Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Opt Express ; 31(6): 10732-10743, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37157614

RESUMO

We studied a high-speed Ge/Si electro-absorption optical modulator (EAM) evanescently coupled with a Si waveguide of a lateral p-n junction for a high-bandwidth optical interconnect over a wide range of temperatures from 25 °C to 85 °C. We demonstrated 56 Gbps high-speed operation at temperatures up to 85 °C. From the photoluminescence spectra, we confirmed that the bandgap energy dependence on temperature is relatively small, which is consistent with the shift in the operation wavelengths with increasing temperature for a Ge/Si EAM. We also demonstrated that the same device operates as a high-speed and high-efficiency Ge photodetector with the Franz-Keldysh (F-K) and avalanche-multiplication effects. These results demonstrate that the Ge/Si stacked structure is promising for both high-performance optical modulators and photodetectors integrated on Si platforms.

2.
PeerJ ; 10: e13170, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35321412

RESUMO

Summary: Bulked segregant analysis implemented in MutMap and QTL-seq is a powerful and efficient method to identify loci contributing to important phenotypic traits. However, the previous pipelines were not user-friendly to install and run. Here, we describe new pipelines for MutMap and QTL-seq. These updated pipelines are approximately 5-8 times faster than the previous pipeline, are easier for novice users to use, and can be easily installed through bioconda with all dependencies. Availability: The new pipelines of MutMap and QTL-seq are written in Python and can be installed via bioconda. The source code and manuals are available online (MutMap: https://github.com/YuSugihara/MutMap, QTL-seq: https://github.com/YuSugihara/QTL-seq).


Assuntos
Locos de Características Quantitativas , Software , Locos de Características Quantitativas/genética , Mapeamento Cromossômico/métodos , Fenótipo
3.
Sci Rep ; 12(1): 218, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997038

RESUMO

We constructed recombinant inbred lines (RILs) between a Japanese and a Taiwanese landrace of foxtail millet and employed next-generation sequencing, such as flexible ddRAD-seq and Nanopore sequencing to identify the candidate genes involved in the crop evolution of foxtail millet. We successfully constructed a linkage map using flexible ddRAD-seq with parents and RILs and detected major QTLs for each of three traits: leaf sheath colors, spikelet-tipped bristles (stb), and days to heading (DTH). (1) For leaf sheath colors, we identified the C gene on chromosome IV. (2) We identified a homeobox (HOX14) gene for stb on chromosome II, which shows homology with HvVrs1 in barley. (3) Finally, we identified a QTL with a large effect on DTH on chromosome II. A parent of the RILs from Taiwan and Yugu1 had a Harbinger-like TE in intron 3 of this gene. We also investigated the geographical distribution of the TE insertion type of this gene and found that the insertion type is distributed in the northern part of East Asia and intensively in South and Southeast Asia, suggesting that loss/reduction of function of this gene plays an important role in spreading into the northern part of East Asia and subtropical and tropical zones.


Assuntos
Cromossomos de Plantas/genética , Setaria (Planta)/genética , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Homeodomínio/genética , Hordeum/genética , Endogamia , Japão , Fenótipo , Melhoramento Vegetal , Proteínas de Plantas/genética , Locos de Características Quantitativas , Setaria (Planta)/crescimento & desenvolvimento , Taiwan
4.
Opt Express ; 28(26): 39227-39240, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33379477

RESUMO

Multimode based polarization independent (PI) wavelength division multiplexing (WDM) devices are proposed and experimentally demonstrated. The key concept is to utilize two different order modes for the orthogonal polarizations, ith-order mode for TE and jth-order mode for TM (i ≠ j) polarization respectively to extend the flexibility for designing devices. PI coupler composed of a multimode directional coupler and mode converters is introduced as a basic device. Then, we apply PI coupler to Mach Zehnder interferometer (MZI) and Bragg grating bandpass filters. PI MZI is achieved by optimizing the combination of two phase shifters in the interferometer arms. PI bandpass uses 3dB-PI coupler and polarization rotate Bragg gratings that induce mode coupling between the polarizations. Each device showed good matching in the spectrum between TE and TM polarizations in term of operation wavelength. The proposed concept can be a promising approach to realize PI WDM functions without introducing polarization diversity scheme in which a polarization beam splitter, two devices designed for each polarization and a polarization beam combiner are required.

5.
Proc Natl Acad Sci U S A ; 117(50): 31987-31992, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33268496

RESUMO

White Guinea yam (Dioscorea rotundata) is an important staple tuber crop in West Africa. However, its origin remains unclear. In this study, we resequenced 336 accessions of white Guinea yam and compared them with the sequences of wild Dioscorea species using an improved reference genome sequence of D. rotundata In contrast to a previous study suggesting that D. rotundata originated from a subgroup of Dioscorea praehensilis, our results suggest a hybrid origin of white Guinea yam from crosses between the wild rainforest species D. praehensilis and the savannah-adapted species Dioscorea abyssinica We identified a greater genomic contribution from D. abyssinica in the sex chromosome of Guinea yam and extensive introgression around the SWEETIE gene. Our findings point to a complex domestication scenario for Guinea yam and highlight the importance of wild species as gene donors for improving this crop through molecular breeding.


Assuntos
Produtos Agrícolas/genética , Dioscorea/genética , Genoma de Planta , Hibridização Genética , Cromossomos de Plantas/genética , DNA de Plantas/genética , Domesticação , Guiné , Filogenia , Melhoramento Vegetal/métodos , Tubérculos , Polimorfismo de Nucleotídeo Único , Cromossomos Sexuais/genética
6.
Opt Express ; 28(22): 33123-33134, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114981

RESUMO

We studied a high-speed electro-absorption optical modulator (EAM) of a Ge layer evanescently coupled with a Si waveguide (Si WG) of a lateral pn junction for high-bandwidth optical interconnect. By decreasing the widths of selectively grown Ge layers below 1 µm, we demonstrated a high-speed modulation of 56 Gbps non-return-to-zero (NRZ) and 56 Gbaud pulse amplitude modulation 4 (PAM4) EAM operation in the C-band wavelengths, in contrast to the L-band wavelengths operations in previous studies on EAMs of pure Ge on Si. From the photoluminescence and Raman analyses, we confirmed an increase in the direct bandgap energy for such a submicron Ge/Si stack structure. The operation wavelength for the Ge/Si stack structure of a Ge/Si EAM was optimized by decreasing the device width below 1-µm and setting the post-growth anneal condition, which would contribute to relaxing the tensile-strain of a Ge layer on a Si WG and broadening the optical bandwidths for Franz-Keldysh (FK) effect with SiGe alloy formation.

7.
Opt Express ; 27(14): 19749-19757, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31503730

RESUMO

The broadband vertical optical inputs/outputs (I/Os) of silicon (Si) photonics pose significant challenges in terms of practical applications. Herein, we worked on a vertical optical I/O using a 45° curved micro-mirror. To verify the optical coupling characteristics, a simulation was conducted. As a result, efficient broadband optical coupling with various types of single-mode optical fibers was obtained owing to its lens function. An integration technology of the curved mirror was also developed based on the semiconductor manufacturing process. A curved micro-mirror with a spherical surface was obtained, and the vertical optical I/O with its lens function was demonstrated experimentally.

8.
BMC Genomics ; 18(1): 897, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29166857

RESUMO

BACKGROUND: Downy mildew, caused by the oomycete pathogen Sclerospora graminicola, is an economically important disease of Gramineae crops including foxtail millet (Setaria italica). Plants infected with S. graminicola are generally stunted and often undergo a transformation of flower organs into leaves (phyllody or witches' broom), resulting in serious yield loss. To establish the molecular basis of downy mildew disease in foxtail millet, we carried out whole-genome sequencing and an RNA-seq analysis of S. graminicola. RESULTS: Sequence reads were generated from S. graminicola using an Illumina sequencing platform and assembled de novo into a draft genome sequence comprising approximately 360 Mbp. Of this sequence, 73% comprised repetitive elements, and a total of 16,736 genes were predicted from the RNA-seq data. The predicted genes included those encoding effector-like proteins with high sequence similarity to those previously identified in other oomycete pathogens. Genes encoding jacalin-like lectin-domain-containing secreted proteins were enriched in S. graminicola compared to other oomycetes. Of a total of 1220 genes encoding putative secreted proteins, 91 significantly changed their expression levels during the infection of plant tissues compared to the sporangia and zoospore stages of the S. graminicola lifecycle. CONCLUSIONS: We established the draft genome sequence of a downy mildew pathogen that infects Gramineae plants. Based on this sequence and our transcriptome analysis, we generated a catalog of in planta-induced candidate effector genes, providing a solid foundation from which to identify the effectors causing phyllody.


Assuntos
Genoma , Oomicetos/genética , Doenças das Plantas , Setaria (Planta) , Tamanho do Genoma , Heterozigoto , Oomicetos/metabolismo , Oomicetos/patogenicidade , Lectinas de Plantas/genética , Proteínas/genética , Proteínas/metabolismo , Sequências Repetitivas de Ácido Nucleico
9.
BMC Biol ; 15(1): 86, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28927400

RESUMO

BACKGROUND: Root and tuber crops are a major food source in tropical Africa. Among these crops are several species in the monocotyledonous genus Dioscorea collectively known as yam, a staple tuber crop that contributes enormously to the subsistence and socio-cultural lives of millions of people, principally in West and Central Africa. Yam cultivation is constrained by several factors, and yam can be considered a neglected "orphan" crop that would benefit from crop improvement efforts. However, the lack of genetic and genomic tools has impeded the improvement of this staple crop. RESULTS: To accelerate marker-assisted breeding of yam, we performed genome analysis of white Guinea yam (Dioscorea rotundata) and assembled a 594-Mb genome, 76.4% of which was distributed among 21 linkage groups. In total, we predicted 26,198 genes. Phylogenetic analyses with 2381 conserved genes revealed that Dioscorea is a unique lineage of monocotyledons distinct from the Poales (rice), Arecales (palm), and Zingiberales (banana). The entire Dioscorea genus is characterized by the occurrence of separate male and female plants (dioecy), a feature that has limited efficient yam breeding. To infer the genetics of sex determination, we performed whole-genome resequencing of bulked segregants (quantitative trait locus sequencing [QTL-seq]) in F1 progeny segregating for male and female plants and identified a genomic region associated with female heterogametic (male = ZZ, female = ZW) sex determination. We further delineated the W locus and used it to develop a molecular marker for sex identification of Guinea yam plants at the seedling stage. CONCLUSIONS: Guinea yam belongs to a unique and highly differentiated clade of monocotyledons. The genome analyses and sex-linked marker development performed in this study should greatly accelerate marker-assisted breeding of Guinea yam. In addition, our QTL-seq approach can be utilized in genetic studies of other outcrossing crops and organisms with highly heterozygous genomes. Genomic analysis of orphan crops such as yam promotes efforts to improve food security and the sustainability of tropical agriculture.


Assuntos
Dioscorea/genética , Genoma de Planta , Biomarcadores/metabolismo , Produtos Agrícolas/genética , Melhoramento Vegetal , Locos de Características Quantitativas , Sequenciamento Completo do Genoma
10.
Opt Express ; 25(14): 16672-16680, 2017 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-28789168

RESUMO

Silicon wire waveguide TE0/TE1 mode conversion Bragg grating can be used in wavelength add/drop and polarization rotation Bragg diffraction. The device can implement many filtering functionalities required in wavelength division multiplexing optical communications. In this paper we describe TE0/TE1 mode conversion Bragg grating device incorporating resonant cavity section to obtain narrow transmission wavelength peak. Theoretical calculation agreed with measured wavelength response.

11.
Opt Lett ; 42(11): 2142-2144, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28569865

RESUMO

In this Letter, we demonstrate, to the best of our knowledge, the first experimental results of sampled Bragg grating with polarization rotator function. Silicon waveguide is used. Multiple polarization-independent reflection wavelength peaks were obtained.

12.
Planta ; 246(1): 61-74, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28357539

RESUMO

MAIN CONCLUSION: The screening of rice mutants with improved cellulose to glucose saccharification efficiency (SE) identifies reduced xylan and/or ferulic acid, and a qualitative change of lignin to impact SE. To ensure the availability of sustainable energy, considerable effort is underway to utilize lignocellulosic plant biomass as feedstock for the production of biofuels. However, the high cost of degrading plant cell wall components to fermentable sugars (saccharification) has been problematic. One way to overcome this barrier is to develop plants possessing cell walls that are amenable to saccharification. In this study, we aimed to identify new molecular factors that influence saccharification efficiency (SE) in rice. By screening 22 rice mutants, we identified two lines, 122 and 108, with improved SE. Reduced xylan and ferulic acid within the cell wall of line 122 were probable reasons of improved SE. Line 108 showed reduced levels of thioglycolic-released lignin; however, the amount of Klason lignin was comparable to the wild-type, indicating that structural changes had occurred in the 108 lignin polymer which resulted in improved SE. Positional cloning revealed that the genes responsible for improved SE in 122 and 108 were rice CONSTITUTIVE PHOTOMORPHOGENIC 1 (OsCOP1) and GOLD HULL AND INTERNODE 1 (GH1), respectively, which have not been previously reported to influence SE. The screening of mutants for improved SE is an efficient approach to identify novel genes that affect SE, which is relevant in the development of crops as biofuel sources.


Assuntos
Oryza/metabolismo , Proteínas de Plantas/metabolismo , Biomassa , Celulose/metabolismo , Ácidos Cumáricos/metabolismo , Lignina/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
13.
Breed Sci ; 67(5): 518-527, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29398946

RESUMO

Heading date is an important event to ensure successful seed production. Although foxtail millet (Setaria italica (L.) P.Beauv.) is an important foodstuff in semiarid regions around the world, the genetic basis determining heading date is unclear. To identify genomic regions regulating days to heading (DTH), we conducted a QTL-seq analysis based on combining whole-genome re-sequencing and bulked-segregant analysis of an F2 population derived from crosses between the middle-heading cultivar Shinanotsubuhime and the early-heading cultivar Yuikogane. Under field conditions, transgressive segregation of DTH toward late heading was observed in the F2 population. We made three types of bulk samples: Y-bulk (early-heading), S-bulk (late-heading) and L-bulk (extremely late-heading). By genome-wide comparison of SNPs in the Y-bulk vs. the S-bulk and the Y-bulk vs. the L-bulk, we identified two QTLs associated with DTH. The first QTL, qDTH2, was detected on chromosome 2 from the Y-bulk and S-bulk comparison. The second QTL, qDTH7, was detected on chromosome 7 from the Y-bulk and L-bulk comparison. The Shinanotsubuhime allele for qDTH2 caused late heading in the F2 population, whereas the Yuikogane allele for qDTH7 led to extremely late heading. These results suggest that allelic differences in both qDTH2 and qDTH7 determine regional adaptability in S. italica.

14.
Plant Cell Physiol ; 58(2): 375-384, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28013279

RESUMO

A transposition of a heat-activated retrotransposon named ONSEN required compromise of a small RNA-mediated epigenetic regulation that includes RNA-directed DNA methylation (RdDM) machinery after heat treatment. In the current study, we analyzed the transcriptional and transpositional activation of ONSEN to better understand the underlying molecular mechanism involved in the maintenance and/or induction of transposon activation in plant tissue culture. We found the transposition of heat-primed ONSEN during tissue culture independently of RdDM mutation. The heat activation of ONSEN transcripts was not significantly up-regulated in tissue culture compared with that in heat-stressed seedlings, indicating that the transposition of ONSEN was regulated independently of the transcript level. RdDM-related genes were up-regulated by heat stress in both tissue culture and seedlings. The level of DNA methylation of ONSEN did not show any change in tissue culture, and the amount of ONSEN-derived small RNAs was not affected by heat stress. The results indicated that the transposition of ONSEN was regulated by an alternative mechanism in addition to the RdDM-mediated epigenetic regulation in tissue culture. We applied the tissue culture-induced transposition of ONSEN to Japanese radish, an important breeding species of the family Brassicaceae. Several new insertions were detected in a regenerated plant derived from heat-stressed tissues and its self-fertilized progeny, revealing the possibility of molecular breeding without genetic modification.


Assuntos
Retroelementos/genética , Brassicaceae/genética , Brassicaceae/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Temperatura Alta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Técnicas de Cultura de Tecidos
16.
Sci Rep ; 6: 23181, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26976262

RESUMO

Transposable elements (TEs), or transposons, play an important role in adaptation. TE insertion can affect host gene function and provides a mechanism for rapid increases in genetic diversity, particularly because many TEs respond to environmental stress. In the current study, we show that the transposition of a heat-activated retrotransposon, ONSEN, generated a mutation in an abscisic acid (ABA) responsive gene, resulting in an ABA-insensitive phenotype in Arabidopsis, suggesting stress tolerance. Our results provide direct evidence that a transposon activated by environmental stress could alter the genome in a potentially positive manner. Furthermore, the ABA-insensitive phenotype was inherited when the transcription was disrupted by an ONSEN insertion, whereas ABA sensitivity was recovered when the effects of ONSEN were masked by IBM2. These results suggest that epigenetic mechanisms in host plants typically buffered the effect of a new insertion, but could selectively "turn on" TEs when stressed.


Assuntos
Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Retroelementos , Adaptação Fisiológica , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Metilação de DNA , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Cloreto de Sódio , Estresse Fisiológico
17.
Opt Express ; 23(15): 19698-704, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26367627

RESUMO

We report polarization independent Bragg grating wavelength filter with high diffraction efficiency. A rib waveguide polarization rotator and antisymmetric grating structure for fundamental to first order diffraction are used to generate the polarization rotation Bragg diffraction. The diffraction efficiencies and peak wavelengths become the same for two orthogonal input polarizations. Strong diffraction is attained easily. The concept was verified by simulation and experiment. Polarization independent band-pass filter consisting of polarization beam splitter and polarization rotation Bragg diffraction was experimentally demonstrated.

19.
Plant Cell Physiol ; 56(3): 428-41, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25416290

RESUMO

The female flower of hop (Humulus lupulus var. lupulus) is an essential ingredient that gives characteristic aroma, bitterness and durability/stability to beer. However, the molecular genetic basis for identifying DNA markers in hop for breeding and to study its domestication has been poorly established. Here, we provide draft genomes for two hop cultivars [cv. Saazer (SZ) and cv. Shinshu Wase (SW)] and a Japanese wild hop [H. lupulus var. cordifolius; also known as Karahanasou (KR)]. Sequencing and de novo assembly of genomic DNA from heterozygous SW plants generated scaffolds with a total size of 2.05 Gb, corresponding to approximately 80% of the estimated genome size of hop (2.57 Gb). The scaffolds contained 41,228 putative protein-encoding genes. The genome sequences for SZ and KR were constructed by aligning their short sequence reads to the SW reference genome and then replacing the nucleotides at single nucleotide polymorphism (SNP) sites. De novo RNA sequencing (RNA-Seq) analysis of SW revealed the developmental regulation of genes involved in specialized metabolic processes that impact taste and flavor in beer. Application of a novel bioinformatics tool, phylogenetic comparative RNA-Seq (PCP-Seq), which is based on read depth of genomic DNAs and RNAs, enabled the identification of genes related to the biosynthesis of aromas and flavors that are enriched in SW compared to KR. Our results not only suggest the significance of historical human selection process for enhancing aroma and bitterness biosyntheses in hop cultivars, but also serve as crucial information for breeding varieties with high quality and yield.


Assuntos
Cerveja , Genoma de Planta , Humulus/genética , Dieta , Flores/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Tamanho do Genoma , Humulus/metabolismo , Organelas/genética , Filogenia , Característica Quantitativa Herdável , Sequências Repetitivas de Ácido Nucleico/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Análise de Sequência de RNA
20.
Opt Express ; 22(25): 31371-8, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25607085

RESUMO

We report polarization independent Bragg grating wavelength filter using polarization rotation. A non-vertical waveguide sidewall and antisymmetric grating structure can be used to generate the polarization rotation of the fundamental modes. The diffraction efficiencies and peaks becomes the same for two orthogonal input polarizations. The concept was verified by simulation and experiment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA