Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Pediatr Neonatol ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38281860

RESUMO

BACKGROUND: Approximately 10-20 % of individuals develop a recrudescent or persistent fever after intravenous immunoglobulin (IVIG) infusion for the initial treatment of Kawasaki disease. The aim of this study was to evaluate the efficacy and safety of the initial IVIG treatment of Kawasaki disease based on duration of infusion. METHODS: This retrospective, single-center study included 53 patients with Kawasaki disease who were initially treated with 2 g/kg of IVIG by means of a single infusion from June 2018 to August 2019. We classified patients into two groups based on the duration of the infusion: the 12-h group and the 24-h group. We compared the treatment response of the primary IVIG and its adverse events using the Mann-Whitney U test and Fisher's exact or Chi-square tests. RESULTS: There were no significant differences in the response to initial IVIG treatment between the two groups. The duration from treatment onset to defervescence was shorter in the 12-h group than the 24-h group (7 h vs. 12 h, respectively, p = 0.07); however, this was not significant. There were no significant between-group differences regarding adverse events. CONCLUSION: We concluded that the initial 12-h IVIG treatment was comparable to the 24-h treatment in terms of efficacy and safety. This will enable physicians to feel confident about pursuing a shorter course of treatment with similar results as conventional treatment and decide on administering additional therapy to their patients.

2.
Eur J Med Genet ; 66(12): 104882, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944854

RESUMO

High-throughput sequencing has identified vast numbers of variants in genetic disorders. However, the significance of variants at the exon-intron junction remains controversial. Even though most cases of Mowat-Wilson syndrome (MOWS) are caused by heterozygous loss-of-function variants in ZEB2, the pathogenicity of variants at exon-intron junction is often indeterminable. We identified four intronic variants in 5/173 patients with clinical suspicion for MOWS, and evaluated their pathogenicity by in vitro analyses. The minigene analysis showed that c.73+2T>G caused most of the transcripts skipping exon 2, while c.916+6T>G led to partial skipping of exon 7. No splicing abnormalities were detected in both c.917-21T>C and c.3067+6A>T. The minigene analysis reproduced the splicing observed in the blood cells of the patient with c.73+2T>G. The degree of the exon skipping was concordant with the severity of MOWS; while the patient with c.73+2T>G was typical MOWS, the patient with c.916+6T>G showed milder phenotype which has been seldom reported. Our results demonstrate that mRNA splicing assays using the minigenes are valuable for determining the clinical significance of intronic variants in patients with not only MOWS but also other genetic diseases with splicing aberrations and may explain atypical or milder cases, such as the current patient.


Assuntos
Splicing de RNA , Humanos , Íntrons , Virulência , Éxons
3.
Keio J Med ; 70(2): 44-50, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-33853975

RESUMO

SARS-CoV-2 whole-genome sequencing of samples from COVID-19 patients is useful for informing infection control. Datasets of these genomes assembled from multiple hospitals can give critical clues to regional or national trends in infection. Herein, we report a lineage summary based on data collected from hospitals located in the Tokyo metropolitan area. We performed SARS-CoV-2 whole-genome sequencing of specimens from 198 patients with COVID-19 at 13 collaborating hospitals located in the Kanto region. Phylogenetic analysis and fingerprinting of the nucleotide substitutions were performed to differentiate and classify the viral lineages. More than 90% of the identified strains belonged to Clade 20B, which has been prevalent in European countries since March 2020. Only two lineages (B.1.1.284 and B.1.1.214) were found to be predominant in Japan. However, one sample from a COVID-19 patient admitted to a hospital in the Kanto region in November 2020 belonged to the B.1.346 lineage of Clade 20C, which has been prevalent in the western United States since November 2020. The patient had no history of overseas travel or any known contact with anyone who had travelled abroad. Consequently, the Clade 20C strain belonging to the B.1.346 lineage appeared likely to have been imported from the western United States to Japan across the strict quarantine barrier. B.1.1.284 and B.1.1.214 lineages were found to be predominant in the Kanto region, but a single case of the B.1.346 lineage of clade 20C, probably imported from the western United States, was also identified. These results illustrate that a decentralized network of hospitals offers significant advantages as a highly responsive system for monitoring regional molecular epidemiologic trends.


Assuntos
COVID-19/virologia , Genoma Viral , SARS-CoV-2/genética , Sequenciamento Completo do Genoma/métodos , Humanos , Filogenia
4.
Am J Med Genet A ; 185(6): 1776-1786, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33750005

RESUMO

R3HDM1 (R3H domain containing 1) is an uncharacterized RNA-binding protein that is highly expressed in the human cerebral cortex. We report the first case of a 12-year-old Japanese male with haploinsufficiency of R3HDM1. He presented with mild intellectual disability (ID) and developmental delay. He had a pericentric inversion of 46,XY,inv(2)(p16.1q21.3)dn with breakpoints in intron 19 of R3HDM1 (2q21.3) and the intergenic region (2p16.1). The R3HDM1 levels in his lymphoblastoid cells were reduced to approximately half that of the healthy controls. However, the expression of MIR128-1, in intron 18 of R3HDM1, was not affected via the pericentric inversion. Knockdown of R3HDM1 in mouse embryonic hippocampal neurons suppressed dendritic growth and branching. Notably, the Database of Genomic Variants reported the case of a healthy control with a 488-kb deletion that included both R3HDM1 and MIR128-1. miR-128 has been reported to inhibit dendritic growth and branching in mouse brain neurons, which directly opposes the novel functions of R3HDM1. These findings suggest that deleting both R3HDM1 and MIR128-1 alleviates the symptoms of the disease caused by loss-of-function mutations in R3HDM1 only. Thus, haploinsufficiency of R3HDM1 in the patient may be the cause of the mild ID due to the genetic imbalance between R3HDM1 and MIR128-1.


Assuntos
Deficiências do Desenvolvimento/genética , Predisposição Genética para Doença , Haploinsuficiência/genética , Deficiência Intelectual/genética , Criança , Hibridização Genômica Comparativa , Deficiências do Desenvolvimento/patologia , Humanos , Deficiência Intelectual/patologia , Masculino
6.
Hum Mutat ; 41(8): 1447-1460, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32485067

RESUMO

A heterozygous deletion at Xq27.3q28 including FMR1, AFF2, and IDS causing intellectual disability and characteristic facial features is very rare in females, with only 10 patients having been reported. Here, we examined two female patients with different clinical features harboring the Xq27.3q28 deletion and determined the chromosomal breakpoints. Moreover, we assessed the X chromosome inactivation (XCI) in peripheral blood from both patients. Both patients had an almost overlapping deletion at Xq27.3q28, however, the more severe patient (Patient 1) showed skewed XCI of the normal X chromosome (79:21) whereas the milder patient (Patient 2) showed random XCI. Therefore, deletion at Xq27.3q28 critically affected brain development, and the ratio of XCI of the normal X chromosome greatly affected the clinical characteristics of patients with deletion at Xq27.3q28. As the chromosomal breakpoints were determined, we analyzed a change in chromatin domains termed topologically associated domains (TADs) using published Hi-C data on the Xq27.3q28 region, and found that only patient 1 had a possibility of a drastic change in TADs. The altered chromatin topologies on the Xq27.3q28 region might affect the clinical features of patient 1 by changing the expression of genes just outside the deletion and/or the XCI establishment during embryogenesis resulting in skewed XCI.


Assuntos
Deleção Cromossômica , Deficiência Intelectual/genética , Inativação do Cromossomo X , Pré-Escolar , Cromossomos Humanos X , Análise Citogenética , Feminino , Humanos , Lactente , Japão , Proteína Nuclear Ligada ao X/genética
7.
Sci Rep ; 9(1): 19543, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31863030

RESUMO

Injection of pure spin current using a nonlocal geometry is a promising method for controlling magnetization in spintronic devices from the viewpoints of increasing freedom in device structure and avoiding problems related to charge current. Here, we report an experimental demonstration of magnetization switching of a perpendicular magnetic nanodot induced by vertical injection of pure spin current from a spin polarizer with perpendicular magnetization. In comparison with direct spin injection, the current amplitude required for magnetization switching is of the same order and shows smaller asymmetry between parallel-to-antiparallel and antiparallel-to-parallel switching. Simulation of spin accumulation reveals that, in the case of nonlocal spin injection, the spin torque is symmetric between the parallel and antiparallel configuration because current flows through only the spin polarizer, not the magnetic nanodot. This characteristic of nonlocal spin injection is the origin of the smaller asymmetry of the switching current and can be advantageous in spintronic applications.

8.
Cereb Cortex ; 29(9): 3738-3751, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30307479

RESUMO

SAD kinases regulate presynaptic vesicle clustering and neuronal polarization. A previous report demonstrated that Sada-/- and Sadb-/- double-mutant mice showed perinatal lethality with a severe defect in axon/dendrite differentiation, but their single mutants did not. These results indicated that they were functionally redundant. Surprisingly, we show that on a C57BL/6N background, SAD-A is essential for cortical development whereas SAD-B is dispensable. Sada-/- mice died within a few days after birth. Their cortical lamination pattern was disorganized and radial migration of cortical neurons was perturbed. Birth date analyses with BrdU and in utero electroporation using pCAG-EGFP vector showed a delayed migration of cortical neurons to the pial surface in Sada-/- mice. Time-lapse imaging of these mice confirmed slow migration velocity in the cortical plate. While the neurites of hippocampal neurons in Sada-/- mice could ultimately differentiate in culture to form axons and dendrites, the average length of their axons was shorter than that of the wild type. Thus, analysis on a different genetic background than that used initially revealed a nonredundant role for SAD-A in neuronal migration and differentiation.


Assuntos
Movimento Celular/fisiologia , Córtex Cerebral/embriologia , Córtex Cerebral/enzimologia , Neurônios/enzimologia , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Axônios/enzimologia , Células Cultivadas , Feminino , Isoenzimas , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética
9.
Brain ; 141(6): 1622-1636, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29718187

RESUMO

Several genes related to mitochondrial functions have been identified as causative genes of neuropathy or ataxia. Cytochrome c oxidase assembly factor 7 (COA7) may have a role in assembling mitochondrial respiratory chain complexes that function in oxidative phosphorylation. Here we identified four unrelated patients with recessive mutations in COA7 among a Japanese case series of 1396 patients with Charcot-Marie-Tooth disease (CMT) or other inherited peripheral neuropathies, including complex forms of CMT. We also found that all four patients had characteristic neurological features of peripheral neuropathy and ataxia with cerebellar atrophy, and some patients showed leukoencephalopathy or spinal cord atrophy on MRI scans. Validated mutations were located at highly conserved residues among different species and segregated with the disease in each family. Nerve conduction studies showed axonal sensorimotor neuropathy. Sural nerve biopsies showed chronic axonal degeneration with a marked loss of large and medium myelinated fibres. An immunohistochemical assay with an anti-COA7 antibody in the sural nerve from the control patient showed the positive expression of COA7 in the cytoplasm of Schwann cells. We also observed mildly elevated serum creatine kinase levels in all patients and the presence of a few ragged-red fibres and some cytochrome c oxidase-negative fibres in a muscle biopsy obtained from one patient, which was suggestive of subclinical mitochondrial myopathy. Mitochondrial respiratory chain enzyme assay in skin fibroblasts from the three patients showed a definitive decrease in complex I or complex IV. Immunocytochemical analysis of subcellular localization in HeLa cells indicated that mutant COA7 proteins as well as wild-type COA7 were localized in mitochondria, which suggests that mutant COA7 does not affect the mitochondrial recruitment and may affect the stability or localization of COA7 interaction partners in the mitochondria. In addition, Drosophila COA7 (dCOA7) knockdown models showed rough eye phenotype, reduced lifespan, impaired locomotive ability and shortened synaptic branches of motor neurons. Our results suggest that loss-of-function COA7 mutation is responsible for the phenotype of the presented patients, and this new entity of disease would be referred to as spinocerebellar ataxia with axonal neuropathy type 3.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/genética , Neuropatia Hereditária Motora e Sensorial/complicações , Neuropatia Hereditária Motora e Sensorial/genética , Mutação/genética , Ataxias Espinocerebelares/complicações , Ataxias Espinocerebelares/genética , Adolescente , Animais , Animais Geneticamente Modificados , Encéfalo/diagnóstico por imagem , Células Cultivadas , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Saúde da Família , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Predisposição Genética para Doença/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Neuropatia Hereditária Motora e Sensorial/diagnóstico por imagem , Humanos , Discos Imaginais/metabolismo , Discos Imaginais/ultraestrutura , Locomoção/efeitos dos fármacos , Locomoção/genética , Masculino , Pessoa de Meia-Idade , Neurônios Motores/patologia , Junção Neuromuscular/genética , Junção Neuromuscular/patologia , Junção Neuromuscular/ultraestrutura , Desempenho Psicomotor/fisiologia , Interferência de RNA/fisiologia , Medula Espinal/diagnóstico por imagem , Ataxias Espinocerebelares/diagnóstico por imagem , Adulto Jovem
10.
Gene ; 655: 65-70, 2018 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-29477873

RESUMO

Lamb-Shaffer syndrome (OMIM: 616803) is a neurodevelopmental disorder characterized by developmental delay, mild to moderate intellectual disability, speech delay, and mild characteristic facial appearance caused by SOX5 haploinsufficiency on chromosome 12p12.1. There are clinical variabilities among the patients with genomic alterations, such as intragenic deletions, a point mutation, and a chromosomal translocation of t(11;12)(p13;p12.1), in SOX5. We report herein a 5-year-old Japanese male with a de novo balanced reciprocal translocation t(12;20)(p12.1;p12.3) presenting a mild intellectual disability, speech delay, characteristic facial appearance, and autistic features. We determined the translocation breakpoints of the patient to be in intron 4 of SOX5 and the intergenic region in 20p12.3 via FISH and nucleotide sequence analyses. Thus, the present patient has SOX5 haploinsufficiency affecting 2 long forms of SOX5 and is the second reported case of Lamb-Shaffer syndrome caused by a de novo balanced reciprocal translocation. This report confirmed that haploinsufficiency of the 2 long forms of SOX5 presents common clinical features, including mild intellectual disability and autistic features, which could be useful for the clinical diagnosis of Lamb-Shaffer syndrome.


Assuntos
Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Cromossomos Humanos Par 12 , Cromossomos Humanos Par 20 , Haploinsuficiência , Fatores de Transcrição SOXD/genética , Translocação Genética , Transtorno Autístico/genética , Transtorno Autístico/patologia , Pré-Escolar , Cromossomos Humanos Par 12/genética , Cromossomos Humanos Par 20/genética , Análise Mutacional de DNA , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Masculino
11.
PLoS One ; 12(6): e0180279, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28665968

RESUMO

SLC19A3 deficiency, also called thiamine metabolism dysfunction syndrome-2 (THMD2; OMIM 607483), is an autosomal recessive neurodegenerative disorder caused by mutations in SLC19A3, the gene encoding thiamine transporter 2. To investigate the molecular mechanisms of neurodegeneration in SLC19A3 deficiency and whether administration of high-dose thiamine prevents neurodegeneration, we generated homozygous Slc19a3 E314Q knock-in (KI) mice harboring the mutation corresponding to the human SLC19A3 E320Q, which is associated with the severe form of THMD2. Homozygous KI mice and previously reported homozygous Slc19a3 knock-out (KO) mice fed a thiamine-restricted diet (thiamine: 0.60 mg/100 g food) died within 30 and 12 days, respectively, with dramatically decreased thiamine concentration in the blood and brain, acute neurodegeneration, and astrogliosis in the submedial nucleus of the thalamus and ventral anterior-lateral complex of the thalamus. These findings may bear some features of thiamine-deficient mice generated by pyrithiamine injection and a thiamine-deficient diet, suggesting that the primary cause of THMD2 could be thiamine pyrophosphate (TPP) deficiency. Next, we analyzed the therapeutic effects of high-dose thiamine treatment. When the diet was reverted to a conventional diet (thiamine: 1.71 mg/100 g food) after thiamine restriction, all homozygous KO mice died. In contrast, when the diet was changed to a high-thiamine diet (thiamine: 8.50 mg/100 g food) after thiamine restriction, more than half of homozygous KO mice survived, without progression of brain lesions. Unexpectedly, when the high-thiamine diet of recovered mice was reverted to a conventional diet, some homozygous KO mice died. These results showed that acute neurodegeneration caused by thiamine deficiency is preventable in most parts, and prompt high-dose thiamine administration is critical for the treatment of THMD2. However, reduction of thiamine should be performed carefully to prevent recurrence after recovery of the disease.


Assuntos
Encefalopatias/prevenção & controle , Proteínas de Membrana Transportadoras/genética , Tiamina/administração & dosagem , Animais , Relação Dose-Resposta a Droga , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sobrevida , Deficiência de Tiamina/tratamento farmacológico
12.
Am J Med Genet A ; 173(8): 2201-2209, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28599099

RESUMO

Partial trisomy 2p syndrome is occasionally associated with neural tube defects (NTDs), such as anencephaly, encephalocele, and spina bifida, in addition to common features of intellectual disability, developmental delay, and characteristic facial appearance. The 2p24 region has been reported to be associated with NTDs. Here, we report the cases of 2 siblings with trisomy 2p24.3-pter and monosomy 5p14.3-pter caused by the paternal translocation t(2;5)(p24.3;p14.3). Of the two siblings, the elder sister had spina bifida. We determined the nucleotide sequences of the chromosomal breakpoints and found that the sizes of trisomy 2p and monosomy 5p segments were 18.77 and 17.89 Mb, respectively. NTDs were present in four of seven previously reported patients with trisomy 2p and monosomy 5p as well as in one of the two patients examined in the present study. Although the monosomy 5p of the nine patients were similar in size, the two patients reported here had the smallest size of trisomy 2p. When the clinical features of the nine patients were compared to the present two patients, the elder sister had postaxial polydactyly of the left foot in addition to the characteristic facial appearance and spina bifida, indicating that these features were associated with trisomy 2p24.3-pter. To our knowledge, this is the first study on spina bifida to determine the nucleotide sequences of breakpoints for trisomy 2p24.3-pter and monosomy 5p14.3-pter. Increased gene dosages of dosage-sensitive genes or genes at the trisomy segment (2p24.3) of the presented patients could be associated with NTDs of patients with trisomy 2p.


Assuntos
Síndrome de Cri-du-Chat/genética , Defeitos do Tubo Neural/genética , Disrafismo Espinal/genética , Trissomia/genética , Criança , Pré-Escolar , Cromossomos Humanos Par 2/genética , Cromossomos Humanos Par 5/genética , Síndrome de Cri-du-Chat/fisiopatologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Defeitos do Tubo Neural/diagnóstico por imagem , Defeitos do Tubo Neural/fisiopatologia , Irmãos , Disrafismo Espinal/diagnóstico por imagem , Disrafismo Espinal/fisiopatologia , Translocação Genética/genética , Trissomia/diagnóstico , Trissomia/fisiopatologia
13.
Oncotarget ; 8(28): 45470-45483, 2017 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-28525374

RESUMO

The phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR signaling pathway is critical for cellular growth and metabolism. Recently, mosaic or segmental overgrowth, a clinical condition caused by heterozygous somatic activating mutations in PIK3CA, was established as PIK3CA-related overgrowth spectrum (PROS). In this study, we report a Japanese female diagnosed with PROS, who presented with hyperplasia of the lower extremities, macrodactyly, multiple lipomatosis, and sparse hair. Sequencing and mutant allele frequency analysis of PIK3CA from affected tissues revealed that the patient had a heterozygous mosaic mutation (c.3140A>G [p.H1047R]) in PIK3CA and that there were higher mutant allele frequencies from samples with a larger amount of subcutaneous adipose tissue. We established two fibroblast cell lines from the patient, harboring high and low frequencies of the mosaic mutation, in which AKT and S6 showed higher level of phosphorylation compared with three control fibroblasts, indicating that PI3K/AKT/mTOR signaling is activated. We assessed the therapeutic effects of four compounds (rapamycin, NVP-BEZ235, aspirin, and metformin) on PI3K/AKT/mTOR signaling pathway and cell growth. All four compounds suppressed S6 phosphorylation and inhibited cell growth of the patient-derived fibroblast cell lines. However, only metformin mildly inhibited the growth of the control fibroblast cell lines. Since PROS is a congenital disorder, drugs for therapy should take into consideration the natural growth of children. Thus, metformin is a candidate drug for treating PROS in growing children.


Assuntos
Aspirina/farmacologia , Imidazóis/farmacologia , Metformina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinolinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Adulto , Pré-Escolar , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Análise Mutacional de DNA , Relação Dose-Resposta a Droga , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Estudos de Associação Genética , Transtornos do Crescimento/diagnóstico , Transtornos do Crescimento/genética , Transtornos do Crescimento/metabolismo , Humanos , Masculino , Mutação , Fenótipo
14.
IDCases ; 7: 16-18, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27920985

RESUMO

Group B streptococcus (GBS) is a commonly recognized cause of sepsis and meningitis in neonatal and young infants. Invasive GBS infection is classified into early onset GBS disease (EOD, day 0-6), late onset GBS disease (LOD, day 7-89) and ultra late onset GBS disease (ULOD, after 3 months of age). ULOD is uncommon and recurrence is especially rare. We present the first recurrent case of ULOD GBS sepsis in 3-year-old girl with a past medical history of hydrops fetalis and thoracic congenital lymphatic dysplasia. The first episode presented as sepsis at 2 years 8 months of age. The second episode occurred as sepsis with encephalopathy at 3 years 1 months of age. During each episode, the patient was treated using intravenous antimicrobials and her condition improved. Serotype examination was not performed in the first episode, but GBS type V was serotyped in the second episode. ULOD over 1 year of age is quite rare and may recur.

15.
Nucleosides Nucleotides Nucleic Acids ; 36(1): 1-6, 2017 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-27754763

RESUMO

Lesch-Nyhan disease (LND) is a rare X-linked recessive disorder caused by deficiency of the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT), encoded by the HPRT1. To date, nearly all types of mutations have been reported in the whole gene; however, duplication mutations are rare. We here report the case of a 9-month-old boy with LND. He showed developmental delay, athetosis, and dystonic posture from early infancy, but no self-injurious behaviors. Hyperuricemia was detected, and his HPRT enzyme activity in erythrocytes was completely deficient. A novel duplication mutation (c.372dupT, c.372_374 TTT > c.372_375 TTTT) was identified in exon 4 of the HPRT1, which causes aberrant splicing. This is the third case of a duplication mutation in the HPRT1 that causes splicing error.


Assuntos
Hipoxantina Fosforribosiltransferase/genética , Síndrome de Lesch-Nyhan/genética , Mutação , Splicing de RNA , Eritrócitos/enzimologia , Humanos , Hipoxantina Fosforribosiltransferase/metabolismo , Lactente , Síndrome de Lesch-Nyhan/etiologia , Masculino
16.
J Med Genet ; 52(10): 691-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26251176

RESUMO

BACKGROUND: Short-chain enoyl-CoA hydratase-ECHS1-catalyses many metabolic pathways, including mitochondrial short-chain fatty acid ß-oxidation and branched-chain amino acid catabolic pathways; however, the metabolic products essential for the diagnosis of ECHS1 deficiency have not yet been determined. The objective of this report is to characterise ECHS1 and a mild form of its deficiency biochemically, and to determine the candidate metabolic product that can be efficiently used for neonatal diagnosis. METHODS: We conducted a detailed clinical, molecular genetics, biochemical and metabolic analysis of sibling patients with ECHS1 deficiency. Moreover, we purified human ECHS1, and determined the substrate specificity of ECHS1 for five substrates via different metabolic pathways. RESULTS: Human ECHS1 catalyses the hydration of five substrates via different metabolic pathways, with the highest specificity for crotonyl-CoA and the lowest specificity for tiglyl-CoA. The patients had relatively high (∼7%) residual ECHS1 enzyme activity for crotonyl-CoA and methacrylyl-CoA caused by the compound heterozygous mutations (c.176A>G, (p.N59S) and c.413C>T, (p.A138V)) with normal mitochondrial complex I-IV activities. Affected patients excrete large amounts of N-acetyl-S-(2-carboxypropyl)cysteine, a metabolite of methacrylyl-CoA. CONCLUSIONS: Laboratory data and clinical features demonstrated that the patients have a mild form of ECHS1 deficiency harbouring defective valine catabolic and ß-oxidation pathways. N-Acetyl-S-(2-carboxypropyl) cysteine level was markedly high in the urine of the patients, and therefore, N-acetyl-S-(2-carboxypropyl)cysteine was regarded as a candidate metabolite for the diagnosis of ECHS1 deficiency. This metabolite is not part of current routine metabolic screening protocols, and its inclusion, therefore, holds immense potential in accurate diagnosis.


Assuntos
Acetilcisteína/análogos & derivados , Enoil-CoA Hidratase/deficiência , Redes e Vias Metabólicas , Erros Inatos do Metabolismo/enzimologia , Acetilcisteína/metabolismo , Acetilcisteína/urina , Acil Coenzima A/metabolismo , Criança , Pré-Escolar , Enoil-CoA Hidratase/metabolismo , Feminino , Humanos , Japão , Masculino , Erros Inatos do Metabolismo/fisiopatologia , Mutação , Valina/metabolismo
17.
Rinsho Shinkeigaku ; 54(11): 892-6, 2014.
Artigo em Japonês | MEDLINE | ID: mdl-25420563

RESUMO

An 18-year-old man was admitted to our hospital because of convulsive seizure. He had psychomotor retardation and intellectual disability from childhood, and had been diagnosed with attention deficit-hyperactivity disorder when he was 12 years old. He showed mental deficit (Wechsler Adult Intelligence Scale-Revised: IQ 52) and tendon hyperreflexia without pathological reflexes, but no involuntary movements or self-injurious behavior. As he had hyperuricemia, we measured the activity of hypoxanthine-guanine phosphoribosyltransferase (HPRT) and adenine phosphoribosyltransferase (APRT) in erythrocytes. While HPRT activity had decreased to 57.4% of normal, APRT activity had increased to 140.5% of normal. Genetic analysis revealed a single-base substitution (c.179A>G) in the third exon of the HPRT gene, which resulted in a missense mutation (p.H60R) of the 60th amino acid. His mother was a heterozygous carrier of this mutation and presented partial deficiency (73.3%) of HPRT activity. Lesch-Nyhan disease is a neurogenetic disorder caused by complete deficiency of the enzyme HPRT. Variant forms of the disease caused by partial deficiency of HPRT do not show the typical clinical features, or show only mild neurological manifestations; these diseases are jointly referred to as HPRT-related neurological disease (HRND). The present case was unique in that the patient diagnosed as having HRND showed relatively higher HPRT residual activity in erythrocytes.


Assuntos
Síndrome de Lesch-Nyhan/complicações , Transtornos Psicomotores/etiologia , Adenina Fosforribosiltransferase/sangue , Adolescente , Humanos , Hipoxantina Fosforribosiltransferase/sangue , Hipoxantina Fosforribosiltransferase/genética , Síndrome de Lesch-Nyhan/genética , Masculino , Mutação
18.
Artigo em Inglês | MEDLINE | ID: mdl-24940672

RESUMO

Mutation of hypoxanthine guanine phosphoribosyltransferase (HPRT) gives rise to Lesch-Nyhan syndrome, which is characterized by hyperuricemia, severe motor disability, and self-injurious behavior, or HPRT-related gout with hyperuricemia. Four mutations were detected in two Lesch-Nyhan families and two families with partial deficiency since our last report. A new mutation of G to TT (c.456delGinsTT) resulting in a frameshift (p.Q152Hfs*3) in exon 3 has been identified in one Lesch-Nyhan family. In the other Lesch-Nyhan family, a new point mutation in intron 7 (c.532+5G>T) causing splicing error (exon 7 excluded, p.L163Cfs*4) was detected. In the two partial deficiency cases with hyperuricemia, two missense mutations of p.D20V (c.59A>T) and p.H60R (c.179A>G) were found. An increase of erythrocyte PRPP concentration was observed in the respective phenotypes and seems to be correlated with disease severity.


Assuntos
Povo Asiático/genética , Hipoxantina Fosforribosiltransferase/genética , Síndrome de Lesch-Nyhan/sangue , Síndrome de Lesch-Nyhan/genética , Mutação , Linhagem , Ribose-Fosfato Pirofosfoquinase/sangue , Eritrócitos/enzimologia , Feminino , Humanos , Hipoxantina Fosforribosiltransferase/deficiência , Síndrome de Lesch-Nyhan/enzimologia , Masculino
19.
Am J Med Genet A ; 164A(8): 1899-908, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24715670

RESUMO

Mowat-Wilson syndrome (MWS) is a multiple congenital anomaly syndrome characterized by moderate or severe intellectual disability, a characteristic facial appearance, microcephaly, epilepsy, agenesis or hypoplasia of the corpus callosum, congenital heart defects, Hirschsprung disease, and urogenital/renal anomalies. It is caused by de novo heterozygous loss of function mutations including nonsense mutations, frameshift mutations, and deletions in ZEB2 at 2q22. ZEB2 encodes the zinc finger E-box binding homeobox 2 protein consisting of 1,214 amino acids. Herein, we report 13 nonsense and 27 frameshift mutations from 40 newly identified MWS patients in Japan. Although the clinical findings of all the Japanese MWS patients with nonsense and frameshift mutations were quite similar to the previous review reports of MWS caused by nonsense mutations, frameshift mutations and deletions of ZEB2, the frequencies of microcephaly, Hirschsprung disease, and urogenital/renal anomalies were small. Patients harbored mutations spanning the region between the amino acids 55 and 1,204 in wild-type ZEB2. There was no obvious genotype-phenotype correlation among the patients. A transfection study demonstrated that the cellular level of the longest form of the mutant ZEB2 protein harboring the p.D1204Rfs*29 mutation was remarkably low. The results showed that the 3'-end frameshift mutation of ZEB2 causes MWS due to ZEB2 instability.


Assuntos
Estudos de Associação Genética , Doença de Hirschsprung/genética , Proteínas de Homeodomínio/genética , Deficiência Intelectual/genética , Microcefalia/genética , Proteínas Repressoras/genética , Adolescente , Adulto , Alelos , Linhagem Celular , Criança , Pré-Escolar , Códon sem Sentido , Fácies , Feminino , Mutação da Fase de Leitura , Expressão Gênica , Doença de Hirschsprung/diagnóstico , Doença de Hirschsprung/epidemiologia , Proteínas de Homeodomínio/metabolismo , Humanos , Lactente , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/epidemiologia , Japão , Masculino , Microcefalia/diagnóstico , Microcefalia/epidemiologia , Fenótipo , Prevalência , Estabilidade Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/metabolismo , Adulto Jovem , Homeobox 2 de Ligação a E-box com Dedos de Zinco
20.
Am J Med Genet A ; 164A(5): 1180-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24664533

RESUMO

Mitochondrial trifunctional protein (MTP) is a hetero-octamer composed of four α- and four ß-subunits that catalyzes the final three steps of mitochondrial ß-oxidation of long chain fatty acids. HADHA and HADHB encode the α-subunit and the ß-subunit of MTP, respectively. To date, only two cases with MTP deficiency have been reported to be associated with hypoparathyroidism and peripheral polyneuropathy. Here, we report on two siblings with autosomal recessive infantile onset hypoparathyroidism, peripheral polyneuropathy, and rhabdomyolysis. Sequence analysis of HADHA and HADHB in both siblings shows that they were homozygous for a mutation in exon 14 of HADHB (c.1175C>T, [p.A392V]) and the parents were heterozygous for the mutation. Biochemical analysis revealed that the patients had MTP deficiency. Structural analysis indicated that the A392V mutation identified in this study and the N389D mutation previously reported to be associated with hypoparathyroidism are both located near the active site of MTP and affect the conformation of the ß-subunit. Thus, the present patients are the second and third cases of MTP deficiency associated with missense HADHB mutation and infantile onset hypoparathyroidism. Since MTP deficiency is a treatable disease, MTP deficiency should be considered when patients have hypoparathyroidism as the initial presenting feature in infancy.


Assuntos
Hipoparatireoidismo/congênito , Subunidade beta da Proteína Mitocondrial Trifuncional/genética , Mutação , Polineuropatias/diagnóstico , Polineuropatias/genética , Adolescente , Pré-Escolar , Consanguinidade , Análise Mutacional de DNA , Feminino , Humanos , Hipoparatireoidismo/diagnóstico , Hipoparatireoidismo/genética , Lactente , Masculino , Subunidade beta da Proteína Mitocondrial Trifuncional/química , Modelos Moleculares , Linhagem , Fenótipo , Conformação Proteica , Irmãos , Gêmeos Dizigóticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA