 504, 2021 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-34601489

RESUMO

Transcriptomic changes in specific brain regions can influence the risk of alcohol use disorder (AUD), but the underlying mechanism is not fully understood. We investigated AUD-associated miRNA-mRNA regulatory networks in multiple brain regions by analyzing transcriptomic changes in two sets of postmortem brain tissue samples and ethanol-exposed human embryonic stem cell (hESC)-derived cortical interneurons. miRNA and mRNA transcriptomes were profiled in 192 tissue samples (Set 1) from eight brain regions (amygdala, caudate nucleus, cerebellum, hippocampus, nucleus accumbens, prefrontal cortex, putamen, and ventral tegmental area) of 12 AUD and 12 control European Australians. Nineteen differentially expressed miRNAs (fold-change>2.0 & P < 0.05) and 97 differentially expressed mRNAs (fold-change>2.0 & P < 0.001) were identified in one or multiple brain regions of AUD subjects. AUD-associated miRNA-mRNA regulatory networks in each brain region were constructed using differentially expressed and negatively correlated miRNA-mRNA pairs. AUD-relevant pathways (including CREB Signaling, IL-8 Signaling, and Axonal Guidance Signaling) were potentially regulated by AUD-associated brain miRNA-mRNA pairs. Moreover, miRNA and mRNA transcriptomes were mapped in additional 96 tissue samples (Set 2) from six of the above eight brain regions of eight AUD and eight control European Australians. Some of the AUD-associated miRNA-mRNA regulatory networks were confirmed. In addition, miRNA and mRNA transcriptomes were analyzed in hESC-derived cortical interneurons with or without ethanol exposure, and ethanol-influenced miRNA-mRNA regulatory networks were constructed. This study provided evidence that alcohol could induce concerted miRNA and mRNA expression changes in reward-related or alcohol-responsive brain regions. We concluded that altered brain miRNA-mRNA regulatory networks might contribute to AUD development.


Assuntos
Alcoolismo , MicroRNAs , Austrália , Encéfalo , Redes Reguladoras de Genes , Humanos , MicroRNAs/genética , RNA Mensageiro
13.
Semin Cell Dev Biol ; 111: 40-51, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32553582

RESUMO

Brain organoids, three-dimensional neural cultures recapitulating the spatiotemporal organization and function of the brain in a dish, offer unique opportunities for investigating the human brain development and diseases. To model distinct parts of the brain, various region-specific human brain organoids have been developed. In this article, we review current approaches to produce human region-specific brain organoids, developed through the endeavor of many researchers. We highlight the applications of human region-specific brain organoids, especially in reconstructing regional interactions in the brain through organoid fusion. We also outline the existing challenges to drive forward further the brain organoid technology and its applications for future studies.


Assuntos
Encéfalo/metabolismo , Modelos Biológicos , Doenças Neurodegenerativas/metabolismo , Organoides/metabolismo , Técnicas de Cultura de Tecidos , Encéfalo/patologia , Mapeamento Encefálico , Diferenciação Celular , Fusão Celular , Movimento Celular , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Interneurônios/citologia , Interneurônios/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia , Neurogênese/fisiologia , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Especificidade de Órgãos , Organoides/citologia
14.
Cell Stem Cell ; 27(5): 702-704, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33157046

RESUMO

COVID-19 has unfortunately halted lab work, conferences, and in-person networking, which is especially detrimental to researchers just starting their labs. Through social media and our reviewer networks, we met some early-career stem cell investigators impacted by the closures. Here, they introduce themselves and their research to our readers.

15.
STAR Protoc ; 1(1)2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-33103124

RESUMO

Thalamus is a critical information relay hub in the cortex; its malfunction causes multiple neurological and psychiatric disorders. However, there are no model systems to study the development and function of human thalamus. Here, we present a protocol to generate regionally specified human brain organoids that recapitulate the development of the thalamus using human pluripotent stem cells (hPSCs). Thalamic organoids can be used to study human thalamus development, to model related diseases, and to discover potential therapeutics. For complete information on human thalamic organoids and their application, please refer to the paper by Xiang et al. (2019).


Assuntos
Organoides , Tálamo/embriologia , Padronização Corporal , Células Cultivadas , Humanos , Modelos Biológicos , Organoides/citologia , Células-Tronco Pluripotentes
16.
Mol Cell ; 79(1): 84-98.e9, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32526163

RESUMO

Rett syndrome (RTT), mainly caused by mutations in methyl-CpG binding protein 2 (MeCP2), is one of the most prevalent intellectual disorders without effective therapies. Here, we used 2D and 3D human brain cultures to investigate MeCP2 function. We found that MeCP2 mutations cause severe abnormalities in human interneurons (INs). Surprisingly, treatment with a BET inhibitor, JQ1, rescued the molecular and functional phenotypes of MeCP2 mutant INs. We uncovered that abnormal increases in chromatin binding of BRD4 and enhancer-promoter interactions underlie the abnormal transcription in MeCP2 mutant INs, which were recovered to normal levels by JQ1. We revealed cell-type-specific transcriptome impairment in MeCP2 mutant region-specific human brain organoids that were rescued by JQ1. Finally, JQ1 ameliorated RTT-like phenotypes in mice. These data demonstrate that BRD4 dysregulation is a critical driver for RTT etiology and suggest that targeting BRD4 could be a potential therapeutic opportunity for RTT.


Assuntos
Azepinas/farmacologia , Encéfalo/patologia , Proteínas de Ciclo Celular/metabolismo , Interneurônios/patologia , Proteína 2 de Ligação a Metil-CpG/fisiologia , Síndrome de Rett/patologia , Fatores de Transcrição/metabolismo , Transcriptoma/efeitos dos fármacos , Triazóis/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Proteínas de Ciclo Celular/genética , Feminino , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Fenótipo , Síndrome de Rett/tratamento farmacológico , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Fatores de Transcrição/genética
17.
Cell Rep ; 30(6): 1682-1689.e3, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32049002

RESUMO

Human brain organoid systems offer unprecedented opportunities to investigate both neurodevelopmental and neurological disease. Single-cell-based transcriptomics or epigenomics have dissected the cellular and molecular heterogeneity in the brain organoids, revealing a complex organization. Similar but distinct protocols from different labs have been applied to generate brain organoids, providing a large resource to perform a comparative analysis of brain developmental processes. Here, we take a systematic approach to compare the single-cell transcriptomes of various human cortical brain organoids together with fetal brain to define the identity of specific cell types and differentiation routes in each method. Importantly, we identify unique developmental programs in each protocol compared to fetal brain, which will be a critical benchmark for the utility of human brain organoids in the future.


Assuntos
Encéfalo/crescimento & desenvolvimento , Organoides/crescimento & desenvolvimento , Transcriptoma/genética , Feminino , Feto , Humanos , Masculino
18.
Neuropharmacology ; 162: 107787, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31550457

RESUMO

Gamma network oscillations in the brain are fast rhythmic network oscillations in the gamma frequency range (~30-100 Hz), playing key roles in the hippocampus for learning, memory, and spatial processing. There is evidence indicating that GABAergic interneurons, including parvalbumin-expressing basket cells (PVBCs), contribute to cortical gamma oscillations through synaptic interactions with excitatory cells. However, the molecular, cellular, and circuit underpinnings underlying generation and maintenance of cortical gamma oscillations are largely elusive. Recent studies demonstrated that intrinsic and synaptic properties of GABAergic interneurons and excitatory cells are regulated by a slowly inactivating or non-inactivating sodium current (i.e., persistent sodium current, INaP), suggesting that INaP is involved in gamma oscillations. Here, we tested whether INaP plays a role in hippocampal gamma oscillations using pharmacological, optogenetic, and electrophysiological approaches. We found that INaP blockers, phenytoin (40 µM and 100 µM) and riluzole (10 µM), reduced gamma oscillations induced by optogenetic stimulation of CaMKII-expressing cells in CA1 networks. Whole-cell patch-clamp recordings further demonstrated that phenytoin (100 µM) reduced INaP and firing frequencies in both PVBCs and pyramidal cells without altering threshold and amplitude of action potentials, but increased rheobase in both cell types. These results suggest that INaP in pyramidal cells and PVBCs is required for hippocampal gamma oscillations, supporting a pyramidal-interneuron network gamma model. Phenytoin-mediated modulation of hippocampal gamma oscillations may be a mechanism underlying its anticonvulsant efficacy, as well as its contribution to cognitive impairments in epilepsy patients.


Assuntos
Região CA1 Hipocampal/fisiologia , Neurônios GABAérgicos/fisiologia , Ritmo Gama/fisiologia , Interneurônios/fisiologia , Células Piramidais/fisiologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Ritmo Gama/efeitos dos fármacos , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Camundongos , Optogenética , Parvalbuminas/metabolismo , Técnicas de Patch-Clamp , Fenitoína/farmacologia , Células Piramidais/efeitos dos fármacos , Riluzol/farmacologia , Sódio/metabolismo
19.
Nat Methods ; 16(11): 1169-1175, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31591580

RESUMO

Human cortical organoids (hCOs), derived from human embryonic stem cells (hESCs), provide a platform to study human brain development and diseases in complex three-dimensional tissue. However, current hCOs lack microvasculature, resulting in limited oxygen and nutrient delivery to the inner-most parts of hCOs. We engineered hESCs to ectopically express human ETS variant 2 (ETV2). ETV2-expressing cells in hCOs contributed to forming a complex vascular-like network in hCOs. Importantly, the presence of vasculature-like structures resulted in enhanced functional maturation of organoids. We found that vascularized hCOs (vhCOs) acquired several blood-brain barrier characteristics, including an increase in the expression of tight junctions, nutrient transporters and trans-endothelial electrical resistance. Finally, ETV2-induced endothelium supported the formation of perfused blood vessels in vivo. These vhCOs form vasculature-like structures that resemble the vasculature in early prenatal brain, and they present a robust model to study brain disease in vitro.


Assuntos
Encéfalo/irrigação sanguínea , Células-Tronco Embrionárias Humanas/citologia , Organoides/irrigação sanguínea , Engenharia Tecidual/métodos , Animais , Barreira Hematoencefálica , Células Cultivadas , Humanos , Camundongos , Análise de Célula Única , Fatores de Transcrição/fisiologia
20.
Cell Stem Cell ; 24(3): 487-497.e7, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30799279

RESUMO

Human brain organoid techniques have rapidly advanced to facilitate investigating human brain development and diseases. These efforts have largely focused on generating telencephalon due to its direct relevance in a variety of forebrain disorders. Despite its importance as a relay hub between cortex and peripheral tissues, the investigation of three-dimensional (3D) organoid models for the human thalamus has not been explored. Here, we describe a method to differentiate human embryonic stem cells (hESCs) to thalamic organoids (hThOs) that specifically recapitulate the development of thalamus. Single-cell RNA sequencing revealed a formation of distinct thalamic lineages, which diverge from telencephalic fate. Importantly, we developed a 3D system to create the reciprocal projections between thalamus and cortex by fusing the two distinct region-specific organoids representing the developing thalamus or cortex. Our study provides a platform for understanding human thalamic development and modeling circuit organizations and related disorders in the brain.


Assuntos
Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Organoides/citologia , Organoides/metabolismo , Tálamo/citologia , Humanos , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA