Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Int J Biol Macromol ; 269(Pt 2): 132168, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38729496

RESUMO

Ferula spp. are plants that produce oleo-gum-resins (OGRs), which are plant exudates with various colors. These OGRs have various industrial applications in pharmacology, perfumery, and food. The main constituents of these OGRs are terpenoids, a diverse group of organic compounds with different structures and functions. The biosynthesis of OGRs in Ferula spp., particularly galbanum, holds considerable economic and ecological importance. However, the molecular and genetic underpinnings of this biosynthetic pathway remain largely enigmatic. This review provides an overview of the current state of knowledge on the biosynthesis of OGRs in Ferula spp., highlighting the major enzymes, genes, and pathways involved in the synthesis of different terpenoid classes, such as monoterpenes, sesquiterpenes, and triterpenes. It also examines the potential of using omics techniques, such as transcriptomics and metabolomics, and genome editing tools, such as CRISPR/Cas, to increase the yield and quality of Ferula OGRs, as well as to create novel bioactive compounds with enhanced properties. Moreover, this review addresses the current challenges and opportunities of applying gene editing in Ferula spp., and suggests some directions for future research and development.

2.
Fitoterapia ; 176: 105976, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38685511

RESUMO

Phytochemical research on an extract of Notopterygium incisum yielded fifteen compounds (1-15), including four previously undescribed compounds (10-13). The structures of the unreported compounds were elucidated by spectroscopic and spectrometric data analysis such as 1D and 2D NMR, IR and HR-ESI-MS. Compounds 1-5 and 10-14 were isolated from N. incisum for the first time. 7S⁎,8R⁎-Phenethyl-(7-methoxy-8-isoeugenol)-ferulate (10), 7S⁎,8R⁎-p-hydroxyphenethyl-(7-methoxy-8-isoeugenol)-ferulate (11), 7S⁎,8R⁎-benzyl-(7-methoxy-8-isoeugenol)-ferulate (12) and p-hydroxyphenethyl-(4-benzoy-3-methoxy)-cinnamate (13) are the undescribed ferulic acid derivatives. Additionly, the anti-neuroinflammatory effects of compounds were evaluated in lipopolysaccharide (LPS)-induced BV2 cells. The pharmacological results showed that 6ß,10ß-epoxy-4α-hydroxy-guaiane (6), teuclatriol (7) and 7S⁎,8R⁎-p-hydroxyphenethyl-(7-methoxy-8-isoeugenol)-ferulate (11) inhibited the production and expression of nitric oxide (NO) in the LPS-induced BV2 cells in a concentration-dependent manner. Acorusnol (4), teucladiol (9), 7S⁎,8R⁎-benzyl-(7-methoxy-8-isoeugenol)-ferulate (12) and p-hydroxyphenethyl-(4-benzoy-3-methoxy)-cinnamate (13) only inhibited the release of NO at concentration of 20 µM. Moreover, 7S⁎,8R⁎-p-hydroxyphenethyl-(7-methoxy-8-isoeugenol)-ferulate (11) reduced the level of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in LPS-stimulated BV2 cells. The results demonstrated 7S⁎,8R⁎-p-hydroxyphenethyl-(7-methoxy-8-isoeugenol)-ferulate (11) could be a potential anti-neuroinflammatory agent and is worthy of further study.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38430605

RESUMO

Prolyl hydroxylase domain 2 (PHD2) is an important enzyme in the human body that perceives changes in oxygen concentration and regulates response in hypoxic environments. Evaluation of PHD2 inhibitory activity of natural products is crucial for drug development of hypoxia related diseases. At present, the detection of low concentration of α-ketoglutaric acid (the substrate of PHD2 enzymatic reaction) requires derivatization reactions or sample pretreatment, which undoubtedly increases the workload of PHD2 inhibitory activity evaluation. In this paper, a direct detection approach of α-ketoglutaric acid was established by using the online stacking strategy of capillary electrophoresis to evaluate the PHD2 inhibitory activity of natural products. Under optimized conditions, detection of a single sample can be achieved within 2 min. By calculation, the intraday precision RSD of the apparent electrophoretic mobility and peak areas of α-ketoglutaric acid are 0.92 % and 0.79 %, respectively, and the interday RSD were 1.27 % and 0.96 % respectively. The recoveries of the present approach were 97.9-105.2 %, and the LOQ and LOD were 2.0 µM and 5.0 µM, respectively. Furthermore, this approach was applied for the evaluation of inhibitory activity of PHD2 for 13 natural products, and PHD2 inhibitory activity of salvianolic acid A was firstly reported. The present work not only realizes evaluation of PHD2 inhibitory activity through direct detection of α-ketoglutaric acid, but also provides technical support for the discovery of potential drug molecules in hypoxia related diseases.


Assuntos
Produtos Biológicos , Eletroforese Capilar , Prolina Dioxigenases do Fator Induzível por Hipóxia , Ácidos Cetoglutáricos , Humanos , Produtos Biológicos/farmacologia , Eletroforese Capilar/métodos , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Ácidos Cetoglutáricos/análise
4.
FEBS J ; 291(3): 489-509, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37724442

RESUMO

Sustained cardiac hypertrophy damages the heart and weakens cardiac function, often leading to heart failure and even death. Pathological cardiac hypertrophy has become a central therapeutic target for many heart diseases including heart failure. However, the underlying mechanisms of cardiac hypertrophy, especially the involvement of autophagy program, are still ill-understood. Synaptotagmin-7 (Syt7), a multifunctional and high-affinity calcium sensor, plays a pivotal role in asynchronous neurotransmitter release, synaptic facilitation, and vesicle pool regulation during synaptic transmission. However, little is known about whether Syt7 is expressed in the myocardium and involved in the pathogenesis of heart diseases. Here we showed that Syt7 was significantly upregulated in Ang II-treated hearts and cardiomyocytes. Homozygous syt7 knockout (syt7-/-) mice exhibited significantly attenuated cardiac hypertrophy and fibrosis and improved cardiac function. We further found that Syt7 exerted a pro-hypertrophic effect by suppressing the autophagy process. In exploring the upstream mechanisms, microRNA (miR)-93 was identified to participate in the regulation of Syt7 expression. miR-93 protected hearts against Ang II-induced hypertrophy through targeting Syt7-autophagy pathway. In summary, our data reveal a new cardiac hypertrophy regulator and a novel hypertrophy regulating model composed of miR-93, Syt7 and autophagy program. These molecules may serve as potential therapeutic targets in the treatment of cardiac hypertrophy and heart failure.


Assuntos
Insuficiência Cardíaca , MicroRNAs , Camundongos , Animais , Sinaptotagminas/genética , Sinaptotagminas/metabolismo , Sinaptotagminas/farmacologia , Cardiomegalia/metabolismo , Miócitos Cardíacos/metabolismo , Insuficiência Cardíaca/complicações , Autofagia/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Angiotensina II/genética
5.
Phytochemistry ; 214: 113824, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37597719

RESUMO

Eight previously unreported sesquiterpene coumarins, namely (+)- and (-)-ferulasinkian A (1), (-)-fukanefuromarin M (2), (±)-ferulasinkian C (3), (±)-ferulasinkian D (4), ferulasinkian E (5), ferulasinkian F (7), and ferulasinkian G (8), together with two known compounds, (+)-fukanefuromarin M (2) and 7-hydroxyferprenin (6), have been isolated from the roots of Ferula sinkiangensis (Umbelliferae). The structures of all compounds were elucidated by spectroscopic analysis, along with ECD calculations and optical rotation calculations. Compounds 1-6 are dimers consisting of a chain sesquiterpene and a coumarin with an oxygen-containing six-membered ring connected from coumarin C-3 and C-4. Currently, there are only seven such structures reported in the genus Ferula, and their absolute configurations have not yet been determined. Compounds 7-8 are sesquiterpene coumarin derivatives with a chain sesquiterpene connected with coumarin C-4. In the present study, the chiral separation of compounds (±)-1 and (±)-2 was successfully carried out, and the absolute configurations of compounds (±)-1, (±)-2, 5, 7 and 8 were determined. The isolates were evaluated for their cytotoxic activity against human pancreatic cancer cell lines including CFPAC-1, PANC-1, CAPAN-2 and SW 1990. Compounds (+)-1, (-)-1 and 7 exhibited potent cytotoxicity against pancreatic cancer cells with IC50 values ranging from 4.57 ± 0.94 to 14.01 ± 1.03 µM. Furthermore, the primary mechanistic study of (-)-1 demonstrated that it could induce apoptosis in CFPAC-1 cells.

6.
Fitoterapia ; 169: 105611, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37454779

RESUMO

In this study, ten labdane-type diterpenoids 1-10 were isolated from a methanol extract of the whole plant Lagopsis supina, including three undescribed compounds 1-3. Their structures were determined by spectroscopic data analyses such as HR-ESI-MS, 1D, and 2D NMR, as well as comparison with literature data. At the same time, the absolute configuration of five compounds 2-5 and 10 was confirmed for the first time by the single crystal X-ray diffraction method. All the compounds were isolated from L. supina for the first time. The CCK-8 assay showed that all compounds had no significant damage to BV-2 microglial cells, and then screened their inhibitory effects of nitric oxide production stimulated by lipopolysaccharide in BV-2 microglial cells. The pharmacological results showed that compound 4 greatly inhibited LPS-stimulated NO release at the concentration of 10 µM, indicating that it has potential anti-neuroinflammatory activity.


Assuntos
Diterpenos , Medicamentos de Ervas Chinesas , Lamiaceae , Estrutura Molecular , Lamiaceae/química , Diterpenos/farmacologia , Diterpenos/química , Medicamentos de Ervas Chinesas/farmacologia , Microglia , Lipopolissacarídeos/farmacologia , Óxido Nítrico
7.
Zhongguo Zhong Yao Za Zhi ; 48(9): 2406-2418, 2023 May.
Artigo em Chinês | MEDLINE | ID: mdl-37282870

RESUMO

Zanthoxylum belongs to the Rutaceae family, and there are 81 Zanthoxylum species and 36 varieties in China. Most of the Zanthoxylum plants are used as culinary spice. In recent years, scholars in China and abroad have carried out in-depth research on Zanthoxylum plants, and found that the peculiar numbing sensation of Zanthoxylum plants originates from amides. It is also determined that amides are an important material basis for exerting pharmacological effects, especially in anti-inflammatory analgesia, anesthesia and other aspects. In this paper, 123 amides in 26 Zanthoxylum plants and their pharmacological activity that have been reported were summarized, which provided scientific reference for the clinical application of Zanthoxylum plants and the research and development of new drugs, and also facilitated the sustainable development and utilization of Zanthoxylum plant resources.


Assuntos
Zanthoxylum , Zanthoxylum/química , Amidas/química , Extratos Vegetais/farmacologia , China
8.
Phytochemistry ; 211: 113704, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37146703

RESUMO

Zanthoxylum armatum DC. is an important medicinal plant, and its pericarps are commonly used as a natural spice in Asian countries. In this study, fifteen alkylamides were isolated and elucidated from the pericarps of Z. armatum, including five undescribed alkylamides (1-5) and ten known compounds (6-15). The molecular structures of all compounds were elucidated by 1D and 2D NMR spectroscopic analysis and mass spectrometry, among which the absolute configuration of compound 15 was determined by the Mo2(OAc)4-induced circular dichroism method. Moreover, all compounds were screened for their neuroprotective activity against H2O2-induced oxidative stress in human neuroblastoma SH-SY5Y cells for the evaluation of their neuroprotective activity. Especially, compounds 2-4 expressed potential neuroprotective activity, and further research showed that the cell viability was significantly enhanced in a concentration dependent manner when the cells were treated for 6 h. Moreover, compounds 2-4 could decrease reactive oxygen species accumulation. This paper enriched structure types of alkylamides in Zanthoxylum armatum.


Assuntos
Neuroblastoma , Zanthoxylum , Humanos , Zanthoxylum/química , Peróxido de Hidrogênio/farmacologia , Espectrometria de Massas , Estrutura Molecular
9.
Molecules ; 28(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36903325

RESUMO

Various physiological and pathological changes are related to the occurrence and development of neurodegenerative diseases. Neuroinflammation is a major trigger and exacerbation of neurodegenerative diseases. One of the main symptoms of neuritis is the activation of microglia. Thus, to alleviate the occurrence of neuroinflammatory diseases, an important method is to inhibit the abnormal activation of microglia. This research evaluated the inhibitory effect of trans-ferulic acid (TJZ-1) and methyl ferulate (TJZ-2), isolated from Zanthoxylum armatum, on neuroinflammation, by establishing the human HMC3 microglial cell neuroinflammation model induced by lipopolysaccharide (LPS). The results showed both compounds significantly inhibited the production and expression of nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß) contents, and increased the level of anti-inflammatory factor ß-endorphin (ß-EP). Furthermore, TJZ-1 and TJZ-2 can inhibit LPS-induced activation of nuclear factor kappa B (NF-κB). It was found that of two ferulic acid derivatives, both had anti-neuroinflammatory effects by inhibiting the NF-κB signaling pathway and regulating the release of inflammatory mediators, such as NO, TNF-α, IL-1ß, and ß-EP. This is the first report that demonstrates that TJZ-1 and TJZ-2 had inhibitory effects on LPS-induced neuroinflammation in human HMC3 microglial cells, which indicates that two ferulic acid derivates from Z. armatum could be used as potential anti-neuroinflammatory agents.


Assuntos
Microglia , NF-kappa B , Humanos , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Doenças Neuroinflamatórias , Lipopolissacarídeos/farmacologia , Transdução de Sinais , Inflamação/metabolismo , Óxido Nítrico/metabolismo
10.
Cell Biosci ; 12(1): 204, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36539848

RESUMO

BACKGROUND: Sustained cardiac hypertrophy often develops maladaptive myocardial remodeling, and eventually progresses to heart failure and sudden death. Therefore, maladaptive hypertrophy is considered as a critical therapeutic target for many heart diseases. Mitophagy, a crucial mechanism in mitochondria quality control and cellular homeostasis, has been implicated in diverse cardiac disorders such as myocardial infarction, diabetic cardiomyopathy, cardiac hypertrophy and heart failure. However, what role mitophagy plays in heart diseases remains an enigma. PARKIN functions as an E3 ubiquitin protein ligase and mediates mitophagy cascades. It is still unclear whether PARKIN participates in the regulation of cardiac hypertrophy. RESULTS: PARKIN was downregulated in cardiomyocytes and hearts under hypertrophic stress. Enforced expression of PARKIN inhibited Ang II-induced cardiomyocyte hypertrophy. Compared to wide-type mice with Ang II-induced cardiac hypertrophy, Parkin transgenic mice subjected to Ang II administration showed attenuated cardiac hypertrophy and improved cardiac function. In addition, mitophagy machinery was impaired in response to Ang II, which was rescued by overexpression of PARKIN. PARKIN exerted the anti-hypertrophy effect through restoring mitophagy. In further exploring the underlying mechanisms, we found that PARKIN was transcriptionally activated by FOXO3a. FOXO3a promoted mitophagy and suppressed cardiac hypertrophy by targeting Parkin. CONCLUSIONS: The present study reveals a novel cardiac hypertrophy regulating model composed of FOXO3a, PARKIN and mitophagy program. Modulation of their levels may provide a new approach for preventing cardiac hypertrophy and heart failure.

11.
Molecules ; 27(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36364317

RESUMO

Natural products (NPs) were a rich source of diverse bioactive molecules. Most anti-tumor agents were built on natural scaffolds. Nardostachys jatamansi DC. was an important plant used to process the traditional Chinese herbal medicines "gansong". Pancreatic cancer was the fourth most common cause of cancer-related death in the world. Hence, there was an urgent need to develop novel agents for the treatment of pancreatic cancer. In this paper, nardoguaianone L (G-6) is isolated from N. jatamansi, which inhibited SW1990 cells colony formation and cell migration, and induced cell apoptosis. Furthermore, we analyzed the differential expression proteins after treatment with G-6 in SW1990 cells by using iTRAQ/TMT-based quantitative proteomics technology, and the results showed that G-6 regulated 143 proteins' differential expression by GO annotation, including biological process, cellular component, and molecular function. Meanwhile, KEGG enrichment found that with Human T-cell leukemia virus, one infection was the most highly enhanced pathway. Furthermore, the MET/PTEN/TGF-ß pathway was identified as a significant pathway that had important biological functions, including cell migration and motility by PPI network analysis in SW1990 cells. Taken together, our study found that G-6 is a potential anti-pancreatic cancer agent with regulation of MET/PTEN/TGF-ß pathway.


Assuntos
Nardostachys , Neoplasias , Humanos , Apoptose , Fator de Crescimento Transformador beta
12.
Mikrochim Acta ; 189(11): 436, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36319898

RESUMO

As a prodrug-converting enzyme, ß-glucuronidase (ß-GCase) is a lysosomal enzyme participating in the release of glucose from glucopyranosyl glycoside. In this work, for the first time, we have developed an analytical method exhibiting fluorometric signals for straightforward determination of ß-GCase using silicon nanoparticles (Si NPs). Via hydrothermal treatment, in the water bath of 70 °C for 50 min, dopamine (DA) reacts with (3-[2-(2-aminoethylamino) ethylamino] propyltrimethoxysilane) (AEEA) to produce green fluorescent Si NPs. Enlightened by such easy reaction and ß-GCase-triggered specific hydrolysis of dopamine-4-ß-D-glucuronide (DA-GCU) into DA, we have designed an analytical method for ß-GCase sensing through the production of Si NPs. Therefore, through the designed sensing platform, ß-GCase activity was monitored, and the limit of detection (LOD) for this study was 0.02 U/L. Furthermore, the feasibility of the method was assessed by measuring ß-GCase activity in human serum where recoveries and RSD were in the ranges 99-104% and 1.37-3.44, respectively.


Assuntos
Nanopartículas , Silício , Humanos , Glucuronidase , Dopamina , Fluorometria/métodos
13.
Molecules ; 27(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36296442

RESUMO

Pancreatic cancer is the seventh leading cause of cancer-related death worldwide and is known as "the king of cancers". Currently, gemcitabine (GEM) as the clinical drug of choice for chemotherapy of advanced pancreatic cancer has poor drug sensitivity and ineffective chemotherapy. Nardoguaianone L (G-6) is a novel guaiane-type sesquiterpenoid isolated from Nardostachys jatamansi DC., and it exhibits anti-tumor activity. Based on the newly discovered G-6 with anti-pancreatic cancer activity in our laboratory, this paper aimed to evaluate the potential value of the combination of G-6 and GEM in SW1990 cells, including cell viability, cell apoptosis, colony assay and tandem mass tags (TMT) marker-based proteomic technology. These results showed that G-6 combined with GEM significantly inhibited cell viability, and the effect was more obvious than that with single drug. In addition, the use of TMT marker-based proteomic technology demonstrated that the AGE-RAGE signaling pathway was activated after medication-combination. Furthermore, reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) assays were used to validate the proteomic results. Finally, apoptosis was detected by flow cytometry. In conclusion, G-6 combined with GEM induced an increase in ROS level and a decrease in MMP in SW1990 cells through the AGE-RAGE signaling pathway, ultimately leading to apoptosis. G-6 improved the effect of GEM chemotherapy and may be used as a potential combination therapy for pancreatic cancer.


Assuntos
Nardostachys , Neoplasias Pancreáticas , Espécies Reativas de Oxigênio/farmacologia , Proteômica , Linhagem Celular Tumoral , Neoplasias Pancreáticas/patologia , Transdução de Sinais , Apoptose , Proliferação de Células , Gencitabina , Neoplasias Pancreáticas
14.
J Food Biochem ; 46(12): e14448, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36226816

RESUMO

Oxygen is a necessary substance for life activities, but reduced oxygen utilization due to high altitude exposure and respiratory dysfunction diseases could lead to pathological changes in the organisms. Herein gypenosides, the active ingredients in the food and medicine resource plant Gynostemma pentaphyllum (Thunb.) Makino were found to alleviate hypoxia-induced injury in PC12 cells. Moreover, hypoxia induced an increase in Ca2+ and reactive oxygen species content, and such patterns were both significantly reduced by gypenosides treatment. At the same time, gypenosides significantly blocked the decrease of both NO content and mitochondrial membrane potential caused by hypoxia. Furthermore, gypenosides gavage treatment significantly prolonged the survival time of C57BL/6 mice in confinement up to 24.3% and enhanced the locomotor ability of mice. Therefore, gypenosides have good neuroprotective effects and hypoxia tolerance activity and have the prospect of being developed as a preventive and therapeutic drug for hypoxia-related diseases. PRACTICAL APPLICATIONS: Gypenosides can enhance tolerance of cells and mice to hypoxia and have the potential to be developed into hypoxia-resistant health food and drugs.


Assuntos
Gynostemma , Hipóxia , Ratos , Camundongos , Animais , Células PC12 , Camundongos Endogâmicos C57BL , Hipóxia/tratamento farmacológico , Oxigênio
15.
Fitoterapia ; 163: 105337, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36265759

RESUMO

Twenty-two isolates, including two previously undescribed compounds identified as benzoyltembamide (1) and P-benzoyphenethyl anisate (21), were isolated and identified from a methanol extract of the roots of Zanthoxylum bungeanum Maxim. (Rutaceae) using diverse chromatographic materials and pre-HPLC. Their structures were elucidated on the basis of spectroscopic and spectrometric data analysis such as HR-ESI-MS, 1D and 2D NMR, IR and UV, as well as single-crystal X-ray diffraction for crystalline compounds. All the compounds (except for compound 16) were isolated from the roots of Z. bungeanum for the first time. Selected compounds were evaluated for their antioxidant activities. Compound 18 attenuated the H2O2-induced cytotoxicity and blocked the accumulation of ROS in SH-SY5Y cells, and exhibited potent neuroprotective activity.


Assuntos
Neuroblastoma , Zanthoxylum , Humanos , Zanthoxylum/química , Peróxido de Hidrogênio , Estrutura Molecular , Cromatografia Líquida de Alta Pressão
16.
Molecules ; 27(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36144577

RESUMO

Pancreatic cancer has an extremely poor prognosis, and the clinical drugs for the treatment of pancreatic cancer are usually multi-drug combinations. Therefore, it is necessary to search for and find specific new bioactive agents against pancreatic cancer. Carabrone is a carabrane-type sesquiterpenolide extracted from Carpesium cernuum L., and this natural compound has been reported to be a potential anti-tumor agent. However, there are few reports on the function of carabrone related to anti-tumor activity in pancreatic cancer. Herein, cell experiments indicated that carabrone had anti-proliferation inhibition and anti-migration and anti-invasion activity against SW1990 cells. Furthermore, the tandem mass spectrometry and network pharmacology analysis showed that this activity may be related to the ferroptosis and Hippo signaling pathway. Taken together, our results demonstrated that carabrone exhibited prominent anti-pancreatic cancer activity and could be a promising agent against pancreatic cancer.


Assuntos
Asteraceae , Ferroptose , Neoplasias Pancreáticas , Asteraceae/química , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Pâncreas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas
17.
J Chromatogr A ; 1679: 463411, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35973337

RESUMO

Prolyl hydroxylase 2 (PHD2) is a key oxygen receptor regulating oxygen homeostasis in human body, and it is one of the important targets for drug research and development of hypoxia related diseases. In PHD2 enzymatic reaction, the structure of substrate (HIF-1α556-574) and product (hydroxylated HIF-1α) peptide only differ from one oxygen atom (MW>2000), which makes it a great challenge to separate them accurately and efficiently. In this work, the direct separation and detection of HIF-1α and hydroxylated HIF-1α has been firstly reported based on micellar electrokinetic chromatography (MEKC). Under optimized conditions, the intraday RSD of peak area and apparent electrophoretic mobility of hydroxylated HIF-1α were 1.87% and 0.81% respectively, and the interday RSD were 2.01% and 1.03% respectively. The LOD and LOQ of the MEKC method were 10 µM and 50 µM respectively, and the recoveries was 98.42-105.38%. Subsequently, the feasibility and accuracy of MEKC method to screen PHD2 inhibitors were confirmed by using roxadustat, and the IC50 (10.36 µM) and inhibitor type (competitive) were consistent with literature. Finally, the method was used to screen the PHD2 inhibitory activity of five traditional Chinese medicines (TCMs). The present work not only overcomes the difficulties of direct quantitative detection of hydroxylated HIF-1α, but also provides technical support for exploring and discovering new drug leads for hypoxia-related diseases from complex matrix such as TCMs.


Assuntos
Prolina Dioxigenases do Fator Induzível por Hipóxia , Inibidores de Prolil-Hidrolase , Humanos , Hipóxia , Oxigênio , Peptídeos , Pró-Colágeno-Prolina Dioxigenase , Prolil Hidroxilases , Pesquisa
18.
Fitoterapia ; 162: 105280, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35964850

RESUMO

Three unreported dammarane-type triterpenoids with rare skeletons (1-3), along with one undescribed gypenoside (4), were isolated from the aerial parts of Gynostemma pentaphyllum using diverse chromatographic materials and pre-HPLC. Their structures were elucidated on the basis of spectroscopic and spectrometric data, while the absolute configurations of 1-3 were assessed via electronic circular dichroism (ECD) analyses. Notably, compounds 1-3 possess a 3,19-hemiketal bridge in the A ring. Saponin 4 possesses an unreported 20,25-oxa structural moiety. Their antiproliferative effects against HepG2, MCF-7, and DU145 cell lines were screened. Compounds 1-3 displayed moderate cytotoxicity with IC50 values ranging from 13.7 ± 0.2 to 32.0 ± 1.7 µM.


Assuntos
Antineoplásicos , Saponinas , Triterpenos , Gynostemma , Estrutura Molecular , Saponinas/farmacologia , Esqueleto , Triterpenos/química , Triterpenos/farmacologia , Damaranos
19.
Toxicol Appl Pharmacol ; 448: 116092, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35654276

RESUMO

Gypenosides are major bioactive ingredients of G. pentaphyllum. In our previous study, we found that gypenosides had neuroprotective effects against hypoxia-induced injury. In the current study, we focused on the protective effects of gypenoside-14 (GP-14), which is one of the newly identified bioactive components, on neuronal injury caused by severe hypoxia (0.3% O2). The results showed that GP-14 pretreatment alleviated the cell viability damage and apoptosis induced by hypoxia in PC12 cells. Moreover, GP-14 pretreatment also attenuated primary neuron injuries under hypoxic conditions. Additionally, GP-14 pretreatment significantly ameliorated neuronal damage in the hippocampal region induced by high-altitude cerebral edema (HACE). At the molecular level, GP-14 pretreatment reversed the decreased activities of the AKT and ERK signaling pathways caused by hypoxia in PC12 cells and primary neurons. To comprehensively explore the possible mechanisms, transcriptome sequencing was conducted, and these results indicated that GP-14 could alter the transcriptional profiles of primary neuron. Taken together, our results suggest that GP-14 acts as a neuroprotective agent to protect against neuronal damage induced by severe hypoxia and it is a promising compound for the development of neuroprotective drugs.


Assuntos
Sistema de Sinalização das MAP Quinases , Neurônios , Fármacos Neuroprotetores , Proteínas Proto-Oncogênicas c-akt , Animais , Apoptose/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Perfilação da Expressão Gênica , Gynostemma/química , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos
20.
Anal Methods ; 14(24): 2431-2438, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35678556

RESUMO

Alkaline phosphatase (ALP) plays significant roles in regulating intracellular processes and is an important biomarker connected to several diseases. In this work, one facile and sensitive sensing platform based on CQD-silver nanocomposites (CQD-silver NPs) for colorimetric detection of alkaline phosphatase (ALP) was introduced. ALP triggers the removal of the phosphate group of ascorbic acid 2-phosphate (AA2P), which is then transformed into ascorbic acid (AA). The as-obtained AA can easily cause significant aggregation of monodispersed NPs and cause the system color to turn from bright yellow to gray. Based on the color change of the ratio of 490 nm/630 nm, ALP was sensitively and selectively detected. Under the optimum, the established method showed linearity for ALP in the range of 0.1-50 U L-1 and the detection limit was low at 0.035 U L-1, and it was subjected to ALP inhibitor screening from goji berry extract. These results indicated that the colorimetric system can be used as a simple tool for visual and fast evaluation of ALP activity as well as providing an alternative to screen ALP inhibitors.


Assuntos
Nanocompostos , Prata , Fosfatase Alcalina , Colorimetria/métodos , Corantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA