Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Chemosphere ; 344: 140371, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37820874

RESUMO

Unsaturated polyester resins (UPR) are composed of prepolymers and styrene diluents, while the former are produced by co-polycondensation between diol, unsaturated diacid and saturated diacid. In this work, bio-based UPR prepolymers were synthesized from bio-based oxalic acid, itaconic acid, and ethylene glycol, which were then diluted with bio-based isosorbide methacrylate (MI). Meanwhile, the phenylphosphonate were introduced into the molecular chains of prepolymers to achieve intrinsic flame retardancy of bio-based UPR. The potential of the reactive MI diluents as substitutes of volatile styrene, was also assessed through the volatility test, curing kinetics and gel contents analysis. For UPR materials with styrene diluents, the UPR materials can achieve UL-94 V0 level and the 28% of limiting oxygen index (LOI) with 2.63 wt% of phosphorus contents. By contrast, the UPR materials with MI diluents can reach UL-94 V0 level with only 2.14 wt% of phosphorus contents. As the phosphorus contents were further increased to 2.63 wt%, UPR materials can achieve highest 29%, while the peak of heat release rate (PHRR) and total heat release (THR) were decreased by 68.01% and 48.62%, respectively. The Flame Retardancy Index (FRI) was also used to comprehensively evaluate the flame retardant performance of UPR composites. Compared with neat UPR, the composites with MI diluents and phosphorus containing structures increased from 1.00 to 6.46. The mechanism for improved flame retardancy was analyzed from gaseous and condensed phase. Additionally, the tensile strengths of bio-based UPR materials with styrene and MI diluents were studied. This work provides an effective method to prepared high-performance and fully bio-based UPR materials with improved flame retardant properties and safety application of reactive diluents.


Assuntos
Retardadores de Chama , Poliésteres , Excipientes , Isossorbida , Ácido Oxálico , Fósforo , Estirenos
2.
Chemosphere ; 311(Pt 1): 137058, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36419266

RESUMO

As one of the most widely used polymers, the intrinsic brittleness and high flammability bring about a stringent requirement for the practical application of epoxy resins (EPs). It is difficult to toughen EP without compromising its mechanical and thermal properties for many conventional toughening agents. Here, a novel furan-derived bio-based polyphosphazene (PFMP) with a flexible backbone and rigid side groups was prepared by the nucleophilic substitution reaction between polydichlorophosphazene (PDCP) and furfuralcohol. The resultant PFMP was incorporated into EP to realize exceptional toughening, strengthening, and flame retardant function. By adding 15% of PFMP, the limit oxygen index value is from 25% (EP) to 33% (EP/PFMP-15) and reaches the UL-94 V-0 rating. According to the cone calorimeter results, EP/PFMP-15 exhibits exceedingly reduced peak heat release rate (pHRR) (50.2%) and total heat release (THR) (49.6%). The significantly increased fire performance index (FPI) and decreased fire growth rate index (FIGRA) of EP/PFMP-15 demonstrate an improvement in its flame retardancy. The catalytic carbonization effect (condensed phase) and radical quenching effect (gas phase) of PFMP account for the greatly improved flame retardancy. Moreover, the impact and tensile tests indicate that PFMP can ameliorate the mechanical performance of EP with a maximum increase of impact strength (111.8%) and elongation at break (35.2%) for EP/PFMP-5. With 15% PFMP added, the tensile strength of EP/PFMP-15 increases by 40.4%. This work demonstrates that PFMP is expected to overcome shortcomings (flammability, toughness, and strength) of EP and spread its applied fields.


Assuntos
Resinas Epóxi , Retardadores de Chama , Biomassa , Compostos Organofosforados
3.
J Colloid Interface Sci ; 625: 903-914, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35777097

RESUMO

Aiming at enhancing the toughness and fire safety of bismaleimide (BMI), BMI monomers containing phosphate and phosphonate structure (BDTP and BDTDP) were designed and prepared. With incorporation of 5 wt% BDTP and BDTDP, the peak value of heat release rate (PHRR) of BMI/BDTP-5 and BMI/BDTDP-5 decrease by 59.4% and 52.4%, respectively. The total smoke production (TSP) of BMI/BDTP-5 and BMI/BDTDP-5 are of 8.3% and 13.1% reduction, respectively. Meanwhile, BMI/BDTP-5 and BMI/BDTDP-5 possess UL-94V-0 rating, which indicates that BMI is endowed with better flame retardant performance by modification of designed BMI monomers. Besides, the impact strength of BMI/BDTP-5 and BMI/BDTDP-5 increase by 146.3% and 90.2%, respectively. The comprehensive performance of BMI/BDTP-5 is better than that of BMI/BDTDP-5. And the effect of phenyl phosphate structure in BDTP and phenyl phosphonate structure in BDTDP on BMI performance is explored.


Assuntos
Retardadores de Chama , Organofosfonatos , Índice de Massa Corporal , Temperatura Alta , Fosfatos
4.
Chemosphere ; 297: 134134, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35276116

RESUMO

The toxic smoke produced by the combustion of flexible polyurethane foam (FPUF) may not only caused casualties, but also polluted the environment. Here, double metal hydroxide derived from ZIF-67 (MOF-LDH) modified Ti3C2TX (Ti3C2TX@MOF-LDH) was innovatively designed to solve the serious smoke and fire hazards of FPUF. The FPUF nanocomposite containing 6 wt% Ti3C2Tx@MOF-LDH achieved a 16.1% reduction in total smoke production (TSP) along with 22.2% reduction in peak smoke production rate (PSPR), which greatly reduced the hazard of smoke. At the same time, toxic gases, such as carbon monoxide (CO), carbon dioxide (CO2), and aromatic compounds, showed the same reduction pattern. In addition, the heat release of FPUF nanomaterials was also suppressed. In particular, the FPUF/Ti3C2Tx@MOF-LDH 3.0 achieved 110.4% and 76.1% increase in compressive strength and tensile strength, respectively, confirming the effective mechanical enhancement. Therefore, this work provided a new reference for the preparation of high-performance FPUF nanocomposites with low smoke, low fire hazard and excellent mechanical properties.


Assuntos
Caramujo Conus , Incêndios , Animais , Monóxido de Carbono , Gases , Fumaça
5.
J Colloid Interface Sci ; 608(Pt 1): 142-157, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34624762

RESUMO

Owing to the lack of research on structure-activity relationship and interaction mechanism between unsaturated polyester resins (UPR) and flame retardants, it has been a big challenge to prepare high-efficiency flame retardants for UPR in industry. In this research, to explore structural rules of high-efficiency flame retardants, several polymeric flame retardants were synthesized with varied main-chain, side-chain, phosphorus valence states and contents of flame retardant elements. The thermal stabilities of flame retardants and UPR composites were firstly assessed. It has been found the interaction existed between flame retardants and UPR, through transesterification reaction and ß scission pathway in polyester and polystyrene chains. With only 15 wt% of PCH3-S, UPR composites can reach V0 rating in UL-94. The PHRR and THR values can be maximumly decreased by 71.66 % and 77.67 %, with 20 wt% of PB-S. It has been found flame retardants with sulfone group and + 3 valence state of phosphorus in molecular backbone can release SO2 and phosphorus containing compounds in gaseous phase, which diluted fuel fragments and catalyzed H⋅ and HO⋅ radical removal. The mechanism for improved flame retardancy of UPR composites with various polymeric flame retardants were discussed in detail. Some general rules for highly efficient flame retardant UPR can be summarized: First, gaseous phase flame retardant mechanism plays the major role in improvement of flame retardant performance of UPR composites; Second, the combination of + 3 valence state of phosphorus structures, higher phosphorus contents and sulfone groups effectively improves the flame retardant efficiency of flame retardants.


Assuntos
Retardadores de Chama , Fósforo , Poliésteres , Polímeros
6.
J Colloid Interface Sci ; 606(Pt 1): 768-783, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34419816

RESUMO

Herein, three different phosphorus-containing compounds (methyl phosphoryl dichloride, phenyl phosphoryl dichloride and phenyl dichlorophosphate) were reacted with 2-aminobenzothiazole respectively, and a series of synergistic flame retardants with phosphorus, nitrogen and sulfur elements were synthesized, named MPBT, PPBT and POBT respectively. Then, they were added to prepare flame-retardant flexible polyurethane foam (FPUF). Through the analysis of thermal stability, pyrolysis, heat release and smoke release behavior, the influence of different phosphorus-containing structures on the flame-retardant performance of FPUF was studied, and their flame-retardant mechanism was explored in detail. Among them, MPBT had the highest flame retardant efficiency with the same addition amount (10 wt%). The limiting oxygen index (LOI) value of PU/10.0% MPBT reached 22.5 %, and it successfully passed the vertical burning test. Subsequently, the addition amount of MPBT was increased and the best comprehensive performance of flame-retardant FPUF was explored. The results showed that the LOI value of PU/15.0% MPBT was increased to 23.5%. As for PU/15.0% MPBT, the peak heat release rate (PHRR) was 453 KW/m2, which was reduced by 46.64 %; and the flame retardancy index (FRI) value was also increased to 6.88. At the same time, the mechanical properties of flame-retardant FPUF were studied. The tensile strength of PU/15.0% MPBT reached 170 KPa, and the permanent deformation of FPUF/10% MPBT was only 4 %, showing its excellent resilience. The above results show that this phosphorus-containing element hybrid synergistic flame retardant (MPBT) has a very good application prospect in the field of flame-retardant polymer materials.

7.
J Colloid Interface Sci ; 603: 844-855, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34237602

RESUMO

A sandwich-like melamine/phytic acid/silicon nitride hybrid (SW-Si3N4) sheets were prepared by supramolecular wrapping as the hybrid flame retardants for thermoplastic polyurethane (TPU). The introduction of Si3N4 sheets as a template could not only induce the generation of two-dimensional phytic/melamine (PAMA) capping layers, but also produce the synergistic flame-retardant effect on TPU composites. Cone test showed that heat release rate (HRR), smoke production rate (SPR) and total smoke production (TSP) values of TPU were decreased obviously by adding SW-Si3N4. TG-IR test indicated the dramatic inhibition of aromatic compound, hydrocarbons, CO and HCN release. Besides, the thermal conductivity of composites was obviously improved by adding SW-Si3N4. This work may provide better reference for developing multi-functional TPU composites for diverse application.


Assuntos
Retardadores de Chama , Poliuretanos , Temperatura Alta , Condutividade Térmica
8.
Nano Lett ; 21(10): 4447-4453, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33973796

RESUMO

The poly(ethylene oxide) solid polymer electrolyte (PEO SPE) has recently received much attention, however, the organic components in the SPE are still flammable. In this paper, we find that the high efficiency halogen-free aluminum (Al) diethyl hypophosphite flame retardant (ADP) is effective in reducing the flammability of PEO SPE. The SEI layer containing Al and phosphorus (P) inhibits the growth of lithium dendrite and enhances the cycle life of the battery. The capacity of a LiFePO4/SPE/Li battery containing ADP is still 123.2 mAh g-1 at 1.0 C and the Coulombic efficiency is as high as 99.95% after 1000 cycles (60 °C). At the same time, Al, P-rich SEI can inhibit the growth of lithium dendrite and the cycle stability of the battery is further enhanced.

9.
J Colloid Interface Sci ; 582(Pt B): 619-630, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32911410

RESUMO

Polydopamine-coated polystyrene (PS@PDA) nanospheres which are prepared by self-polymerizing of dopamine on the surfaces of polystyrene (PS) nanospheres show excellent Cu2+ adsorption capacity. The Cu2+ adsorption capacity of PS@PDA can even reach 178 mg/g in about 6 min, which is superior to the other adsorption materials reported in literatures. Through linear fitting, it can be seen that Cu2+ is chemisorption covered by multilayers on the surface of PS@PDA, with less affect by temperature. The PS@PDA nanosphere with good adsorption capacity is first applied as the Cu2+ adsorbent and then recycled to preparation of PS nanocomposite with enhanced flame retardancy, great smoke and toxic gases suppression properties. To overcome the drawbacks of evaluation methods reported before, a new evaluation system of analytic hierarchy process is first applied to comprehensively analyze fire safety of samples. The average value of smoke production rate of PS@PDA absorbed 5 mg/L Cu2+ (PS 2) reduces by about 10%, and the average and total yield of carbon monoxide of PS 2 decrease by 15.7% and 18.1% compared with that of neat PS, respectively. PS 2 with the highest score of 86.75 has the best comprehensive fire safety performance among all samples. This work provides a guideline for green flame-retardant chemistry.

10.
J Hazard Mater ; 399: 123015, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32937706

RESUMO

The black phosphorus (BP) can be compounded with other two-dimensional materials with flame retardant effect to achieve better synergistic effect. Herein, the multifunctional BP-RGO nanohybrids was fabricated by solvothermal strategy to improve the dispersion state of BP in epoxy resin (EP) and enhance its fire safety performance, where the reduced graphene oxide (RGO) was attached on the surface of BP via PC and POC bonds. With the incorporation of 2.0 wt% BP-RGO into EP matrix, 54.4 % reduction in total heat release (THR) was achieved along with 55.2 % decrease in peak heat release rate (PHRR) compared with neat EP. As a similar trend, the toxic CO and aromatic compounds were significantly inhibited, and the maximum decrease (28.5 %) in total smoke production (TSP) was achieved, indicating the enhanced fire safety performance of EP nanocomposites. These positive results is attributed to the synergistic effect of physical nano-barrier, free radicals trapping and char formation between BP and RGO components. Meanwhile, the EP/BP-RGO2.0 nanocomposites exhibited satisfying air stability even after being immersed in water for a month. This work enriches the strategies for enhancing the air stability of BP, and confirms its potential for smoke toxicity and fire hazard suppression in polymer nanocomposites.

11.
J Hazard Mater ; 383: 121069, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31522066

RESUMO

As a rising star of two-dimensional material, black phosphorus (BP) has attracted tremendous attention in applications of photovoltaics, transistors and batteries due to its unique characteristics. Inspiring, we developed a simple strategy to fabricate BP-MCNTs as highly promising inorganic phosphorus-based flame retardant. After incorporation 2 wt% BP-MCNTs11(the mass ratio of BP:MCNTs=1:1) nanohybrid, the peak of heat release rate and total heat release of EP nanocomposites reduced by 55.81% and 41.17% at a phosphorus content of only 1 wt%, and the comprehensive index FGI for evaluating the flame retardant of materials decreased from 17.35 to 6.97. In addition, the typical flammable volatile are suppressed significantly, and the first stage of carbon monoxide release is disappeared. The improvement of fire safety and inhibition of smoke toxicity could be attributed to the the synergistic effects of nano-barrier, catalytic charring and radicals trapping of BP-MCNTs nanohybrid. More importantly, BP hybrid with MCNTs and wrapped in EP matrix which formed effective isolation protection against the ambient degradation. Raman spectra and SEM results confirmed that EP/BP-MCNTs performed enhanced ambient stability than EP/BP-BS nanocomposites after three months. This study demonstrates its great potential for preparation of air-stable BP based nanocomposites with enhanced fire safety.

12.
ACS Appl Mater Interfaces ; 11(44): 41736-41749, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31644260

RESUMO

Developing advanced performance epoxy (EP) resin with low flammability and light smoke has been an increasing focus of its research. Especially, it is crucial to reduce the emission of smoke and toxic gases generated during the burning of EP, so that it meets the green and safe industrial requirement. Therefore, a 3D NiCo-LDH@PZS hollow dodecahedral structure was designed and synthesized by using the ZIF-67 as both the precursor and an in situ sacrificial template and the amino group-containing polyphosphazene (PZS) as interfacial compatibilizer and flame retardant cooperative. The release behaviors of heat, smoke, and poisonous gases were carefully investigated. More precisely, the EP/NiCo-LDH@PZS4.0 is endowed with a decrease of 30.9% and 11.2% of the peak heat release rate and the total heat release, respectively. The emissions of smoke and poisonous gases including nitric oxides, aromatic compounds, carbonyl compounds, oxycarbide, and hydrocarbons are much less as well. Especially, the maximum release concentrations of HCN of EP/NiCo-LDH4.0 are reduced by 87.8%. With regard to styrene, methane, and ethane, the maximum release concentrations of EP/NiCo-LDH@PZS4.0 are reduced by 85.9%, 90.6%, and 93.1%, respectively. The total yield of CO and CO2 and the consumption of O2 of EP/NiCo-LDH@PZS4.0 are also reduced by 64.5%, 32.4%, and 33.6%. The fractional effective dose, an index of toxicity smoke, of EP/NiCo-LDH@PZS4.0 is reduced by 20.4%. The DMA tests were performed to study the mechanical properties of EP composites, and the storage modulus and Tg of EP composites are increased with the incorporation of NiCo-LDH@PZS. The possible mechanism of flame retardant was proposed based on the analysis of the condensed and gas phases of EP composites.

13.
ACS Appl Mater Interfaces ; 11(32): 29436-29447, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31339293

RESUMO

It is still a big challenge to prepare polymer/layered double hydroxide (LDH) composites with high performance, due to the strong agglomeration tendency of LDHs in the polymeric matrix. In this study, to avoid the agglomerated situation, the orientated LDH nanosheets were vertically grown on a ramie fabric surface, which was then embedded in unsaturated polyester resin (UPR) through the combination method of hand lay-up and vacuum bag. Due to the increased contact area and the restricted interfacial slip in the in-plane direction, the hierarchically LDH-functionalized ramie fabrics (denoted as Textile@LDH) significantly enhanced the mechanical performance of UPR composites. Then, the phosphorus- and silicon-containing coating (PSi) was used for the further improvement of the interfacial adhesion. The tensile strength of UPR/Textile@LDH@PSi composites increased by 121.67%, compared to that of neat UPR. The reinforcement mechanism was studied through analyzing the surface nano/microstructure and wetting properties of the raw and modified textiles, as well as the interfacial interaction between the ramie fabrics and UPR. Meanwhile, the thermal stability, thermal conductivity, and flame-retardant performance of ramie-reinforced UPR composites were improved. Particularly, as-prepared hierarchical Textile@LDH@PSi inhibited the heat release during the combustion process of fabric-reinforced UPR composites, and the peak heat release rate and total heat release values decreased by 36.56 and 47.57%, respectively, compared with the neat UPR/Textile composites. The suppression mechanism was further explored by analyzing the microstructure and chemical compositions of char residues. This research paved a feasible solution to improve the poor dispersion of LDHs in polymers and prepared the high-performance UPR composites with multifunctional applications.

15.
J Nat Med ; 70(3): 634-44, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27106512

RESUMO

Amentoflavone is a bioflavonoid found in a variety of traditional Chinese medicines such as Gingko and Selaginella tamariscina. It has been reported that amentoflavone has anti-inflammatory, antioxidant, antiviral and anticancer effects. However, the effect of amentoflavone on osteogenic differentiation of human mesenchymal stem cells (hMSCs) has not been studied. In this study, we aim to explore the effect of amentoflavone on the proliferation and osteogenic differentiation of hMSCs. The results showed that amentoflavone significantly enhanced the proliferation, alkaline phosphatase (ALP) activity and mineralization in hMSCs. Western blot analysis revealed that the expression of runt-related transcription factor 2 and osterix proteins was upregulated in amentoflavone-treated hMSCs. Furthermore, we investigated the possible signaling pathways responsible for osteogenic differentiation of hMSCs by amentoflavone. We found that amentoflavone significantly increased the levels of phosphorylated JNK and p-p38. The amentoflavone-induced increases of ALP and mineralization were significantly diminished when the JNK and p38 MAPK pathways were blocked by selected inhibitors (SP600125, SB203580) in hMSCs. Furthermore, in vivo evidence indicated that amentoflavone protected against the dexamethasone-induced inhibition of osteoblast differentiation in tg(sp7:egfp) zebrafish larvae. Thus, we showed for the first time that amentoflavone improves the osteogenesis of hMSCs through the JNK and p38 MAPK pathway. Amentoflavone may be beneficial in treating bone-related disorders.


Assuntos
Biflavonoides/uso terapêutico , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Biflavonoides/administração & dosagem , Diferenciação Celular , Proliferação de Células , Humanos , Transdução de Sinais
16.
Mol Cell Biochem ; 407(1-2): 41-50, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25994505

RESUMO

Apigenin is a plant-derived flavonoid and has been reported to prevent bone loss in ovariectomized mice, but the role of apigenin on osteogenic differentiation of human mesenchymal stem cells (hMSCs) has not been reported. In the present study, the effect of apigenin on osteogenic differentiation of hMSCs was explored. Our results showed that apigenin treatment significantly increased alkaline phosphatase (ALP) activity and mineralization in hMSCs. RT-PCR revealed that apigenin markedly up-regulated the mRNA expression of osteopontin (OPN) and the transcription factors runt-related transcription factor 2 (Runx2). The expression of Runx2 and osterix (OSX) proteins were also increased in hMSCs differentiating into osteoblasts after treatment with apigenin. Furthermore, we investigated the signaling pathways responsible for osteogenic differentiation of apigenin in hMSCs. We found that apigenin treatment significantly increased the levels of p-JNK, p-p38 in hMSCs and addition of the inhibitors of JNK (SP600125) or p38 MAPK (SB203580) eliminated the stimulating effects of apigenin. In addition, addition of SP600125 or SB203580 also blocked apigenin-induced ALP activity, OPN, Runx2, and OSX expression and meanwhile inhibited bone nodule formation. Taken together, these findings suggest apigenin promotes the osteogenesis of hMSCs through activation of JNK and p38 MAPK signal pathways which leads to Runx2 and OSX expressions to induce the formation of bone nodule.


Assuntos
Apigenina/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Fosfatase Alcalina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/citologia , Osteopontina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA