Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Adv Sci (Weinh) ; : e2403026, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073033

RESUMO

High-performance biosensors play a crucial role in elucidating the intricate spatiotemporal regulatory roles and dynamics of membrane phospholipids. However, enhancing the sensitivity and imaging performance remains a significant challenge. Here, optogenetic-based strategies are presented to optimize phospholipid biosensors. These strategies involves presequestering unbound biosensors in the cell nucleus and regulating their cytosolic levels with blue light to minimize background signal interference in phospholipid detection, particularly under conditions of high expression levels of biosensor. Furthermore, optically controlled phase separation and the SunTag system are employed to generate punctate probes for substrate detection, thereby amplifying biosensor signals and enhancing visualization of the detection process. These improved phospholipid biosensors hold great potential for enhancing the understanding of the spatiotemporal dynamics and regulatory roles of membrane lipids in live cells and the methodological insights in this study might be valuable for developing other high-performance biosensors.

2.
J Diabetes ; 16(6): e13557, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38751366

RESUMO

Diabetes mellitus (DM) is a common chronic disease affecting humans globally. It is characterized by abnormally elevated blood glucose levels due to the failure of insulin production or reduction of insulin sensitivity and functionality. Insulin and glucagon-like peptide (GLP)-1 replenishment or improvement of insulin resistance are the two major strategies to treat diabetes. Recently, optogenetics that uses genetically encoded light-sensitive proteins to precisely control cell functions has been regarded as a novel therapeutic strategy for diabetes. Here, we summarize the latest development of optogenetics and its integration with synthetic biology approaches to produce light-responsive cells for insulin/GLP-1 production, amelioration of insulin resistance and neuromodulation of insulin secretion. In addition, we introduce the development of cell encapsulation and delivery methods and smart bioelectronic devices for the in vivo application of optogenetics-based cell therapy in diabetes. The remaining challenges for optogenetics-based cell therapy in the clinical translational study are also discussed.


Assuntos
Diabetes Mellitus , Optogenética , Humanos , Optogenética/métodos , Diabetes Mellitus/terapia , Animais , Insulina/metabolismo , Resistência à Insulina , Peptídeo 1 Semelhante ao Glucagon , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células Secretoras de Insulina/metabolismo
4.
J Cell Biochem ; 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36924104

RESUMO

The coordinated interaction between mitochondria and lysosomes, mainly manifested by mitophagy, mitochondria-derived vesicles, and direct physical contact, is essential for maintaining cellular life activities. The VPS39 subunit of the homotypic fusion and protein sorting complex could play a key role in the regulation of organelle dynamics, such as endolysosomal trafficking and mitochondria-vacuole/lysosome crosstalk, thus contributing to a variety of physiological functions. The abnormalities of VPS39 and related subunits have been reported to be involved in the pathological process of some diseases. Here, we analyze the potential mechanisms and the existing problems of VPS39 in regulating organelle dynamics, which, in turn, regulate physiological functions and disease pathogenesis, so as to provide new clues for facilitating the discovery of therapeutic targets for mitochondrial and lysosomal diseases.

5.
Phytother Res ; 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36786412

RESUMO

Obesity is a kind of chronic disease due to a long-term imbalance between energy intake and expenditure. In recent years, the number of obese people around the world has soared, and obesity problem should not be underestimated. Obesity is characterized by changes in the adipose microenvironment, mainly manifested as hypertrophy, chronic inflammatory status, hypoxia, and fibrosis, thus contributing to the pathological changes of other tissues. A plethora of phytochemicals have been found to improve adipose microenvironment, thus prevent and resist obesity, providing a new research direction for the treatment of obesity and related diseases. This paper discusses remodeling of the adipose tissue microenvironment as a therapeutic avenue and reviews the progress of phytochemicals in fighting obesity by improving the adipose microenvironment.

6.
Metabolites ; 13(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36676976

RESUMO

The pathogenesis of diabetes mellitus is characterized by insulin resistance and islet ß-cell dysfunction. Up to now, the focus of diabetes treatment has been to control blood glucose to prevent diabetic complications. There is an urgent need to develop a therapeutic approach to restore the mass and function of ß-cells. Although exogenous islet cell transplantation has been used to help patients control blood glucose, it is costly and has very narrow application scenario. So far, small molecules have been reported to stimulate ß-cell proliferation and expand ß-cell mass, increasing insulin secretion. Dual-specificity tyrosine-regulated kinase 1A (DYRK1A) inhibitors can induce human ß-cell proliferation in vitro and in vivo, and show great potential in the field of diabetes therapeutics. From this perspective, we elaborated on the mechanism by which DYRK1A inhibitors regulate the proliferation of pancreatic ß-cells, and summarized several effective natural DYRK1A inhibitors, hoping to provide clues for subsequent structural optimization and drug development in the future.

7.
Acta Biomater ; 135: 1-12, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34461347

RESUMO

Upconversion-mediated optogenetics is an emerging powerful technique to remotely control and manipulate the deep-tissue protein functions and signaling pathway activation. This technique uses lanthanide upconversion nanoparticles (UCNPs) as light transducers and through near-infrared light to indirectly activate the traditional optogenetic proteins. With the merits of high spatiotemporal resolution and minimal invasiveness, this technique enables cell-type specific manipulation of cellular activities in deep tissues as well as in living animals. In this review, we introduce the latest development of optogenetic modules and UCNPs, with emphasis on the integration of UCNPs with cellular optogenetics and their biomedical applications on the control of neural/brain activity, cancer therapy and cardiac optogenetics in vivo. Furthermore, we analyze the current developed strategies to optimize and advance the upconversion-mediated optogenetics and discuss the remaining challenges of its further applications in biomedical study and clinical translational research. STATEMENT OF SIGNIFICANCE: Optogenetics harnesses photoactivatable proteins to optically stimulate and control intracellular activities. UCNPs-mediated NIR-activatable optogenetics uses lanthanide upconversion nanoparticles (UCNPs) as light transducers and utilizes near-infrared (NIR) light to indirectly activate the traditional optogenetic proteins. The integration of UCNPs with cellular optogenetics has showed great promise in biomedical applications in regulating neural/brain activity, cancer therapy and cardiac optogenetics in vivo. The evolution and optimization of functional UCNPs and the discovery and engineering of novel optogenetic modules would both contribute to the advance of such unique hybrid technology, which may lead to discoveries in biomedical research and provide new treatments for human diseases.


Assuntos
Nanopartículas , Optogenética , Animais , Humanos , Raios Infravermelhos , Neurônios , Transdução de Sinais
8.
Prog Lipid Res ; 81: 101070, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33181180

RESUMO

Phospholipase D (PLD) and its metabolic active product phosphatidic acid (PA) engage in a wide range of physiopathologic processes in the cell. PLDs have been considered as a potential and promising drug target. Recently, the crystal structures of PLDs in mammalian and plant have been solved at atomic resolution. These achievements allow us to understand the structural differences among different species of PLDs and the functions of their key domains. In this review, we summarize the sequence and structure of different species of PLD isoforms, and discuss the structural mechanisms for PLD interactions with their binding partners and the functions of each key domain in the regulation of PLDs activation and catalytic reaction.


Assuntos
Fosfolipase D , Animais , Ácidos Fosfatídicos , Plantas , Isoformas de Proteínas
9.
Front Bioeng Biotechnol ; 8: 590013, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330421

RESUMO

Background: Traditional rehabilitation with uniformed intensity would ignore individual tolerance and introduce the second injury to stroke survivors due to overloaded training. However, effective control of the training intensity of different stroke survivors is still lacking. The purpose of the study was to investigate the rehabilitative effects of electromyography (EMG)-based fatigue-controlled treadmill training on rat stroke model. Methods: Sprague-Dawley rats after intracerebral hemorrhage and EMG electrode implantation surgeries were randomly distributed into three groups: the control group (CTRL, n = 11), forced training group (FOR-T, n = 11), and fatigue-controlled training group (FAT-C, n = 11). The rehabilitation interventions were delivered every day from day 2 to day 14 post-stroke. No training was delivered to the CTRL group. The rats in the FOR-T group were forced to run on the treadmill without rest. The fatigue level was monitored in the FAT-C group through the drop rate of EMG mean power frequency, and rest was applied to the rats when the fatigue level exceeded the moderate fatigue threshold. The speed and accumulated running duration were comparable in the FAT-C and the FOR-T groups. Daily evaluation of the motor functions was performed using the modified Neurological Severity Score. Running symmetry was investigated by the symmetry index of EMG bursts collected from both hind limbs during training. The expression level of neurofilament-light in the striatum was measured to evaluate the neuroplasticity. Results: The FAT-C group showed significantly lower modified Neurological Severity Score compared with the FOR-T (P ≤ 0.003) and CTRL (P ≤ 0.003) groups. The FAT-C group showed a significant increase in the symmetry of hind limbs since day 7 (P = 0.000), whereas the FOR-T group did not (P = 0.349). The FAT-C group showed a higher concentration of neurofilament-light compared to the CTRL group (P = 0.005) in the unaffected striatum and the FOR-T group (P = 0.021) in the affected striatum. Conclusion: The treadmill training with moderate fatigue level controlled was more effective in motor restoration than forced training. The fatigue-controlled physical training also demonstrated positive effects in the striatum neuroplasticity. This study indicated that protocol with individual fatigue-controlled training should be considered in both animal and clinical studies for better stroke rehabilitation.

10.
Biol Rev Camb Philos Soc ; 95(4): 911-935, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32073216

RESUMO

The phospholipase D (PLD) family has a ubiquitous expression in cells. PLD isoforms (PLDs) and their hydrolysate phosphatidic acid (PA) have been demonstrated to engage in multiple stages of cancer progression. Aberrant expression of PLDs, especially PLD1 and PLD2, has been detected in various cancers. Inhibition or elimination of PLDs activity has been shown to reduce tumour growth and metastasis. PLDs and PA also serve as downstream effectors of various cell-surface receptors, to trigger and regulate propagation of intracellular signals in the process of tumourigenesis and metastasis. Here, we discuss recent advances in understanding the functions of PLDs and PA in discrete stages of cancer progression, including cancer cell growth, invasion and migration, and angiogenesis, with special emphasis on the tumour-associated signalling pathways mediated by PLDs and PA and the functional importance of PLDs and PA in cancer therapy.


Assuntos
Neoplasias/enzimologia , Neoplasias/patologia , Fosfolipase D/metabolismo , Indutores da Angiogênese , Animais , Movimento Celular/fisiologia , Progressão da Doença , Transição Epitelial-Mesenquimal/fisiologia , Humanos , Camundongos , Invasividade Neoplásica/prevenção & controle , Metástase Neoplásica/prevenção & controle , Neoplasias/prevenção & controle , Ácidos Fosfatídicos/metabolismo , Receptores de Fatores de Crescimento/metabolismo
11.
Front Chem ; 8: 601436, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33520932

RESUMO

Despite the urgent need to image living specimens for cutting-edge biological research, most existing fluorescent labeling methods suffer from either poor optical properties or complicated operations required to realize cell-permeability and specificity. In this study, we introduce a method to overcome these limits-taking advantage of the intrinsic affinity of bright and photostable fluorophores, no matter if they are supposed to be live-cell incompatible or not. Incubated with living cells and tissues in particular conditions (concentration and temperature), some Atto and BODIPY dyes show live-cell labeling capability for specific organelles without physical cell-penetration or chemical modifications. Notably, by using Atto 647N as a live-cell mitochondrial marker, we obtain 2.5-time enhancement of brightness and photostability compared with the most commonly used SiR dye in long-term imaging. Our strategy has expanded the scientist's toolbox for understanding the dynamics and interactions of subcellular structures in living specimens.

12.
Biochem Biophys Res Commun ; 519(2): 253-260, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31495494

RESUMO

The exocyst, an evolutionarily conserved octomeric protein complex, has been demonstrated as an essential component for vesicle tethering during cell exocytosis, and participates in various physiological processes in the cell. Although subunits of the exocyst complex have been reported to be involved in the regulation of TGF-ß induced cancer cell migration and epithelial-mesenchymal transition (EMT), the potential function of Sec3 in these regulated processes remains unclear. Here, we show that Sec3 knockdown abolishes TGF-ß stimulated A549 lung cancer cell migration in vitro and causes defects in the regulated EMT process. In addition, we find that depletion of Sec3 significantly inhibits TGF-ß stimulated Akt phosphorylation in A549 cells, whereas the increase of Smad2 phosphorylation is unaffected. Furthermore, replenishment of an RNAi-resistant form of Sec3 is shown to restore the defects of TGF-ß induced cell migration, EMT and Akt signaling activation. In summary, our study provides evidence that Sec3 is involved in TGF-ß induced cell migration and EMT processes, presumably through the regulation of PI3K/Akt signaling activation in A549 cancer cells.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Fator de Crescimento Transformador beta/farmacologia , Proteínas de Transporte Vesicular/deficiência , Células A549 , Movimento Celular/efeitos dos fármacos , Humanos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Cicatrização/efeitos dos fármacos
13.
Eur J Pharm Sci ; 137: 105002, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31302215

RESUMO

Here, we introduce core-shell nanofibers based on chitosan (CS)-loaded poly (ε-caprolactone) (PCL) shell and 5-fluorouracil (5-FU)-loaded Poly(N-vinyl-2-pyrrolidone) (PVP) core for synergistic therapy of melanoma skin cancer. The yielded nanofibers exhibited an average diameter of 503 nm with high drug-encapsulating efficiency and good mechanical properties. Moreover, the burst release of 5-FU significantly inhibited melanoma skin cancer cells (B16F10 cells), and the sustained release of CS exhibited "remedying effects" on normal skin cells (L929 cells) after suffering adverse effects from 5-FU treatment. For the B16F10 cells, the early apoptosis cells increased from 0.8% to 62.2% after being treated with blended films loaded with 5-FU (2 wt%) for 24 h; for the L929 cells, the vital cells increased from 68.9% to 77.0%, and the early apoptosis of stage cells decreased from 12.3% to 10.9% after being treated with blended films with CS (8 wt%) for 24 h. In conclusion, the results introduced in this work can be a promising strategy for cancer treatment and possesses synergism potential to broaden an avenue for chemotherapeutic therapy with minimum adverse effects on normal cells.


Assuntos
Antineoplásicos/administração & dosagem , Quitosana/administração & dosagem , Sistemas de Liberação de Medicamentos , Fluoruracila/administração & dosagem , Nanofibras/administração & dosagem , Poliésteres/administração & dosagem , Povidona/administração & dosagem , Animais , Antineoplásicos/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Quitosana/química , Liberação Controlada de Fármacos , Sinergismo Farmacológico , Fluoruracila/química , Melanoma Experimental/tratamento farmacológico , Camundongos , Nanofibras/química , Poliésteres/química , Povidona/química , Neoplasias Cutâneas/tratamento farmacológico
14.
Can J Physiol Pharmacol ; 96(8): 765-771, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29641229

RESUMO

Coumarins extensively exist in plants and are utilized against diabetes in some folk medicines. Recent studies have demonstrated that oxidative stress plays a crucial role in the etiology and pathogenesis of diabetes mellitus. We investigated the antioxidant ability of 3 coumarins (osthole, esculin, and fraxetin) in type 2 diabetes. After being fed a high-fat diet, ICR mice were exposed to low doses of streptozotocin and then treated with experimental coumarins for 5 weeks. We found osthole, esculin, and metformin significantly lowered fasting blood glucose, HOMA-IR, and 3 blood lipids (total cholesterol, total triglyceride, free fatty acids), and increased insulin levels, while fraxetin only enhanced insulin levels and lessened free fatty acids. Both osthole and esculin had antioxidative effects in pancreas through elevating the activities of glutathione peroxidase, catalase, and superoxide dismutase; fraxetin, however, merely heightened catalase activity. By contrast, 3 coumarins significantly increased those antioxidase activities in liver. Hematoxylin and eosin staining revealed 3 coumarins, especially osthole, attenuated cellular derangement, blurry fringes of hepatic sinusoid and extensive vacuolization due to hepatocellular lipid accumulation, and lessened inflammatory infiltration in pancreas. The glomerular and islet structure of diabetic mice were improved, with reduced mesangial matrix and glomerular basement membrane thickening. Therefore, our study supports that coumarins could be promising candidates against type 2 diabetes through antioxidative mechanisms.


Assuntos
Antioxidantes/uso terapêutico , Cumarínicos/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Animais , Antioxidantes/farmacologia , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Catalase/metabolismo , Cumarínicos/farmacologia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/enzimologia , Dieta Hiperlipídica , Jejum , Glutationa Peroxidase/metabolismo , Insulina/sangue , Lipídeos/sangue , Masculino , Camundongos Endogâmicos ICR , Especificidade de Órgãos , Estreptozocina , Superóxido Dismutase/metabolismo
15.
J Pharm Pharmacol ; 69(10): 1253-1264, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28675434

RESUMO

OBJECTIVES: Even with great advances in modern medicine and therapeutic agent development, the search for effective antidiabetic drugs remains challenging. Coumarins are secondary metabolites found widely in nature plants and used mainly in anticoagulation and antithrombotic therapy. Over the past two decades, however, there has been an increasing body of literatures related to the effects of coumarins and their derivatives on diabetes and its complications. This review aimed to focus on research findings concerning the effects of coumarins against diabetes and its complications using in-vitro and in-vivo animal models, and also to discuss cellular and molecular mechanisms underlying these effects. KEY FINDINGS: The search for new coumarins against diabetes and it complications, either isolated from traditional medicine or chemically synthesized, has been constantly expanding. The cellular and molecular mechanisms involved include protecting pancreatic beta cells from damage, improving abnormal insulin signalling, reducing oxidative stress/inflammation, activating AMP-activated protein kinase (AMPK), inhibiting α-glucosidases and ameliorating diabetic complications. CONCLUSIONS: The effects and mechanisms of coumarins and their derivatives upon diabetes and its complications are discussed in current review. Further investigations remain to be carried out to develop a promising antidiabetic agent based on coumarin cores.


Assuntos
Cumarínicos/uso terapêutico , Complicações do Diabetes/tratamento farmacológico , Diabetes Mellitus/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Cumarínicos/química , Cumarínicos/farmacologia , Complicações do Diabetes/metabolismo , Diabetes Mellitus/metabolismo , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Resistência à Insulina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA