Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nature ; 622(7982): 285-291, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37821588

RESUMO

The chemical doping of molecular semiconductors is based on electron-transfer reactions between the semiconductor and dopant molecules; here, the redox potential of the dopant is key to control the Fermi level of the semiconductor1,2. The tunability and reproducibility of chemical doping are limited by the availability of dopant materials and the effects of impurities such as water. Here we focused on proton-coupled electron-transfer (PCET) reactions, which are widely used in biochemical processes3,4; their redox potentials depend on an easily handled parameter, that is, proton activity. We immersed p-type organic semiconductor thin films in aqueous solutions with PCET-based redox pairs and hydrophobic molecular ions. Synergistic reactions of PCET and ion intercalation resulted in efficient chemical doping of crystalline organic semiconductor thin films under ambient conditions. In accordance with the Nernst equation, the Fermi levels of the semiconductors were controlled reproducibly with a high degree of precision-a thermal energy of about 25 millielectronvolts at room temperature and over a few hundred millielectronvolts around the band edge. A reference-electrode-free, resistive pH sensor based on this method is also proposed. A connection between semiconductor doping and proton activity, a widely used parameter in chemical and biochemical processes, may help create a platform for ambient semiconductor processes and biomolecular electronics.

2.
Phys Chem Chem Phys ; 25(20): 14496-14501, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37190947

RESUMO

The chemical structures and morphologies of organic semiconductors (OSCs) and gate dielectrics have been widely investigated to improve the electrical performances of organic thin-film transistors (OTFTs) because the charge transport therein is a phenomenon at the semiconductor-dielectric interfaces. Here, solid and ionic gel gate dielectrics were adopted on the lower and upper surfaces, respectively, of a single, two molecule-thick single crystals of p-type OSCs to study the charge transport properties at individual interfaces between the morphologically compatible OSC surface and different gate dielectrics. Using the four-probe method, the solid and ionic gel interfaces were found to exhibit hole mobilities of 9.3 and 2.2 cm2 V-1 s-1, respectively, which revealed the crucial impact of the gate dielectric materials on the interfacial charge transport. Interestingly, when gate biases are applied through both dielectrics, i.e., under the solid/ionic gel dual-gate transistor operation, the hole mobility at the solid gate interface is improved up to 14.7 cm2 V-1 s-1, which is 1.5 times greater than that assessed without the ionic gel gate. This improvement can be attributed to the electric double layer formed at the ionic gel/uniform crystal surface, which provides a close-to-ideal charge transport interface through dramatic trap-filling. Therefore, the present dual-gate transistor technique will be promising for investigating the intrinsic charge-transport capabilities of OSCs.

3.
Micromachines (Basel) ; 13(8)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36014235

RESUMO

3D wiring technology is required for the integration of micro-nano devices on various 3D surfaces. However, current wiring technologies cannot be adapted to a variety of materials and surfaces. Here, we propose a new metal deposition method using only a micro-plasma bubble injector and a metal ion solution. Micro-plasma bubbles were generated on demand using pulses, and the localized reaction field enables metal deposition independent of the substrate. Three different modes of micro-plasma bubble generation were created depending on the power supply conditions and mode suitable for metal deposition. Furthermore, using a mode in which one bubble was generated for all pulses among the three modes, copper deposition on dry/wet materials, such as chicken tissue and glass substrates, was achieved. In addition, metal deposition of copper, nickel, chromium, cobalt, and zinc was achieved by simply changing the metal ion solution. Finally, patterning on glass and epoxy resin was performed. Notably, the proposed metal deposition method is conductivity independent. The proposed method is a starting point for 3D wiring of wet materials, which is difficult with existing technologies. Our complete system makes it possible to directly attach sensors and actuators to living organisms and robots, for example, and contribute to soft robotics and biomimetics.

4.
Endocrinology ; 163(10)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35931046

RESUMO

Semaphorin 3A (Sema3A) coordinates bone resorption and formation under the control of estrogen signaling. However, the contribution of osteoblast lineage cell-derived Sema3A to vertebral homeostasis has remained unclear. Moreover, it is unknown whether androgen signaling is involved in Sema3A expression in osteoblast lineage cells. In this study, we show that osteoblast lineage cell-derived Sema3A plays a key role in bone homeostasis independent of androgen signaling. Sema3a deletion with Sp7-Cre did not alter the trabecular bone mass in lumbar vertebrae, along with there being no significant difference in Sema3a mRNA expression. In contrast, osteoblast lineage cell-specific deletion of Sema3A with BGLAP-Cre led to decreased bone volume in both long bones and lumbar vertebrae. In addition, osteoblast lineage cell-derived Sema3A was not involved in orchidectomy-induced bone loss because androgen deficiency did not affect Sema3A protein expression. Thus, these results indicate that Sema3A derived from osteoblast lineage cells acts as an osteoprotective factor, even in vertebrae, and its expression is controlled in an androgen-independent manner.


Assuntos
Androgênios , Semaforina-3A , Androgênios/farmacologia , Osso e Ossos/metabolismo , Homeostase , Osteoblastos/metabolismo , Semaforina-3A/genética , Semaforina-3A/metabolismo
5.
J Med Virol ; 94(12): 5702-5712, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35916111

RESUMO

Immunomodulators (tocilizumab/baricitinib) improve outcomes of coronavirus disease 2019 (COVID-19) patients, but the synergistic effect of remdesivir is unknown. The effect of combination therapy with remdesivir, immunomodulators, and standard treatment in COVID-19 patients was investigated. This retrospective, single-center study included COVID-19 patients who were treated with tocilizumab or baricitinib. The severity of respiratory status in the two groups on Days 14 and 28 and the duration to respiratory recovery in both groups were compared, and the effect of remdesivir use on respiratory status was examined in a multivariate analysis. Ninety-eight patients received tocilizumab or baricitinib; among them, 72 used remdesivir (remdesivir group) and 26 did not (control group). The remdesivir group achieved faster respiratory recovery than the control group (median 11 vs. 21 days, p = 0.033), faster weaning from supplemental oxygen (hazard ratio [HR]: 2.54, 95% confidence interval [CI]: 1.14-5.66, p = 0.021). Age, body mass index, diabetes mellitus, and time from onset to oxygen administration were independent prognostic factors. The remdesivir group achieved better severity level at Days 14 and 28 (p = 0.033 and 0.003, respectively) and greater improvement from baseline severity (p = 0.047 and 0.018, respectively). Remdesivir combination therapy did not prolong survival (HR: 0.31, 95% CI: 0.04-2.16, p = 0.23). Among severely ill COVID-19 patients who received immunomodulator, remdesivir contributed to a shorter respiratory recovery time and better respiratory status at Days 14 and 28. Concomitant remdesivir with immunomodulators and standard treatment may provide additional benefit in improving respiratory status of COVID-19 patients.


Assuntos
Tratamento Farmacológico da COVID-19 , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais , Azetidinas , Humanos , Fatores Imunológicos/uso terapêutico , Oxigênio , Purinas , Pirazóis , Estudos Retrospectivos , SARS-CoV-2 , Sulfonamidas
6.
Medicina (Kaunas) ; 58(4)2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35454352

RESUMO

Background and Objectives: Tocilizumab and baricitinib have been observed to improve the outcomes of patients with coronavirus disease 2019 (COVID-19). However, a comparative evaluation of these drugs has not been performed. Materials and Methods: A retrospective, single-center study was conducted using the data of COVID-19 patients admitted to Hokkaido University hospital between April 2020 and September 2021, who were treated with tocilizumab or baricitinib. The clinical characteristics of the patients who received tocilizumab were compared to those of patients who received baricitinib. Univariate and multivariate logistic regression analyses of the outcomes of all-cause mortality and improvement in respiratory status were performed. The development of secondary infection events was analyzed using the Kaplan-Meier method and the log-rank test. Results: Of the 459 patients hospitalized with COVID-19 during the study, 64 received tocilizumab treatment and 34 baricitinib treatment, and those 98 patients were included in the study. Most patients were treated with concomitant steroids and exhibited the same severity level at the initiation of drug treatment. When compared to each other, neither tocilizumab nor baricitinib use were associated with all-cause mortality or improvement in respiratory status within 28 days from drug administration. Conclusions: Age, chronic renal disease and early administration of TCZ or BRT from the onset of COVID-19 were independent prognostic factors for all-cause mortality, whereas anti-viral drug use and the severity of COVID-19 at baseline were associated with an improvement in respiratory status. Secondary infection-free survival rates of patients treated with tocilizumab and those treated with baricitinib did not significantly differ. The results suggest that both tocilizumab and baricitinib could be clinically equivalent agents of choice in treatment of COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Anticorpos Monoclonais Humanizados , Azetidinas , Humanos , Purinas , Pirazóis , Estudos Retrospectivos , Sulfonamidas , Resultado do Tratamento
7.
Gels ; 8(4)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35448104

RESUMO

Radioactivity was measured in a micellar gel dosimeter, a polymer gel dosimeter, and water was irradiated by carbon ion beams at various beam energy conditions. Monte Carlo simulation was also performed to estimate the radioactivity. Short-lived positron-emitting nuclides were observed immediately after irradiation, but they decayed rapidly into the background. At 24 h post-irradiation, the dominant measured radioactivity was of 7Be. The simulation also showed minor activity of 24Na and 3H; however, they were not experimentally observed. The measured radioactivity was independent of the type of gel dosimeter under all irradiation conditions, suggesting that the radioactivity was induced by the interaction of carbon ions with water (the main component of the gel dosimeters). The ratio between the simulated and measured radioactivity was within 0.9-1.5. The activity concentration of 7Be was found to be less than 1/10 of the value derived using the exemption concept proposed by the International Atomic Energy Agency. This result should be applicable to irradiated gel dosimeters containing mainly water and 0-4 wt.% C and 0-1.7 wt.% N.

8.
Intern Med ; 61(9): 1403-1410, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35249922

RESUMO

We present three cases with an atypical clinical course of organizing pneumonia (OP) secondary to coronavirus disease 2019 (COVID-19). Three patients were discharged with satisfactory improvement after standard steroid therapy for COVID-19. Shortly after the completion of treatment, the patients experienced a flare-up of symptoms. Imaging results showed new lesions in the lungs. Transbronchial lung cryobiopsy showed histological findings consistent with OP in all cases. Steroids were administered, and a good therapeutic response was observed. This report is the first to describe pathologically confirmed OP that developed after recovery from COVID-19. Careful follow-up is advisable for patients who have recovered from COVID-19.


Assuntos
COVID-19 , Pneumonia em Organização Criptogênica , Pneumonia , Pneumonia em Organização Criptogênica/diagnóstico , Humanos , Pulmão/diagnóstico por imagem , Pulmão/patologia , Pneumonia/tratamento farmacológico
9.
Int J Mol Sci ; 23(5)2022 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35270012

RESUMO

Rheumatoid arthritis (RA) is an inflammatory disease characterized by a variety of symptoms and pathologies often presenting with polyarthritis. The primary symptom in the initial stage is joint swelling due to synovitis. With disease progression, cartilage and bone are affected to cause joint deformities. Advanced osteoarticular destruction and deformation can cause irreversible physical disabilities. Physical disabilities not only deteriorate patients' quality of life but also have substantial medical economic effects on society. Therefore, prevention of the progression of osteoarticular destruction and deformation is an important task. Recent studies have progressively improved our understanding of the molecular mechanism by which synovitis caused by immune disorders results in activation of osteoclasts; activated osteoclasts in turn cause bone destruction and para-articular osteoporosis. In this paper, we review the mechanisms of bone metabolism under physiological and RA conditions, and we describe the effects of therapeutic intervention against RA on bone.


Assuntos
Artrite Reumatoide , Sinovite , Artrite Reumatoide/metabolismo , Humanos , Inflamação/patologia , Osteoclastos/metabolismo , Qualidade de Vida , Ligante RANK/metabolismo
10.
Langmuir ; 38(17): 5237-5247, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34873909

RESUMO

In this study, we advanced the conventional Langmuir-Blodgett (LB) method to a high-temperature range (above 100 °C) using a newly manufactured LB machine, which is adaptable to a high-boiling-point subphase, as a universally usable apparatus. A sophisticated trough design, with homogeneous heating capability up to approximately 200 °C, together with automatic film compression and Langmuir-Schaefer type film transfer, enabled the fabrication of highly aligned thin films of polymeric semiconductors with uniaxial alignment of polymer backbones, which is desirable for efficient charge transport. Herein, ultrathin films of semicrystalline thiophene-based semiconductors were prepared on ethylene glycol and heated to 80 °C. The analyses of the transferred films with pressure-area isotherms, atomic force microscopy (AFM), polarized optical microscopy (POM), and grazing-incidence wide-angle X-ray scattering (GIWAXS) indicated that the proposed high-temperature LB method allows ideal deposition of high-quality ultrathin films with molecular layer precision at the selected high-temperature conditions. Furthermore, preparing thin-film donor-acceptor-type copolymers in ionic liquids at high temperatures (up to 140 °C) was a challenging task that was successfully demonstrated in this study. Highly ordered thin films of donor-acceptor polymers with a uniaxial backbone orientation were obtained only at 140 °C. The obtained semicrystalline thin films with uniaxially aligned polymer backbones significantly contribute to the two-dimensional overlap of molecular orbitals, which is likely to promote charge transport. The use of the manufactured automatic LB machines is advantageous for better quality films prepared at higher temperatures (even above 100 °C) from various technical viewpoints, including homogeneous heating, constant compression, and automatic film transfer. The novel methodology proposed herein expands the possibilities of the Hyper 100 °C Langmuir-Blodgett technique, which has not been accessible by the conventional LB method with the aqueous subphase.

11.
Adv Sci (Weinh) ; 8(24): e2101998, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34713616

RESUMO

Increasing the doping level of semiconducting polymer using strong dopants is essential for achieving good electrical conductivity. As for p-dopant, raising the electron affinity of a neutral compound through the dense introduction of electron-withdrawing group has always been the predominant strategy to achieve strong dopant. However, this simple and intuitive strategy faces extendibility, accessibility, and stability issues for further development. Herein, the use of dicationic state of tetraaryl benzidine (TAB2+ ) in conjunction with bis(trifluoromethylsulfonyl)imide anion (TFSI- ) as a strong and atmospherically stable p-dopant (TAB-2TFSI), for which the concept is hinted from a rapid and spontaneous dimerization of radical cation dopant, is demonstrated. TAB-2TFSI possesses a large redox potential such that it would have deteriorated when in contact with H2 O. However, no trace of degradation after 1 year of storage under atmospheric conditions is observed. When doping the state-of-the-art semiconducting polymer with TAB-2TFSI, a high doping level together with significantly enhanced crystallinity is achieved which led to an electrical conductivity as high as 656 S cm-1 . The concept of utilizing charged molecule as a dopant is highly versatile and will potentially accelerate the development of a strong yet stable dopant.

13.
J Am Chem Soc ; 143(13): 5141-5149, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33783207

RESUMO

Ligand-induced protein degradation has emerged as a compelling approach to promote the targeted elimination of proteins from cells by directing these proteins to the ubiquitin-proteasome machinery. So far, only a limited number of E3 ligases have been found to support ligand-induced protein degradation, reflecting a dearth of E3-binding compounds for proteolysis-targeting chimera (PROTAC) design. Here, we describe a functional screening strategy performed with a focused library of candidate electrophilic PROTACs to discover bifunctional compounds that degrade proteins in human cells by covalently engaging E3 ligases. Mechanistic studies revealed that the electrophilic PROTACs act through modifying specific cysteines in DCAF11, a poorly characterized E3 ligase substrate adaptor. We further show that DCAF11-directed electrophilic PROTACs can degrade multiple endogenous proteins, including FBKP12 and the androgen receptor, in human prostate cancer cells. Our findings designate DCAF11 as an E3 ligase capable of supporting ligand-induced protein degradation via electrophilic PROTACs.


Assuntos
Complexos Ubiquitina-Proteína Ligase/fisiologia , Linhagem Celular Tumoral , Humanos , Masculino , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Receptores Androgênicos/metabolismo , Ubiquitina/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo
14.
Adv Sci (Weinh) ; 8(3): 2002065, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33552854

RESUMO

A highly periodic electrostatic potential, even though established in van der Waals bonded organic crystals, is essential for the realization of a coherent band electron system. While impurity doping is an effective chemical operation that can precisely tune the energy of an electronic system, it always faces an unavoidable difficulty in molecular crystals because the introduction of a relatively high density of dopants inevitably destroys the highly ordered molecular framework. In striking contrast, a versatile strategy is presented to create coherent 2D electronic carriers at the surface of organic semiconductor crystals with their precise molecular structures preserved perfectly. The formation of an assembly of redox-active molecular dopants via a simple one-shot solution process on a molecularly flat crystalline surface allows efficient chemical doping and results in a relatively high carrier density of 1013 cm-2 at room temperature. Structural and magnetotransport analyses comprehensively reveal that excellent carrier transport and piezoresistive effects can be obtained that are similar to those in bulk crystals.

15.
Endocr J ; 68(4): 477-484, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33361650

RESUMO

We provide the details of the successful management of a patient with active Cushing's disease complicated with coronavirus disease 2019 (COVID-19) pneumonia. The patient was a 27-year-old Japanese female healthcare worker who was scheduled to undergo pituitary surgery for Cushing's disease. She had been in close contact with an undiagnosed patient infected with COVID-19 and then developed COVID-19 pneumonia. Despite a lack of known risk factors associated with severe COVID-19 infection, the patient's dyspnea worsened and her respiratory condition deteriorated, as indicated by the need for 7 L/min oxygen supply by mask to maintain her oxygen saturation at >90%. Medical treatment was initiated to control hypercortisolism by the 'block and replace' regimen using steroidogenesis inhibitors and hydrocortisone. The COVID-19 pneumonia improved with multi-modal treatment including antiviral therapy. One month later, after a negative severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) test result and with appropriate protection against virus transmission to medical staff in the operating room and daily medical care nurses, trans-sphenoidal surgery was performed by our highly experienced pituitary surgeon. One month after the surgery, the patient's basal ACTH and cortisol levels and urinary free cortisol were all under the detection limit. Surgical remission was expected. Since hypercortisolism due to active Cushing's disease may worsen a COVID-19 infection, multi-disciplinary management that includes appropriate and prompt treatment strategies is mandatory in such cases.


Assuntos
Amidas/administração & dosagem , Benzamidinas/administração & dosagem , COVID-19/terapia , Guanidinas/administração & dosagem , Metirapona/administração & dosagem , Hipersecreção Hipofisária de ACTH/terapia , Pregnenodionas/administração & dosagem , Pirazinas/administração & dosagem , Adenoma Hipofisário Secretor de ACT/complicações , Adenoma Hipofisário Secretor de ACT/tratamento farmacológico , Adenoma/complicações , Adenoma/tratamento farmacológico , Adulto , COVID-19/complicações , COVID-19/patologia , Terapia Combinada , Di-Hidrotestosterona/administração & dosagem , Di-Hidrotestosterona/análogos & derivados , Progressão da Doença , Feminino , Pessoal de Saúde , Heparina/administração & dosagem , Humanos , Japão , Procedimentos Neurocirúrgicos , Hipersecreção Hipofisária de ACTH/sangue , Hipersecreção Hipofisária de ACTH/complicações , Hipersecreção Hipofisária de ACTH/patologia , SARS-CoV-2/fisiologia , Resultado do Tratamento , Combinação Trimetoprima e Sulfametoxazol/administração & dosagem
17.
ACS Appl Mater Interfaces ; 12(50): 56522-56529, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33264001

RESUMO

The Langmuir-Blodgett (LB) and Langmuir-Schaefer techniques facilitate thermodynamic favorability at an air-water interface, at which nanoscale molecular aggregations can be manipulated by micrometer- or millimeter-scale mechanics. The customary use of an aqueous subphase has limitations in the available temperature and spread materials. We present a general strategy to replace the aqueous subphase with an inert, low-vapor-pressure liquid, ethylene glycol. As a representative spread material that requires high-temperature processes, a semicrystalline polymeric semiconductor was investigated. We successfully demonstrated that the polymeric semiconductor spreads homogeneously across the entire surface of ethylene glycol heated to 100 °C using an LB trough, and spontaneously forms multilayers. Comprehensive studies such as X-ray diffraction, optical spectroscopy, and charge transport measurements revealed that barrier compression of solid-state polymer thin films during a high-temperature LB process produced uniaxial alignment of the polymer main chain with an averaged dichroic ratio of about 8, by which the electron transport concomitantly became highly anisotropic. The LB method presented in this work could be used to deposit thin films under ultimate environments, e.g., below 0 °C or above 100 °C, minimizing the effects of the vapor pressure of the subphase.

18.
Respir Med Case Rep ; 31: 101295, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224726

RESUMO

We report a case of clinically diagnosed secondary organizing pneumonia (SOP) associated with coronavirus disease 2019 (COVID-19). A 70-year-old woman who had been diagnosed with COVID-19 was admitted to Hokkaido University Hospital. Although her fever, cough, dyspnea, and serum C-reactive protein levels improved, she developed rapidly progressive respiratory failure and computed tomography revealed the development of bilateral lung consolidation. Her dyspnea was relieved, and her oxygenation levels and radiological findings improved after commencing corticosteroid treatment. Blood biomarkers for interstitial lung disease, Krebs von den Lungen-6 (KL-6) and surfactant protein D (SP-D), showed different responses during the clinical course of her disease. Evaluation of serial changes in levels of KL-6 and SP-D may help diagnose and monitor COVID-19-associated organizing pneumonia (OP). Clinicians should be aware that SOP can develop in response to COVID-19 and that these patients may benefit from the use of steroids.

19.
BMC Infect Dis ; 20(1): 858, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208116

RESUMO

BACKGROUND: No clinical scoring system has yet been established to estimate the likelihood of coronavirus disease (COVID-19) and determine the suitability of diagnostic testing in suspected COVID-19 patients. METHODS: This was a single-center, retrospective, observational study of patients with suspected COVID-19 and confirmed COVID-19. Patient background, clinical course, laboratory and computed tomography (CT) findings, and the presence of alternative diagnoses were evaluated. Clinical risk scores were developed based on clinical differences between patients with and without COVID-19. RESULTS: Among 110 patients suspected of having COVID-19, 60.9% underwent polymerase chain reaction (PCR) testing based on the judgment of physicians. Two patients were found to have COVID-19. The clinical characteristics of 108 non-COVID-19 patients were compared with those of 23 confirmed COVID-19 patients. Patients with COVID-19 were more likely to have a history of high-risk exposures and an abnormal sense of taste and smell. The COVID-19 group had significantly higher rates of subnormal white blood cell counts, lower eosinophil counts, and lower procalcitonin levels than the non-COVID-19 group. When blood test results, CT findings, and the presence of alternative diagnoses were scored on an 11-point scale (i.e., "COVID-19 Clinical Risk Score"), the COVID-19 group scored significantly higher than the non-COVID-19 group, more than four points in the COVID-19 group. All non-COVID patients who did not undergo PCR had a score of 4 or less. CONCLUSIONS: The COVID-19 Clinical Risk Score may enable the risk classification of patients suspected of having COVID-19 and can help in decision-making in clinical practice, including appropriateness of diagnostic testing. Further studies and prospective validation with an increased sample size are required.


Assuntos
Teste para COVID-19 , COVID-19/diagnóstico , Projetos de Pesquisa , SARS-CoV-2/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/epidemiologia , COVID-19/virologia , Estudos de Casos e Controles , Feminino , Humanos , Japão/epidemiologia , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase/métodos , Pró-Calcitonina/sangue , Estudos Retrospectivos , Medição de Risco/métodos , Tomografia Computadorizada por Raios X/métodos , Adulto Jovem
20.
Front Microbiol ; 11: 587235, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117325

RESUMO

Background: Methicillin-resistant Staphylococcus aureus (MRSA) is a common causative agent of pneumonia; however, the detailed mechanism underlying severe MRSA pneumonia, including association with oral hygiene or periodontitis, remains poorly characterized. In this study, we examined the pathogenic effect of Prevotella intermedia, a major periodontopathic pathogen, on MRSA pneumonia. Methods: The pathogenic effect of the supernatant of P. intermedia (Pi Sup) was investigated in a murine MRSA pneumonia model, using several clinical strains; whereas the bactericidal activity of polymorphonuclear leukocytes (PMNs) was investigated in vitro. The effect of Pi Sup on messenger RNA (mRNA) expression of the toxin/quorum sensing system (rnaIII) was investigated by quantitative reverse transcription PCR both in vitro and in vivo. Results: Mice infected by hospital-acquired MRSA (HA-MRSA) with Pi Sup exhibited a significantly lower survival rate, higher bacterial loads in the lungs, and higher α-hemolysin (hla) expression in the lungs, than those without Pi Sup. A similar effect of Pi Sup was not observed with MRSA strains producing Panton-Valentine leucocidin (PVL) or toxic shock syndrome toxin (TSST). In vitro, Pi Sup suppressed bactericidal activity of PMNs against the HA-MRSA strain. HA-MRSA was the clinical strain with the highest ability to proliferate in the lungs and was accompanied by time-dependent up-regulation of rnaIII and hla. Conclusions: Our results provide novel evidence that the product of P. intermedia exerts a pathogenic effect on MRSA pneumonia, in particular with a strain exhibiting strong proliferation in the lower airway tract. Moreover, our results indicate that P. intermedia affects MRSA toxin expression via quorum sensing in a strain-dependent fashion, which might be important for understanding the pathogenesis of severe MRSA pneumonia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA