Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cytotherapy ; 25(5): 490-501, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36781360

RESUMO

B-cell maturation antigen (BCMA) is a clinically validated target for multiple myeloma. T-cell engineered with chimeric antigen receptors (CARs) directed against BCMA have demonstrated robust therapeutic activity in clinical trials, but toxicities remain a significant concern for a subset of patients, supporting continued investigation of other engineered T-cell platforms that may offer equal efficacy with an improved toxicity profile. The authors recently described a BCMA-specific, T-cell-centric synthetic antigen receptor, the T-cell antigen coupler (TAC) receptor, that can be used to engineer T-cell with robust anti-myeloma activity. Here the authors describe the creation of a fully humanized BCMA-specific TAC receptor. Single-chain variable fragments (scFvs) were developed from BCMA-specific F(ab)s that were identified in a fully human phage display library. Twenty-four configurations of the F(ab)s were evaluated in a medium-throughput screening using primary T-cell, and a single F(ab), TRAC 3625, emerged as the most robust following in vitro and in vivo evaluation. An optimized BCMA-specific TAC receptor was developed through iterations of the BCMA-TAC design that evaluated a next-generation TAC scaffold sequence, different domains connecting the TAC to the 3625 scFv and different orientations of the TRAC 3625 heavy and light variable regions.


Assuntos
Mieloma Múltiplo , Linfócitos T , Humanos , Mieloma Múltiplo/terapia , Antígeno de Maturação de Linfócitos B , Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T
2.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35165181

RESUMO

Staphylococcus aureus is a foremost bacterial pathogen responsible for a vast array of human diseases. Staphylococcal superantigens (SAgs) constitute a family of exotoxins from S. aureus that bind directly to major histocompatibility complex (MHC) class II and T cell receptors to drive extensive T cell activation and cytokine release. Although these toxins have been implicated in serious disease, including toxic shock syndrome, the specific pathological mechanisms remain unclear. Herein, we aimed to elucidate how SAgs contribute to pathogenesis during bloodstream infections and utilized transgenic mice encoding human MHC class II to render mice susceptible to SAg activity. We demonstrate that SAgs contribute to S. aureus bacteremia by massively increasing bacterial burden in the liver, and this was mediated by CD4+ T cells that produced interferon gamma (IFN-γ) to high levels in a SAg-dependent manner. Bacterial burdens were reduced by blocking IFN-γ, phenocopying SAg-deletion mutant strains, and inhibiting a proinflammatory response. Infection kinetics and flow cytometry analyses suggested that this was a macrophage-driven mechanism, which was confirmed through macrophage-depletion experiments. Experiments in human cells demonstrated that excessive IFN-γ allowed S. aureus to replicate efficiently within macrophages. This indicates that SAgs promote bacterial survival by manipulating the immune response to inhibit effective clearing of S. aureus Altogether, this work implicates SAg toxins as critical therapeutic targets for preventing persistent or severe S. aureus disease.


Assuntos
Interferon gama/imunologia , Infecções Estafilocócicas/imunologia , Superantígenos/imunologia , Animais , Bacteriemia , Enterotoxinas/imunologia , Exotoxinas/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Interferon gama/metabolismo , Ativação Linfocitária/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/imunologia , Staphylococcus aureus/patogenicidade , Linfócitos T/imunologia , Fatores de Virulência/imunologia
3.
J Infect Dis ; 224(12 Suppl 2): S56-S63, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34396410

RESUMO

While infection by Neisseria gonorrhoeae is often asymptomatic in women, undetected infections can ascend into the upper genital tract to elicit an inflammatory response that manifests as pelvic inflammatory disease, with the outcomes depending on the intensity and duration of inflammation and whether it is localized to the endometrial, fallopian tube, ovarian, and/or other tissues. This review examines the contribution of N. gonorrhoeae versus other potential causes of pelvic inflammatory disease by considering new insights gained through molecular, immunological, and microbiome-based analyses, and the current epidemiological burden of infection, with an aim to highlighting key areas for future study.


Assuntos
Infecções por Chlamydia/epidemiologia , Gonorreia/epidemiologia , Neisseria gonorrhoeae/isolamento & purificação , Doença Inflamatória Pélvica/epidemiologia , Infecções por Chlamydia/complicações , Endometrite/microbiologia , Endométrio/microbiologia , Endométrio/patologia , Tubas Uterinas/microbiologia , Feminino , Gonorreia/diagnóstico , Humanos , Doença Inflamatória Pélvica/diagnóstico , Doença Inflamatória Pélvica/microbiologia
4.
PLoS One ; 13(1): e0191672, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29360873

RESUMO

HIV synergy with sexually transmitted co-infections is well-documented in the clinic. Co-infection with Neisseria gonorrhoeae in particular, increases genital HIV shedding and mucosal transmission. However, no animal model of co-infection currently exists to directly explore this relationship or to bridge the gap in understanding between clinical and in vitro studies of this interaction. This study aims to test the feasibility of using a humanized mouse model to overcome this barrier. Combining recent in vivo modelling advancements in both HIV and gonococcal research, we developed a co-infection model by engrafting immunodeficient NSG mice with human CD34+ hematopoietic stem cells to generate humanized mice that permit both systemic HIV infection and genital N. gonorrhoeae infection. Systemic plasma and vaginal lavage titres of HIV were measured in order to assess the impact of gonococcal challenge on viral plasma titres and genital shedding. Engrafted mice showed human CD45+ leukocyte repopulation in blood and mucosal tissues. Systemic HIV challenge resulted in 104-105 copies/mL of viral RNA in blood by week 4 post-infection, as well as vaginal shedding of virus. Subsequent gonococcal challenge resulted in unchanged plasma HIV levels but higher viral shedding in the genital tract, which reflects published clinical observations. Thus, human CD34+ stem cell-transplanted NSG mice represent an experimentally tractable animal model in which to study HIV shedding during gonococcal co-infection, allowing dissection of molecular and immunological interactions between these pathogens, and providing a platform to assess future therapeutics aimed at reducing HIV transmission.


Assuntos
Antígenos CD34/imunologia , Gonorreia/complicações , Infecções por HIV/complicações , HIV/fisiologia , Neisseria gonorrhoeae/isolamento & purificação , Vagina/virologia , Carga Viral , Eliminação de Partículas Virais , Animais , Feminino , Infecções por HIV/virologia , Humanos , Camundongos
5.
J Infect Dis ; 215(5): 824-829, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28035011

RESUMO

During toxic shock syndrome (TSS), bacterial superantigens trigger a polyclonal T -cell response leading to a potentially catastrophic "cytokine storm". Whether innate-like invariant natural killer T (iNKT) cells, with remarkable immunomodulatory properties, participate in TSS is unclear. Using genetic and cell depletion approaches, we generated iNKT cell-deficient, superantigen-sensitive HLA-DR4-transgenic (DR4tg) mice, which were compared with their iNKT-sufficient counterparts for responsiveness to staphylococcal enterotoxin B (SEB). Both approaches indicate that iNKT cells are pathogenic in TSS. Importantly, treating DR4tg mice with a TH2-polarizing glycolipid agonist of iNKT cells reduced SEB-inflicted morbidity/mortality. Therefore, iNKT cells may constitute an attractive therapeutic target in superantigen-mediated illnesses.


Assuntos
Antígeno HLA-DR4/genética , Células T Matadoras Naturais/imunologia , Choque Séptico/imunologia , Choque Séptico/prevenção & controle , Animais , Modelos Animais de Doenças , Enterotoxinas/imunologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Superantígenos/sangue , Superantígenos/imunologia
6.
J Bacteriol ; 198(19): 2732-42, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27457715

RESUMO

UNLABELLED: Toxic shock syndrome toxin 1 (TSST-1) is a Staphylococcus aureus superantigen that has been implicated in both menstrual and nonmenstrual toxic shock syndrome (TSS). Despite the important role of TSST-1 in severe human disease, a comprehensive understanding of staphylococcal regulatory factors that control TSST-1 expression remains incomplete. The S. aureus exotoxin expression (Sae) operon contains a well-characterized two-component system that regulates a number of important exotoxins in S. aureus, although regulation of TSST-1 by the Sae system has not been investigated. We generated a defined deletion mutant of the Sae histidine kinase sensor (saeS) in the prototypic menstrual TSS strain S. aureus MN8. Mutation of saeS resulted in a complete loss of TSST-1 expression. Using both luciferase reporter experiments and quantitative real-time PCR, we demonstrate that the Sae system is an important transcriptional activator of TSST-1 expression. Recombinant SaeR was able to bind directly to the tst promoter to a region containing two SaeR consensus binding sites. Although the stand-alone SarA transcriptional regulator has been shown to be both a positive and a negative regulator of TSST-1, deletion of sarA in S. aureus MN8 resulted in a dramatic overexpression of TSST-1. As expected, mutation of agr also reduced TSST-1 expression, but this phenotype appeared to be independent of Sae. A double mutation of saeS and sarA resulted in the loss of TSST-1 expression. This work indicates that the Sae system is a dominant and direct transcriptional activator that is required for expression of TSST-1. IMPORTANCE: The TSST-1 superantigen is an exotoxin, produced by some strains of S. aureus, that has a clear role in both menstrual and nonmenstrual TSS. Although the well-characterized agr quorum sensing system is a known positive regulator of TSST-1, the molecular mechanisms that directly control TSST-1 expression are only partially understood. Our studies demonstrate that the Sae two-component regulatory system is a positive transcriptional regulator that binds directly to the TSST-1 promoter, and furthermore, our data suggest that Sae is required for expression of TSST-1. This work highlights how major regulatory circuits can converge to fine-tune exotoxin expression and suggests that the Sae regulatory system may be an important target for antivirulence strategies.


Assuntos
Toxinas Bacterianas/metabolismo , Enterotoxinas/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas Quinases/metabolismo , Staphylococcus aureus/metabolismo , Superantígenos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Enterotoxinas/genética , Regiões Promotoras Genéticas , Proteínas Quinases/genética , Staphylococcus aureus/genética , Superantígenos/genética
7.
Methods Mol Biol ; 1396: 95-107, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26676040

RESUMO

Streptococcus pyogenes is a globally prominent human-specific pathogen that is responsible for an enormous burden of infectious disease. Despite intensive experimental efforts to understand the molecular correlates that contribute to invasive infections, there has been less focus on S. pyogenes carriage and local infection of the nasopharynx. This chapter describes an acute nasopharyngeal infection model in mice that is utilized in our laboratory to study the role of superantigen toxins in the biology of S. pyogenes. We also describe a method to detect superantigen-specific T cell activation in vivo.


Assuntos
Nasofaringite/imunologia , Nasofaringite/microbiologia , Streptococcus pyogenes/imunologia , Superantígenos/imunologia , Animais , Carga Bacteriana , Modelos Animais de Doenças , Linfonodos/citologia , Linfonodos/imunologia , Ativação Linfocitária , Camundongos , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Especificidade do Receptor de Antígeno de Linfócitos T/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
8.
Toxins (Basel) ; 7(5): 1821-36, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-26008236

RESUMO

Superantigens (SAgs) are potent microbial toxins that function to activate large numbers of T cells in a T cell receptor (TCR) Vß-specific manner, resulting in excessive immune system activation. Staphylococcus aureus possesses a large repertoire of distinct SAgs, and in the context of host-pathogen interactions, staphylococcal SAg research has focused primarily on the role of these toxins in severe and invasive diseases. However, the contribution of SAgs to colonization by S. aureus remains unclear. We developed a two-week nasal colonization model using SAg-sensitive transgenic mice expressing HLA-DR4, and evaluated the role of SAgs using two well-studied stains of S. aureus. S. aureus Newman produces relatively low levels of staphylococcal enterotoxin A (SEA), and although we did not detect significant TCR-Vß specific changes during wild-type S. aureus Newman colonization, S. aureus Newman Δsea established transiently higher bacterial loads in the nose. S. aureus COL produces relatively high levels of staphylococcal enterotoxin B (SEB), and colonization with wild-type S. aureus COL resulted in clear Vß8-specific T cell skewing responses. S. aureus COL Δseb established consistently higher bacterial loads in the nose. These data suggest that staphylococcal SAgs may be involved in regulating bacterial densities during nasal colonization.


Assuntos
Antígenos de Bactérias/imunologia , Enterotoxinas/imunologia , Nariz/microbiologia , Staphylococcus aureus , Superantígenos/imunologia , Animais , Carga Bacteriana , Feminino , Antígeno HLA-DR4 , Fígado/microbiologia , Pulmão/microbiologia , Linfonodos/imunologia , Masculino , Camundongos Transgênicos , Linfócitos T/imunologia
9.
FASEB J ; 29(2): 711-23, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25416549

RESUMO

Staphylococcus aureus is a major component of the skin microbiota and causes a large number of serious infections. S. aureus first interacts with epidermal keratinocytes to breach the epidermal barrier through mechanisms not fully understood. By use of primary keratinocytes from mice with epidermis-restricted Ilk gene inactivation and control integrin-linked kinase (ILK)-expressing littermates, we investigated the role of ILK in epidermal S. aureus invasion. Heat-killed, but not live, bacteria were internalized to Rab5- and Rab7-positive phagosomes, and incubation with keratinocyte growth factor increased their uptake 2.5-fold. ILK-deficient mouse keratinocytes internalized bacteria 2- to 4-fold less efficiently than normal cells. The reduced invasion by live S. aureus of ILK-deficient cells was restored in the presence of exogenous, constitutively active Rac1. Thus, Rac1 functions downstream from ILK during invasion. Further, invasion by S. aureus of Rac1-deficient cells was 2.5-fold lower than in normal cells. Paradoxically, staphylococcal cutaneous penetration of mouse skin explants with ILK-deficient epidermis was 35-fold higher than that of normal skin, indicating defects in epidermal barrier function in the absence of ILK. Thus, we identified an ILK-Rac1 pathway essential for bacterial invasion of keratinocytes, and established ILK as a key contributor to prevent invasive staphylococcal cutaneous infection.


Assuntos
Queratinócitos/microbiologia , Neuropeptídeos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Staphylococcus aureus/patogenicidade , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Separação Celular , Epiderme/metabolismo , Fator 7 de Crescimento de Fibroblastos/metabolismo , Citometria de Fluxo , Gentamicinas/química , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Camundongos , Microbiota , Microscopia de Fluorescência , Fagocitose , Proteínas Recombinantes/metabolismo , Pele/microbiologia , Infecções Estafilocócicas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
10.
Infect Immun ; 82(9): 3588-98, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24914221

RESUMO

Staphylococcus aureus is a versatile bacterial pathogen that produces T cell-activating toxins known as superantigens (SAgs). Although excessive immune activation by SAgs can induce a dysregulated cytokine storm as a component of what is known as toxic shock syndrome (TSS), the contribution of SAgs to the staphylococcal infection process is not well defined. Here, we evaluated the role of the bacterial superantigen staphylococcal enterotoxin A (SEA) in a bacteremia model using humanized transgenic mice expressing SAg-responsive HLA-DR4 molecules. Infection with S. aureus Newman induced SEA-dependent Vß skewing of T cells and enhanced bacterial survival in the liver compared with infection by sea knockout strain. SEA-induced gamma interferon, interleukin-12, and chemokine responses resulted in increased infiltration of CD11b(+) Ly6G(+) neutrophils into the liver, promoting the formation of abscesses that contained large numbers of viable staphylococci. Hepatic abscesses occurred significantly more frequently in S. aureus Newman-infected livers than in livers infected with the Newman sea knockout strain, promoting the survival of S. aureus in vivo. This represents a novel mechanism during infection whereby S. aureus utilizes SAgs to form a specialized niche and manipulate the immune system.


Assuntos
Abscesso/imunologia , Neutrófilos/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Superantígenos/imunologia , Abscesso/microbiologia , Animais , Antígenos Ly/imunologia , Antígeno CD11b/imunologia , Enterotoxinas/imunologia , Antígeno HLA-DR4/imunologia , Interferon gama/imunologia , Interleucina-12/imunologia , Fígado/imunologia , Fígado/microbiologia , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Neutrófilos/microbiologia , Infecções Estafilocócicas/microbiologia , Linfócitos T/imunologia , Linfócitos T/microbiologia
11.
PLoS Pathog ; 10(5): e1004155, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24875883

RESUMO

Establishing the genetic determinants of niche adaptation by microbial pathogens to specific hosts is important for the management and control of infectious disease. Streptococcus pyogenes is a globally prominent human-specific bacterial pathogen that secretes superantigens (SAgs) as 'trademark' virulence factors. SAgs function to force the activation of T lymphocytes through direct binding to lateral surfaces of T cell receptors and class II major histocompatibility complex (MHC-II) molecules. S. pyogenes invariably encodes multiple SAgs, often within putative mobile genetic elements, and although SAgs are documented virulence factors for diseases such as scarlet fever and the streptococcal toxic shock syndrome (STSS), how these exotoxins contribute to the fitness and evolution of S. pyogenes is unknown. Here we show that acute infection in the nasopharynx is dependent upon both bacterial SAgs and host MHC-II molecules. S. pyogenes was rapidly cleared from the nasal cavity of wild-type C57BL/6 (B6) mice, whereas infection was enhanced up to ∼10,000-fold in B6 mice that express human MHC-II. This phenotype required the SpeA superantigen, and vaccination with an MHC -II binding mutant toxoid of SpeA dramatically inhibited infection. Our findings indicate that streptococcal SAgs are critical for the establishment of nasopharyngeal infection, thus providing an explanation as to why S. pyogenes produces these potent toxins. This work also highlights that SAg redundancy exists to avoid host anti-SAg humoral immune responses and to potentially overcome host MHC-II polymorphisms.


Assuntos
Proteínas de Bactérias/metabolismo , Exotoxinas/metabolismo , Antígenos de Histocompatibilidade Classe II/imunologia , Proteínas de Membrana/metabolismo , Infecções Estreptocócicas/imunologia , Streptococcus pyogenes/imunologia , Superantígenos/imunologia , Doença Aguda , Animais , Proteínas de Bactérias/imunologia , Exotoxinas/imunologia , Humanos , Proteínas de Membrana/imunologia , Camundongos Endogâmicos C57BL , Nasofaringe/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Infecções Estreptocócicas/prevenção & controle , Streptococcus pyogenes/genética , Superantígenos/genética , Linfócitos T/imunologia
12.
BMC Res Notes ; 7: 233, 2014 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-24725742

RESUMO

BACKGROUND: The lack of a reliable scoring system that predicts the development of septic shock and death precludes comparison of disease and/or treatment outcomes in animal models of sepsis. We developed a murine sepsis score (MSS) that evaluates seven clinical variables, and sought to assess its validity and reliability in an experimental mouse model of polymicrobial sepsis. METHODS: Stool collected from the cecum of C57BL/6 (B6) mice was dissolved in 0.9% normal saline (NS) and filtered, resulting in a fecal solution (FS) which was injected intraperitoneally into B6 mice. Disease severity was monitored by MSS during the experimental timeline. Blood and tissue samples were harvested for the evaluation of inflammatory changes after sepsis induction. The correlation between pro-inflammatory markers and MSS was assessed by the Spearman rank correlation coefficient. RESULTS: Mice injected with FS at a concentration of 90 mg/mL developed polymicrobial sepsis with a 75% mortality rate at 24 hours. The MSS was highly predictive of sepsis progression and mortality, with excellent discriminatory power, high internal consistency (Cronbach alpha coefficient = 0.92), and excellent inter-rater reliability (intra-class coefficient = 0.96). An MSS of 3 had a specificity of 100% for predicting onset of septic shock and death within 24 hours. Hepatic dysfunction and systemic pro-inflammatory responses were confirmed by biochemical and cytokine analyses where the latter correlated well with the MSS. Significant bacterial dissemination was noted in multiple organs. Furthermore, the liver, spleen, and intestine demonstrated histopathological evidence of injury. CONCLUSIONS: The MSS reliably predicts disease progression and mortality in an animal model of polymicrobial sepsis. More importantly, it may be used to assess and compare outcomes among various experimental models of sepsis, and serve as an ethically acceptable alternative to death as an endpoint.


Assuntos
Intestinos/patologia , Fígado/patologia , Sepse/patologia , Baço/patologia , Animais , Translocação Bacteriana , Citocinas/biossíntese , Modelos Animais de Doenças , Intestinos/microbiologia , Fígado/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sepse/microbiologia , Sepse/mortalidade , Índice de Gravidade de Doença , Baço/microbiologia , Análise de Sobrevida
13.
Artigo em Inglês | MEDLINE | ID: mdl-22919643

RESUMO

Superantigens (SAgs) are a family of potent immunostimulatory exotoxins known to be produced by only a few bacterial pathogens, including Staphylococcus aureus. More than 20 distinct SAgs have been characterized from different S. aureus strains and at least 80% of clinical strains harbor at least one SAg gene, although most strains encode many. SAgs have been classically associated with food poisoning and toxic shock syndrome (TSS), for which these toxins are the causative agent. TSS is a potentially fatal disease whereby SAg-mediated activation of T cells results in overproduction of cytokines and results in systemic inflammation and shock. Numerous studies have also shown a possible role for SAgs in other diseases such as Kawasaki disease (KD), atopic dermatitis (AD), and chronic rhinosinusitis (CRS). There is also now a rich understanding of the mechanisms of action of SAgs, as well as their structures and function. However, we have yet to discover what purpose SAgs play in the life cycle of S. aureus, and why such a wide array of these toxins exists. This review will focus on recent developments within the SAg field in terms of the molecular biology of these toxins and their role in both colonization and disease.


Assuntos
Staphylococcus aureus/fisiologia , Staphylococcus aureus/patogenicidade , Superantígenos/metabolismo , Fatores de Virulência/metabolismo , Toxinas Bacterianas/metabolismo , Citocinas/metabolismo , Humanos , Choque Séptico , Staphylococcus aureus/imunologia , Linfócitos T/imunologia
14.
Proc Natl Acad Sci U S A ; 108(8): 3360-5, 2011 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-21282650

RESUMO

The production of the staphylococcal exotoxin toxic shock syndrome toxin-1 (TSST-1) by Staphylococcus aureus has been associated with essentially all cases of menstruation-associated toxic shock syndrome (TSS). In this work, we show that the human vaginal isolate Lactobacillus reuteri RC-14 produces small signaling molecules that are able to interfere with the staphylococcal quorum-sensing system agr, a key regulator of virulence genes, and repress the expression of TSST-1 in S. aureus MN8, a prototype of menstrual TSS S. aureus strains. Quantitative real-time PCR data showed that transcription from the Ptst promoter, as well as the P2 and P3 promoters of the agr system from all four agr subgroups of S. aureus, was strongly inhibited in response to growth with L. reuteri RC-14 cultural supernatant. Alterations in the transcriptional levels of two other virulence-associated regulators sarA and saeRS were also observed, indicating a potential overall influence of L. reuteri RC-14 signals on the production of virulence factors in S. aureus. S. aureus promoter-lux reporter strains were used to screen biochemically fractionated L. reuteri RC-14 supernatant, and the cyclic dipeptides cyclo(L-Phe-L-Pro) and cyclo(L-Tyr-L-Pro) were identified as the signaling molecules. The results from this work contribute to a better understanding of interspecies cell-to-cell communication between Lactobacillus and Staphylococcus, and provide a unique mechanism by which endogenous or probiotic strains may attenuate virulence factor production by bacterial pathogens.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Toxinas Bacterianas/antagonistas & inibidores , Dipeptídeos/farmacologia , Enterotoxinas/antagonistas & inibidores , Limosilactobacillus reuteri/metabolismo , Choque Séptico/microbiologia , Staphylococcus aureus/patogenicidade , Transativadores/antagonistas & inibidores , Vagina/microbiologia , Proteínas de Bactérias/genética , Comunicação Celular , Dipeptídeos/biossíntese , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Menstruação , Probióticos , Percepção de Quorum , Superantígenos , Transativadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA