Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 300
Filtrar
1.
Acta Pharmacol Sin ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937576

RESUMO

Reperfusion injury, which is distinct from ischaemic injury, occurs when blood flow is restored in previously ischaemic brain tissue, further compromising neurons and other cells and worsening the injury. There is currently a lack of pharmaceutical agents and therapeutic interventions that specifically mitigate cerebral ischaemia/reperfusion (I/R) injury. Ginsenoside Rg1 (Rg1), a protopanaxatriol-type saponin isolated from Panax ginseng C. A. Meyer, has been found to protect against cerebral I/R injury, but its intricate protective mechanisms remain to be elucidated. Numerous studies have shown that autophagy plays a crucial role in protecting brain tissue during the I/R process and is emerging as a promising therapeutic strategy for effective treatment. In this study, we investigated whether Rg1 protected against I/R damage in vitro and in vivo by regulating autophagy. Both MCAO and OGD/R models were established. SK-N-AS and SH-SY5Y cells were subjected to OGD followed by reperfusion with Rg1 (4-32 µM). MCAO mice were injected with Rg1 (30 mg·kg-1·d-1. i.p.) for 3 days before and on the day of surgery. Rg1 treatment significantly mitigated ischaemia/reperfusion injury both in vitro and in vivo. Furthermore, we demonstrated that the induction of autophagy contributed to I/R injury, which was effectively inhibited by Rg1 in both in vitro and in vivo models of cerebral I/R injury. Rg1 inhibited autophagy through multiple steps, including impeding autophagy initiation, inducing lysosomal dysfunction and inhibiting cathepsin enzyme activities. We revealed that mTOR activation was pivotal in mediating the inhibitory effect of Rg1 on autophagy. Treatment with Torin-1, an autophagy inducer and mTOR-specific inhibitor, significantly reversed the impact of Rg1 on autophagy, decreasing its protective efficacy against I/R injury both in vitro and in vivo. In conclusion, our results suggest that Rg1 may serve as a promising drug candidate against cerebral I/R injury by inhibiting autophagy through activation of mTOR signalling.

2.
J Org Chem ; 89(12): 9056-9062, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38857440

RESUMO

A palladium(II)-catalyzed Markovnikov hydroboration of aryl alkenes with readily available bis(pinacolato)diboron (B2pin2) is reported. The reaction proceeded with low catalyst loading (0.5 mol %) in the absence of N- or P-containing ligands, affording the products in up to 90% yield. Trifluoracetic acid serves as the hydrogen source, enabling the synthesis of benzylic boronic esters under mild ambient conditions.

3.
Biomed Pharmacother ; 177: 116977, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901203

RESUMO

BACKGROUND: Pancreatic cancer (PanCa), ranked as the 4th leading cause of cancer-related death worldwide, exhibits an dismal 5-year survival rate of less than 5 %. Chronic pancreatitis (CP) is a known major risk factor for PanCa. Brusatol (BRT) possesses a wide range of biological functions, including the inhibition of PanCa proliferation. However, its efficacy in halting the progression from CP to pancreatic carcinogenesis remains unexplored. METHODS: We assess the effects of BRT against pancreatic carcinogenesis from CP using an experimentally induced CP model with cerulein, and further evaluate the therapeutic efficacy of BRT on PanCa by employing Krastm4TyjTrp53tm1BrnTg (Pdx1-cre/Esr1*) #Dam/J (KPC) mouse model. RESULTS: Our finding demonstrated that BRT mitigated the severity of cerulein-induced pancreatitis, reduced pancreatic fibrosis and decreased the expression of α-smooth muscle actin (α-SMA), which is a biomarker for pancreatic fibrosis. In addition, BRT exerted effects against cerulein-induced pancreatitis via inactivation of NLRP3 inflammasome. Moreover, BRT significantly inhibited tumor growth and impeded cancer progression. CONCLUSIONS: The observed effect of BRT on impeding pancreatic carcinogenesis through targeting NLRP3 inflammasome suggests its good potential as a potential agent for treatment of PanCa.


Assuntos
Camundongos Transgênicos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Neoplasias Pancreáticas , Pancreatite Crônica , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Camundongos , Pancreatite Crônica/patologia , Pancreatite Crônica/induzido quimicamente , Pancreatite Crônica/tratamento farmacológico , Pancreatite Crônica/metabolismo , Pancreatite Crônica/genética , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Carcinogênese/genética , Ceruletídeo , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Pâncreas/patologia , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Fibrose , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Quassinas
4.
J Pharm Anal ; 14(4): 100901, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38665223

RESUMO

The density and composition of lymphocytes infiltrating colon tumors serve as predictive factors for the clinical outcome of colon cancer. Our previous studies highlighted the potent anti-cancer properties of the principal compounds found in Garcinia yunnanensis (YTE-17), attributing these effects to the regulation of multiple signaling pathways. However, knowledge regarding the mechanism and effect of YTE-17 in the prevention of colorectal cancer is limited. In this study, we conducted isobaric tags for relative and absolute quantification (iTRAQ) analysis on intestinal epithelial cells (IECs) exposed YTE-17, both in vitro and invivo, revealing a significant inhibition of the Wnt family member 5a (Wnt5a)/c-Jun N-terminal kinase (JNK) signaling pathway. Subsequently, we elucidated the influence and mechanism of YTE-17 on the tumor microenvironment (TME), specifically focusing on macrophage-mediated T helper 17 (Th17) cell induction in a colitis-associated cancer (CAC) model with Wnt5a deletion. Additionally, we performed the single-cell RNA sequencing (scRNA-seq) on the colonic tissue from the Wnt5a-deleted CAC model to characterize the composition, lineage, and functional status of immune mesenchymal cells during different stages of colorectal cancer (CRC) progression. Remarkably, our findings demonstrate a significant reduction in M2 macrophage polarization and Th17 cell phenotype upon treatment with YTE-17, leading to the restoration of regulatory T (Treg)/Th17 cell balance in azoxymethane (AOM)/dextran sodium sulfate (DSS) model. Furthermore, we also confirmed that YTE-17 effectively inhibited the glycolysis of Th17 cells in both direct and indirect co-culture systems with M2 macrophages. Notably, our study shed light on potential mechanisms linking the non-canonical Wnt5a/JNK signaling pathway and well-established canonical ß-catenin oncogenic pathway in vivo. Specifically, we proposed that Wnt5a/JNK signaling activity in IECs promotes the development of cancer stem cells with ß-catenin activity within the TME, involving macrophages and T cells. In summary, our study undergoes the potential of YTE-17 as a preventive strategy against CRC development by addressing the imbalance with the immune microenvironment, thereby mitigating the risk of malignancies.

5.
J Ethnopharmacol ; 327: 118014, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38460576

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Chronic kidney disease can be caused by numerous diseases including obesity and hyperuricemia (HUA). Obesity may exacerbate the renal injury caused by HUA. Red ginseng, a steamed products of Panax ginseng Meyer root, is known for its remarkable efficacy in improving metabolic syndrome, such as maintaining lipid metabolic balance. However, the role of red ginseng on hyperuricemia-induced renal injury in obese cases remains unclear. AIM OF THE STUDY: This study aimed to investigate the action of red ginseng extract (RGE) on lipotoxicity-induced renal injury in HUA mice. MATERIALS AND METHODS: A high-fat diet (HFD)-induced obesity model was employed to initially investigate the effects of RGE on body weight, TC, OGTT, renal lipid droplets, and renal function indices such as uric acid, creatinine, and urea nitrogen. Renal structural improvement was demonstrated by H&E staining. Subsequently, an animal model combining obesity and HUA was established to further study the impact of RGE on OAT1 and ACC1 expression levels. The mechanisms underlying renal injury regulation by RGE were postulated on the basis of RNA sequencing, which was verified by immunohistochemical (including F4/80, Ki67, TGF-ß1, α-SMA, and E-cadherin), Masson, and Sirius red staining. RESULTS: RGE modulated HFD-induced weight gain, glucose metabolism, and abnormalities of uric acid, urea nitrogen, and creatinine. RGE alleviated the more severe renal histopathological changes induced by obesity combined with HUA, with down-regulated the protein levels of ACC1, F4/80, Ki67, TGF-ß1, and α-SMA, and up-regulated OAT1 and E-cadherin. CONCLUSIONS: RGE has ameliorative effects on chronic kidney disease caused by obesity combined with HUA by maintaining lipid balance and reducing renal inflammation and fibrosis.


Assuntos
Hiperuricemia , Panax , Insuficiência Renal Crônica , Camundongos , Animais , Hiperuricemia/tratamento farmacológico , Hiperuricemia/patologia , Fator de Crescimento Transformador beta1 , Ácido Úrico , Creatinina , Antígeno Ki-67 , Obesidade/tratamento farmacológico , Fibrose , Panax/química , Caderinas , Nitrogênio , Lipídeos , Ureia
6.
Bioorg Med Chem ; 103: 117655, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38493728

RESUMO

Caged xanthones represent a class of natural secondary metabolites exhibiting significant potential as antitumor agents. These compounds are characterized by their distinct cage-like structures, which offer novel and compelling frameworks for drug design. Nonetheless, there exists a dearth of research focused on the structural modification of these compounds, particularly in relation to their cage-like architectures. This study aims to address this gap by introducing an innovative synthetic method for constructing a novel caged structure that incorporates a widely employed maleimide group. Drawing upon the well-established synthetic approach for dihydroxanthones previously developed within our research group, we successfully synthesized 13 new caged xanthones using the Diels-Alder reaction. Subsequently, we evaluated their anti-proliferative activity against HepG2, A549, and MDA-MB-231 cell lines. The results revealed that compound 10i exhibited IC50 values of 15.86 µM ± 1.29, 19.27 µM ± 1.58, and 12.96 µM ± 0.09 against these cell lines, respectively. Further investigations into the mechanism of action of 10i demonstrated its ability to induce G2/M cell cycle arrest and initiate mitochondria-mediated apoptosis in breast cancer cells.


Assuntos
Antineoplásicos , Neoplasias da Mama , Xantonas , Humanos , Feminino , Xantonas/farmacologia , Xantonas/química , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade , Estrutura Molecular
7.
Phytomedicine ; 128: 155547, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38547615

RESUMO

BACKGROUND: Emerging evidence suggests that pyroptosis, a form of programmed cell death, has been implicated in cancer progression. The involvement of specific proteins in pyroptosis is an area of growing interest. TOM20, an outer mitochondrial membrane protein, has recently garnered attention for its potential role in pyroptosis. Our previous study found that NBT could induce pyroptosis by ROS/JNK pathway in esophageal cancer cells. PURPOSE: This study aims to investigate whether NBT induces pyroptosis and verify whether such effects are involved in up-regulation of TOM20 in esophageal cancer cells. METHODS: The University of ALabama at Birmingham CANcer data analysis Portal (UALCAN) was used to analyze the clinical significance of GSDME in esophageal cancer. MTT assay, morphological observation and Western blot were performed to verify the roles of TOM20 and BAX in NBT-induced pyroptosis after CRISPR-Cas9-mediated knockout. Immunofluorescence was used to determine the subcellular locations of BAX and cytochrome c. MitoSOX Red was employed to assess the mitochondrial reactive oxygen species (ROS) level. KYSE450 and TOM20 knockout KYSE450-/- xenograft models were established to elucidate the mechanisms involved in NBT-induced cell death. RESULTS: In this study, NBT effectively upregulated the expression of TOM20 and facilitated the translocation of BAX to mitochondria, which promoted the release of cytochrome c from mitochondria to the cytoplasm, leading to the activation of caspase-9 and caspase-3, and finally induced pyroptosis. Knocking out TOM20 by CRISPR-Cas9 significantly inhibited the expression of BAX and the downstream BAX/caspase-3/GSDME pathway, which attenuated NBT-induced pyroptosis. The elevated mitochondrial ROS level was observed after NBT treatment. Remarkably, the inhibition of ROS by N-acetylcysteine (NAC) effectively suppressed the activation of TOM20/BAX pathway. Moreover, in vivo experiments demonstrated that NBT exhibited potent antitumor effects in both KYSE450 and TOM20 knockout KYSE450-/- xenograft models. Notably, the attenuated antitumor effects and reduced cleavage of GSDME were observed in the TOM20 knockout model. CONCLUSION: These findings reveal that NBT induces pyroptosis through ROS/TOM20/BAX/GSDME pathway, which highlight the therapeutic potential of targeting TOM20 and GSDME, providing promising prospects for the development of innovative and effective treatment approaches for esophageal cancer.


Assuntos
Neoplasias Esofágicas , Gasderminas , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Piroptose , Espécies Reativas de Oxigênio , Transdução de Sinais , Proteína X Associada a bcl-2 , Animais , Humanos , Masculino , Camundongos , Proteína X Associada a bcl-2/metabolismo , Caspase 3/metabolismo , Linhagem Celular Tumoral , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/metabolismo , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Piroptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
8.
Bioorg Chem ; 145: 107182, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38359707

RESUMO

Gambogenic acid (GNA), a caged xanthone derived from Garcinia hanburyi, exhibits a wide range of anti-cancer properties. The caged skeleton of GNA serves as the fundamental pharmacophore responsible for its antitumor effects. However, limited exploration has focused on the structural modifications of GNA. This study endeavors to diversify the structure of GNA and enhance its anti-cancer efficacy. Sulfoximines, recognized as pivotal motifs in medicinal chemistry due to their outstanding properties, have featured in several anti-cancer drugs undergoing clinical trials. Accordingly, a series of 33 GNA derivatives combined with sulfoximines were synthesized and evaluated for their anti-cancer effects against MIAPaCa2, MDA-MB-231, and A549 cells in vitro. The activity screening led to the identification of compound 12k, which exhibited the most potent anti-cancer effect. Mechanistic studies revealed that 12k primarily induced pyroptosis in MIAPaCa2 and MDA-MB-231 cells by activating the caspase-3/gasdermin E (GSDME) pathway. These findings suggested that 12k is a promising drug candidate in cancer therapy and highlighted the potential of sulfoximines as a valuable functional group in drug discovery.


Assuntos
Apoptose , Piroptose , Humanos , Xantenos/farmacologia , Xantenos/química , Células A549 , Linhagem Celular Tumoral
9.
Chin Med ; 19(1): 6, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38185640

RESUMO

BACKGROUND: Prunella vulgaris polysaccharide extracted by hot water and 30% ethanol precipitation (PVE30) was reported to possess potent antiviral effects against herpes simplex virus (HSV) infection. However, its anti-HSV mechanism has not yet been fully elucidated. PURPOSE: This study aimed to investigate the potential mechanisms of PVE30 against HSV infection. METHODS: Antiviral activity was evaluated by a plaque reduction assay, and the EC50 value was calculated. Immunofluorescence staining and heparin bead pull-down assays confirmed the interactions between PVE30 and viral glycoproteins. Real-time PCR was conducted to determine the mRNA levels of viral genes, including UL54, UL29, UL27, UL44, and US6, and the proinflammatory cytokines IL-6 and TNF-α. The protein expression of viral proteins (ICP27, ICP8, gB, gC, and gD), the activity of the TLR-NF-κB signalling pathway, and necroptotic-associated proteins were evaluated by Western blotting. The proportion of necroptotic cells was determined by flow cytometric analysis. RESULTS: The P. vulgaris polysaccharide PVE30 was shown to compete with heparan sulfate for interaction with HSV surface glycoprotein B and gC, thus strongly inhibiting HSV attachment to cells. In addition, PVE30 downregulated the expression of IE genes, which subsequently downregulated the expression of E and L viral gene products, and thus effectively restricted the yield of progeny virus. Further investigation confirmed that PVE30 inhibited TLR2 and TLR3 signalling, leading to the effective suppression of NF-κB activation and IL-6 and TNF-α expression levels, and blocked HSV-1-induced necroptosis by reducing HSV-1-induced phosphorylation of MLKL. CONCLUSION: Our results demonstrate that the P. vulgaris polysaccharide PVE30 is a potent anti-HSV agent that blocks TLR-mediated NF-κB activation.

10.
Phytochem Anal ; 35(3): 530-539, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009261

RESUMO

INTRODUCTION: Prunellae Spica (PS), derived from the dried fruit spikes of Prunella vulgaris L., is a traditional Chinese medicinal herb. Our previous studies found that PVE30, a water-extracting ethanol-precipitating "glycoprotein" macromolecule of PS, was a potential anti-herpes simplex virus (HSV) candidate. However, due to the complex structure and diverse bioactivity of the "glycoprotein", ensuring its quality consistency across different batches of PVE30 becomes particularly challenging. This poses a significant hurdle for new drug development based on PVE30. OBJECTIVE: Our study aimed to integrate multi-index determination coupled with hierarchical cluster analysis (HCA) to holistically profile the quality consistency of "glycoprotein" in PVE30. METHODS: High-performance gel permeation chromatography with refractive index detector (HPGPC-RID) was used to characterise the molecular weight (Mw) distribution, HPLC-PDA was used to quantitatively analyse the composed monosaccharides and amino acids, and UV-VIS was used to quantify the contents of polysaccharides and proteins. Qualitative and quantitative consistency was analysed for each single index in 16 batches of PVE30, and a 16 × 38 data matrix, coupled with HCA, was used to evaluate the holistic quality consistency of PVE30. RESULTS: The newly developed and validated methods were exclusive, linear, precise, accurate, and stable enough to quantify multi-indexes in PVE30. Single-index analysis revealed that 16 batches of PVE30 were qualitatively consistent in Mw distribution, polysaccharides and proteins, and the composition of composed monosaccharides and amino acids but quantitatively inconsistent in the relative contents of some "glycoprotein" macromolecules, as well as the composed monosaccharides/amino acids. HCA showed that the holistic quality of PVE30 was inconsistent, the inconsistency was uncorrelated with the regions where PS was commercially collected, and the contents of 17 amino acids and 2 monosaccharides contributed most to the holistic quality inconsistency. CONCLUSION: Multi-index determination coupled with HCA was successful in evaluating the quality consistency of PVE30, and the significant difference in quantitative indices was not caused by the origin of PS. The cultivating basis should be confirmed for PVE30-based new drug development.


Assuntos
Medicamentos de Ervas Chinesas , Simplexvirus , Aminoácidos , Análise por Conglomerados , Polissacarídeos , Monossacarídeos , Cromatografia Líquida de Alta Pressão/métodos
11.
Org Biomol Chem ; 22(3): 529-537, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38105715

RESUMO

A unified approach for the construction of the bicyclo[3.3.1]nonane-2,4,9-trione core of polycyclic polyprenylated acylphloroglucinols (PPAPs) was reported. This approach involves a sequential process of two distinct Dieckmann condensation reactions from the linear precursor. Using this method, the divergent total synthesis of the natural products 7-epi-clusianone and 18-hydroxy-7-epi-clusianone and the formal synthesis of sampsonione P were achieved. Additionally, other key steps to realize this strategy include RuCl3-catalyzed oxidative olefin cleavage and Pd-catalyzed Tsuji-Trost decarboxylative allylation. The synthesis indicated that bicyclo[3.3.1]nonane-2,4,9-triones could also be constructed via 6-membered intermediates.

12.
Biochem Biophys Res Commun ; 695: 149401, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38154264

RESUMO

Human calcium sensing receptor (CaSR) senses calcium ion concentrations in vivo and is an important class of drug targets. Mutations in the receptor can lead to disorders of calcium homeostasis, including hypercalcemia and hypocalcemia. Here, 127 CaSR-targeted nanobodies were generated from camels, and four nanobodies with inhibitory function were further identified. Among these nanobodies, NB32 can effectively inhibit the mobilization of intracellular calcium ions (Ca2+i) and suppress the G12/13 and ERK1/2 signaling pathways downstream of CaSR. Moreover, it enhanced the inhibitory effect of the calcilytics as a negative allosteric modulator (NAM). We determined the structure of complex and found NB32 bound to LB2 (Ligand-binding 2) domain of CaSR to prevent the interaction of LB2 domains of two protomers to stabilize the inactive state of CaSR.


Assuntos
Hipercalcemia , Hipocalcemia , Anticorpos de Domínio Único , Humanos , Receptores de Detecção de Cálcio/metabolismo , Cálcio/metabolismo , Hipocalcemia/genética , Hipercalcemia/genética
13.
Heliyon ; 9(11): e21846, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027623

RESUMO

Objective: Non-alcoholic fatty liver disease (NAFLD) is the leading chronic liver disease. We have developed a Korean Red Ginseng Formula (KRGF) containing extracts of Korean Red Ginseng (KRG), Crataegus Fructus, and Cassiae Semen. In this study, our aims were to investigate the therapeutic potential and underpinning mechanisms of KRGF in NAFLD complicated by hyperlipidemia. Methods: In the in vitro assays, HepG2 cells were treated with KRGF for 24 h in the presence or absence of oleic acid (OA). To assess the in vivo protective effect of KRGF against NAFLD, rats fed a high-fat diet (HFD) were given intragastric administration for 30 days. Results: KRGF exerted protective effects against NAFLD by reducing lipid accumulation and steatosis in OA-stimulated HepG2 cells and HFD-fed rats. In HFD-fed rats, KRGF effectively decreased triglyceride levels in both blood and liver tissue and modulated the expression of key regulators of lipogenesis and fatty acid oxidation. KRGF downregulated the expression of lipogenesis factors, namely C/EBPα, FAS, SREBP-1c, and PPARγ, while upregulating the expression of PPARα and CPT-1, thus promoting fatty acid oxidation. Additionally, KRGF intensified the phosphorylation of AMPK and ACC, which are two enzymes that suppress fatty acid synthesis and promote fatty acid oxidation. KRGF effectively decreased total cholesterol (TC) levels in both blood and liver tissue, and it modulated the expression of major enzymes related to TC metabolism, namely apoB, ACAT2, CYP7A1, and HMGCR. Conclusion: In conclusion, KRGF mitigated NAFLD complicated by hyperlipidemia by modulating triglyceride and cholesterol metabolism, suggesting its potential for future development in the treatment of NAFLD.

14.
Microb Pathog ; 185: 106441, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944676

RESUMO

Increasing evidence indicated that the gut microbiota is a large and complex organic combination, which is closely related to the host health. Diarrhea is a disease with devastating effects on livestock that has been demonstrated to be associated with gut microbiota. Currently, studies on gut microbiota and diarrhea have involved multiple species, but changes in gut microbiota of Beigang pigs during diarrhea have not been characterized. Here, we described gut microbial changes of Beigang pigs during diarrhea. Results indicated that a total of 4423 OTUs were recognized in diarrheic and healthy Beigang pigs, and Firmicutes and Bacteroidota were the most dominant phyla regardless of health status. However, the major components of the gut microbiota changed between diarrheic and healthy Beigang pigs. Bacterial taxonomic analysis revealed that the relative abundances of 3 phyla (Synergistota, Actinobacteriota and Spirochaetota) and 30 genera increased significantly during diarrhea, whereas the relative abundances of 3 phyla (Patescibacteria, Bacteroidota and Fibrobacterota) and 41 genera decreased significantly. In conclusion, this study found significant changes in the gut microbiota of Beigang pigs during diarrhea. Meanwhile, this also lays the foundation for the prevention and treatment of diarrhea in Beigang pigs and the further discovery of more anti-diarrhea probiotics.


Assuntos
Microbioma Gastrointestinal , Animais , Suínos , Diarreia/veterinária , Diarreia/microbiologia , Bactérias/genética , Bacteroidetes , Firmicutes
15.
Biomed Pharmacother ; 168: 115643, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37839111

RESUMO

Vascular remodelling is an adaptive response to physiological and pathological stimuli that leads to structural and functional changes in the vascular intima, media, and adventitia. Pathological vascular remodelling is a hallmark feature of numerous vascular diseases, including atherosclerosis, hypertension, abdominal aortic aneurysm, pulmonary hypertension and preeclampsia. Autophagy is critical in maintaining cellular homeostasis, and its dysregulation has been implicated in the pathogenesis of various diseases, including vascular diseases. However, despite emerging evidence, the role of autophagy and its dual effects on vascular remodelling has garnered limited attention. Autophagy can exert protective and detrimental effects on the vascular intima, media and adventitia, thereby substantially influencing the course of vascular remodelling and its related vascular diseases. Currently, there has not been a review that thoroughly describes the regulation of autophagy in vascular remodelling and its impact on related diseases. Therefore, this review aimed to bridge this gap by focusing on the regulatory roles of autophagy in diseases related to vascular remodelling. This review also summarizes recent advancements in therapeutic agents targeting autophagy to regulate vascular remodelling. Additionally, this review offers an overview of recent breakthroughs in therapeutic agents targeting autophagy to regulate vascular remodelling. A deeper understanding of how autophagy orchestrates vascular remodelling can drive the development of targeted therapies for vascular diseases.


Assuntos
Aneurisma da Aorta Abdominal , Hipertensão Pulmonar , Hipertensão , Humanos , Remodelação Vascular , Hipertensão/patologia , Autofagia
16.
J Sep Sci ; 46(22): e2300445, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37736007

RESUMO

Mountain-cultivated ginseng is typically harvested after 10 years, while ginseng aged over 15 years is considered wild ginseng. This study aims to differentiate mountain-cultivated ginseng by age, as the fraudulent practice of selling low-aged cultivated ginseng disguised as high-aged one is damaging the market. In this study, LC-MS analyzed 98 ginseng samples, and multivariate statistical analysis identified patterns between samples to select influential components. Machine learning models were developed to identify ginseng samples of different ages. The untargeted metabolomic analysis clearly divided samples aged 4-20 years into three age groups. Twenty-two potential age-dependent biomarkers were discovered to differentiate the three sample groups. Three machine learning models were used to predict new samples, and the optimal model was selected. Some biomarkers could determine age phases according to the differentiation of mountain-cultivated ginseng samples. These biomarkers were thoroughly analyzed for variation trends. The machine learning models established using the screened biomarkers successfully predicted the age group of new samples.


Assuntos
Etarismo , Panax , Cromatografia Líquida de Alta Pressão/métodos , Panax/química , Espectrometria de Massas/métodos , Metabolômica/métodos , Biomarcadores
17.
Phytomedicine ; 119: 154978, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37549538

RESUMO

BACKGROUND: Microbiomes and their host plants are closely linked with each other; for example, the microbiome affects plant growth, fitness, nutrient uptake, stress tolerance and pathogen resistance, whereas the host plant supports the photosynthetically carbon-rich nutrition of the microbiome. The importance of the microbiome in plant‒soil ecosystems is unquestioned and has expanded to influence the medicinal application of some herbal plants via the gut microbiota. PURPOSE: Herbal plant-microbiome interactions may provide novel knowledge to enhance the robustness of herbal plant crop performance and medicinal applications, which requires a systematic review and preceding discussion. STUDY DESIGN AND METHODS: The interactions between Panax notoginseng and microorganisms (from soil to host) were reviewed from the literature. The terms "Panax notoginseng" and "microbiota" were used in combination with the keywords "microbiota/microbes", "bacteria/bacterium" or "fungi/fungus" or "endophyte", as well as our targeted bioactive phytochemicals, including saponins and ginsenosides. RESULT: Our study focuses on the famous medicinal herb Panax notoginseng F. H. Chen and proposes that the microbiota is a crucial participant not only in the cultivation of this herbal plant but also in its medicinal application. We also summarize and discuss how these plant‒microbe co-associations shape the assembly of plant-related microbiomes and produce bioactive phytochemicals, as well as influence beneficial herbal traits, such as herbal plant health and pharmacology. In addition, we also highlight future directions. CONCLUSION: The rhizosphere and endophytic microbiome of Panax notoginseng are indirectly or directly involved in plant health, biomass production, and the synthesis/biotransformation of plant secondary metabolites. Harnessing the microbiome to improve the quality of traditional Chinese medicine and improve the value of medicinal plants for human health is highly promising.


Assuntos
Microbioma Gastrointestinal , Panax notoginseng , Panax , Plantas Medicinais , Saponinas , Humanos , Panax notoginseng/química , Ecossistema , Saponinas/farmacologia , Plantas Medicinais/metabolismo , Compostos Fitoquímicos , Panax/química
18.
Chin Med ; 18(1): 90, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507786

RESUMO

BACKGROUND: Ventricular remodeling is the adaptive process in which the heart undergoes changes due to stress, leading to heart failure (HF). The progressive decline in cardiac function is considered to contribute to intestinal barrier impairment. LuQi Formula (LQF) is a traditional Chinese medicine preparation widely used in the treatment of ventricular remodeling and HF. However, the role of LQF in the impairment of intestinal barrier function induced by ventricular remodeling remains unclear. MATERIALS AND METHODS: Ventricular remodeling was induced in rats by permanently ligating the left anterior descending branch coronary artery, and cardiac function indexes were assessed using echocardiography. Heart and colon tissue morphology were observed by hematoxylin-eosin, Masson's trichrome and Alcian Blue Periodic acid Schiff staining. Myocardial cell apoptosis was detected using TUNEL and immunohistochemistry. Circulatory levels of brain natriuretic peptide (BNP), intestinal permeability markers endotoxin, D-lactate and zonulin, as well as inflammatory cytokines tumor necrosis factor alpha and interleukin-1 beta were measured by Enzyme-linked immunosorbent assay. Expression levels of tight junction (TJ) proteins and hypoxia-inducible factor-1 alpha (HIF-1α) in colon tissue were detected by immunofluorescence, immunohistochemistry and western blotting. Cardiac function indexes and intestinal permeability markers of patients with HF were analyzed before and after 2-4 months of LQF treatment. RESULTS: LQF protected cardiac function and alleviated myocardial fibrosis and apoptosis in rats with ventricular remodeling. LQF protected the intestinal barrier integrity in ventricular remodeling rats, including maintaining colonic tissue morphology, preserving the number of goblet cells and normal expression of TJ proteins. Furthermore, LQF upregulated the expression of HIF-1α protein in colon tissue. Intervention with a HIF-1α inhibitor weakened the protective effect of LQF on intestinal barrier integrity. Moreover, a reduction of HIF-1α aggravated ventricular remodeling, which could be alleviated by LQF. Correspondingly, the circulating levels of intestinal permeability markers and BNP in HF patients were significantly decreased, and cardiac function markedly improved following LQF treatment. CONCLUSIONS: We demonstrated that LQF effectively protected cardiac function by preserving intestinal barrier integrity caused by ventricular remodeling, at least partially through upregulating HIF-1α expression.

19.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446120

RESUMO

Autophagy plays a complex impact role in tumor initiation and development. It serves as a double-edged sword by supporting cell survival in certain situations while also triggering autophagic cell death in specific cellular contexts. Understanding the intricate functions and mechanisms of autophagy in tumors is crucial for guiding clinical approaches to cancer treatment. Recent studies highlight its significance in various aspects of cancer biology. Autophagy enables cancer cells to adapt to and survive unfavorable conditions by recycling cellular components. However, excessive or prolonged autophagy can lead to the self-destruction of cancer cells via a process known as autophagic cell death. Unraveling the molecular mechanisms underlying autophagy regulation in cancer is crucial for the development of targeted therapeutic interventions. In this review, we seek to present a comprehensive summary of current knowledge regarding autophagy, its impact on cancer cell survival and death, and the molecular mechanisms involved in the modulation of autophagy for cancer therapy.


Assuntos
Autofagia , Neoplasias , Humanos , Morte Celular Autofágica , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Sobrevivência Celular , Transformação Celular Neoplásica , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
20.
Int J Mol Sci ; 24(13)2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37446182

RESUMO

Inflammatory bowel disease (IBD) is a complex multifactorial chronic inflammatory disease, that includes Crohn's disease (CD) and ulcerative colitis (UC), having progressively increasing global incidence. Disturbed intestinal flora has been highlighted as an important feature of IBD and offers promising strategies for IBD remedies. A brief overview of the variations occurring in intestinal flora during IBD is presented, and the role of the gut microbiota in intestinal barrier maintenance, immune and metabolic regulation, and the absorption and supply of nutrients is reviewed. More importantly, we review drug research on gut microbiota in the past ten years, including research on clinical and natural drugs, as well as adjuvant therapies, such as Fecal Microbiota Transplantation and probiotic supplements. We also summarize the interventions and mechanisms of these drugs on gut microbiota.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Microbiota , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doença de Crohn/tratamento farmacológico , Intestinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA