Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 379
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38997220

RESUMO

OBJECTIVES: Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a major nosocomial infectious pathogen with rapidly increasing prevalence. The genomic epidemiological characteristics of CRKP nationwide, especially the evolving trends within the predominant clones, should be evaluated clearly. METHODS: We collected 3415 K. pneumoniae strains from 28 hospitals across China. Antimicrobial susceptibility testing and WGS were performed. Subsequent genomic analyses, including sequence typing, K-locus (KL) identification, antimicrobial resistance gene screening, and virulence score assessment were performed. The phylogenetic relationship of clonal group 11 was determined based on core-genome analysis, and the presence of the pLVPK-like virulence plasmid in ST11 isolates was confirmed using plasmid core-gene analysis. Additionally, the trends of the ST11 lineage with different KL types on a global scale were investigated using Beast2. RESULTS: Of the K. pneumoniae strains, 708 were identified as CRKP isolates (20.7%), of which 97.7% were MDR. ST11 was the predominant clone, and KPC-2 was the prevalent carbapenemase in China, although the prevalence of specific clones and carbapenemases varied by geographic region. Among ST11 isolates, KL47 and KL64 were the predominant KL types, and KL64 gradually replaced KL47, with a higher percentage of KL64 isolates harbouring the pLVPK-like plasmid. Global genome data showed a significant increase in the effective population size of KL64 over the last 5 years. CONCLUSIONS: The prevalence of CRKP was very high in certain regions in China. The increasing convergence of virulence and resistance, particularly in ST11-KL64 isolates, should be given more attention and further investigation.

2.
Front Microbiol ; 15: 1416454, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38946899

RESUMO

Introduction: The dissemination of carbapenem-resistant Enterobacteriales (CRE) in nosocomial settings is primarily associated with the horizontal transfer of plasmids. However, limited research has focused on the in-host transferability of carbapenem resistance. In this study, ten isolates were collected from gut specimens of five individuals, each hosting two different species, including Escherichia coli, Klebsiella pneumoniae, Klebsiella aerogenes, Enterobacter cloacae, or Citrobacter koseri. Methods: Species identification and antimicrobial susceptibility were determined by MALDI-TOF MS and broth microdilution method. Carbapenemase genes were detected and localized using PCR, S1-PFGE and southern blot. The transferability of carbapenemase genes between species was investigated through filter mating experiments, and the genetic contexts of the plasmids were analyzed using whole genome sequencing. Results and discussion: Our results revealed that each of the ten isolates harbored a carbapenemase gene, including bla NDM-5, bla NDM-1, or bla KPC-2, on a plasmid. Five different plasmids were successfully transferred to recipient cells of E. coli, K. pneumoniae or A. baumannii by transconjugation. The genetic contexts of the carbapenemase gene were remarkably similar between the two CRE isolates from each individual. This study highlights the potential for interspecies plasmid transmission in human gut, emphasizing the colonization of CRE as a significant risk factor for the dissemination of carbapenemase genes within the host. These findings underscore the need for appropriate intestinal CRE screening and colonization prevention.

3.
Microbiol Spectr ; : e0025824, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958437

RESUMO

To monitor the resistance rate and gain a deeper understanding of the resistance mechanisms, we conducted over a 2-year surveillance focusing on the Klebsiella pneumoniae associated with the clinical usage of ceftazidime-avibactam (CZA) in a teaching hospital. A total of 4,641 K. pneumoniae isolates were screened to identify the CZA resistance through antimicrobial susceptibility testing. Comprehensive analyses, including homology analysis, conjugation experiments, clone assays, and whole genome sequencing, were furtherly performed on the CZA-resistant strains. In total, four CZA-resistant K. pneumoniae (CZA-R-Kp) strains were separated from four patients, in which three of them received CZA treatment during the hospitalization, accounting for a 4% (3/75) resistance development rate of K. pneumoniae under CZA stress. All CZA-R-Kp isolates were found to possess variants of blaKPC-2. The identified mutations included blaKPC-33, blaKPC-86, and a novel variant designated as blaKPC-129, all of which were located in the Ω loop of the KPC enzyme. These mutations were found to impact the amino acid sequence and spatial structure of the enzyme's active center, consequently affecting KPC carbapenemase activity. This study underscores the importance of active surveillance to monitor the emergence of resistance to CZA, highlighting the need for ongoing research to develop effective strategies for combating antimicrobial resistance. Understanding the mechanisms behind resistance is crucial in maintaining the efficacy of CZA, a vital tool in the battle against multidrug-resistant infections.IMPORTANCEAs an effective drug for the treatment of carbapenem-resistant Klebsiella pneumoniae, ceftazidime-avibactam (CZA) began to develop resistance in recent years and showed an increasing trend. In order to effectively monitor the resistance rate of CZA and understand its resistance mechanism, we monitored K. pneumoniae for more than 2 years to find CZA-resistant strains. Through comprehensive analysis of the selected CZA-resistant strains, it was found that all the CZA-resistant strains had mutation, which could affect the activity of KPC carbapenemase. This study highlights the importance of proactive surveillance to monitor the emergence of CZA resistance, which highlights the need for ongoing research to develop effective strategies to combat antimicrobial resistance. Understanding the mechanisms behind resistance is critical to maintaining the effectiveness of CZA, an important tool in the fight against multidrug-resistant infections.

4.
Artigo em Inglês | MEDLINE | ID: mdl-39011845

RESUMO

OBJECTIVES: To establish the epidemiology cut-off (ECOFF) values of eravacycline against Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae, Acinetobacter baumannii and Staphylococcus aureus, from a multi-centre study in China. METHODS: We collected 2500 clinical isolates from five hospitals in China from 2017 to 2020. The MICs of eravacycline were determined using broth microdilution. The ECOFF values of eravacycline against the five species commonly causing cIAIs were calculated using visual estimation and ECOFFinder following the EUCAST guideline. RESULTS: The MICs of eravacycline against all the strains were in the range of 0.004-16 mg/L. The ECOFF values of eravacycline were 0.5 mg/L for E. coli, 2 mg/L for K. pneumonia and E. cloacae, and 0.25 mg/L for A. baumannii and S. aureus, consistent with the newest EUCAST publication of eravacycline ECOFF values for the populations. No discrepancy was found between the visually estimated and 99.00% ECOFF values calculated using ECOFFinder. CONCLUSIONS: The determined ECOFF values of eravacycline against the five species can assist in distinguishing wild-type from non-wild-type strains. Given its promising activity, eravacycline may represent a member of the tetracycline class in treating cIAIs caused by commonly encountered Gram-negative and Gram-positive pathogens.

5.
Microbiol Spectr ; 12(7): e0429923, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38847538

RESUMO

Patients with hematological diseases are considered to be at high risk for intestinal colonization by carbapenem-resistant Gram-negative bacteria (CR-GNB). However, the epidemiological data regarding risk factors and molecular characteristics of intestinal colonized CR-GNB isolates in this population are insufficient in China. A multicenter case‒control study involving 4,641 adult patients with hematological diseases from 92 hospitals across China was conducted. Following culture of collected rectal swabs, mass spectrometry and antimicrobial susceptibility tests were performed to identify GNB species and CR phenotype. Risk factors were assessed through retrospective clinical information. Whole-genome sequencing was used to analyze the molecular characteristics of CR-GNB isolates. This trial is registered with ClinicalTrials.gov as NCT05002582. Our results demonstrated that among 4,641 adult patients, 10.8% had intestinal colonization by CR-GNB. Of these, 8.1% were colonized by carbapenem-resistant Enterobacterales (CRE), 2.6% were colonized by carbapenem-resistant Pseudomonas aeruginosa (CRPA), and 0.3% were colonized by carbapenem-resistant Acinetobacter baumannii (CRAB). The risk factors for CR-GNB colonization include male gender, acute leukemia, hematopoietic stem cell transplantation, ß-lactam antibiotic usage, and the presence of non-perianal infections within 1 week. Compared with CRPA-colonized patients, patients using carbapenems were more likely to be colonized with CRE. NDM was the predominant carbapenemase in colonized CRE. This study revealed a high CR-GNB intestinal colonization rate among adult patients with hematological diseases in China, with CRE being the predominant one. Notably, a significant proportion of CRE exhibited metallo-ß-lactamase production, indicating a concerning trend. These findings emphasize the importance of active screening for CR-GNB colonization in patients with hematological diseases.IMPORTANCECarbapenem-resistant Gram-negative bacteria (CR-GNB) has emerged as a significant threat to public health. Patients with hematological diseases are at high risk of CR-GNB infections due to their immunosuppressed state. CR-GNB colonization is an independent risk factor for subsequent infection. Understanding the risk factors and molecular characteristics of CR-GNB associated with intestinal colonization in patients with hematological diseases is crucial for empirical treatment, particularly in patients with febrile neutropenia. However, the epidemiology data are still insufficient, and our study aims to determine the intestinal colonization rate of CR-GNB, identify colonization risk factors, and analyze the molecular characteristics of colonized CR-GNB isolates.


Assuntos
Antibacterianos , Carbapenêmicos , Bactérias Gram-Negativas , Infecções por Bactérias Gram-Negativas , Doenças Hematológicas , Humanos , Estudos de Casos e Controles , Masculino , Feminino , Fatores de Risco , Pessoa de Meia-Idade , Carbapenêmicos/farmacologia , Adulto , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/epidemiologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/isolamento & purificação , China/epidemiologia , Idoso , Antibacterianos/farmacologia , Doenças Hematológicas/complicações , Doenças Hematológicas/microbiologia , Doenças Hematológicas/epidemiologia , Epidemiologia Molecular , Estudos Retrospectivos , Testes de Sensibilidade Microbiana , Adulto Jovem , Intestinos/microbiologia , Adolescente , Idoso de 80 Anos ou mais
6.
Artigo em Inglês | MEDLINE | ID: mdl-38908824

RESUMO

OBJECTIVES: Ceftolozane-tazobactam (C/T) is a combination of a cephalosporin and a ß-lactamase inhibitor with activity against Gram-negative bacilli (GNB). The study aims were to evaluate the activity of C/T in vitro vs. comparators against clinical GNB isolated from Chinese pediatric patients. METHODS: From 2017-2021, 660 GNB isolates were collected from 20 hospitals across China. The minimum inhibitory concentrations were tested using a Trek Diagnostic System (Thermo Fisher Scientific). Susceptibility was determined by CLSI broth microdilution and the results were interpreted according to CLSI M100 (2021) breakpoints. RESULTS: GNB isolates were obtained from pediatric patients < 18 years old, mainly from the bloodstream (n=146), intraperitoneal cavity (n=138), lower respiratory (n=278) and urinary tract (n=96). Overall, C/T was active against 76.6% of 436 Enterobacterales, with a descending susceptibility rate of 100.0% to S. marcescens, 92.2% to E. coli, 83.3% to K. oxytoca, 66.7% to K. aerogenes, 66.7% to P. mirabilis, 58.6% to K. pneumoniae and 57.1% to E. cloacae. The susceptibility of P. aeruginosa to C/T was 89.4%, which was the highest among the ß-lactams and was second only to amikacin (92.9%). Isolates of respiratory tract infection (RTI) derived P. aeruginosa were highly susceptible (93.8%) to C/T, while < 75% of isolates of RTI derived P. aeruginosa were susceptible to the other ß-lactams tested, except for ceftazidime-avibactam (91.2%). CONCLUSION: GNBs collected from pediatric patients in China showed a high susceptibility to C/T making this drug combination an effective choice for treating the pediatric population, especially those infected with P. aeruginosa.

7.
Microbiol Spectr ; : e0008624, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916336

RESUMO

Acinetobacter baumannii is one of the most important pathogens worldwide. The intrinsic and acquired resistance of A. baumannii, coupled with the slow pace of novel antimicrobial drug development, poses an unprecedented and enormous challenge to clinical anti-infective therapy of A. baumannii. Recent studies in the field of pathogenicity, antibiotic resistance, and biofilms of A. baumannii have focused on the model strains, including ATCC 17978, ATCC 19606, and AB5075. However, these model strains represent only a limited portion of the heterogeneity in A. baumannii. Furthermore, variants of these model strains have emerged that show significant diversity not only at the genotypic level but also reflected in differences at the phenotypic levels of capsule, virulence, pathogenicity, and antibiotic resistance. Research on A. baumannii, a key pathogen, would benefit from a standardized approach, which characterizes heterogeneous strains in order to facilitate rapid diagnosis, discovery of new therapeutic targets, and efficacy assessment. Our study provides and describes a standardized, genomically and phenotypically heterogeneous panel of 45 different A. baumannii strains for the research community. In addition, we performed comparative analyses of several phenotypes of this panel. We found that the sequence type 2 (ST2) group showed significantly higher rates of resistance, lower fitness cost for adaptation, and yet less biofilm formation. The Macrocolony type E (MTE, flat center and wavy edge phenotype reported in the literature) group showed a less clear correlation of resistance rates and growth rate, but was observed to produce more biofilms. Our study sheds light on the complex interplay of resistance fitness and biofilm formation within distinct strains, offering insights crucial for combating A. baumannii infection. IMPORTANCE: Acinetobacter baumannii is globally notorious, and in an effort to combat the spread of such pathogens, several emerging candidate therapies have already surfaced. However, the strains used to test these therapies vary across studies (the sources and numbers of test strains are varied and often very large, with little heterogeneity). The variation complicates the studies. Furthermore, the limited standardized resources of A. baumannii strains have greatly restricted the research on the physiology, pathogenicity, and antibiotic resistance. Therefore, it is crucial for the research community to acquire a standardized and heterogeneous panel of A. baumannii. Our study meticulously selected 45 diverse A. baumannii strains from a total of 2,197 clinical isolates collected from 64 different hospitals across 27 provinces in China, providing a scientific reference for the research community. This assistance will significantly facilitate scientific exchange in academic research.

8.
J Glob Antimicrob Resist ; 38: 167-172, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38768708

RESUMO

OBJECTIVES: Acinetobacter pittii has emerged as an opportunistic nosocomial pathogen associated with hospital-acquired infections. The purpose of this study was to investigate the genetic structures of plasmids carrying carbapenemase genes blaOXA-58 and blaOXA-72 in A. pittii strains AR3676 and AR3651 isolated from patients. METHODS: Antimicrobial susceptibility testing was performed using broth microdilution. Whole-genome sequencing and bioinformatics analysis were performed to characterize the genome of A. pittii AR3676 and AR3651. Conjugation experiments were conducted to evaluate plasmid transferability. Phylogenetic and comparative genomic analysis were performed to explore the characteristics of carbapenem-resistant A. pittii isolates worldwide. RESULTS: The AR3676 strain showed resistance to imipenem. The 19 700-bp plasmid pAR3676-OXA-58 harboured blaOXA-58 with genetic contexts consisting of a truncated ISAba3-like-blaOXA58-ISAba3. Additionally, the AR3651 strain showed resistance to imipenem and meropenem. The AR3651 genome comprised one 9,837-bp RepA_AB plasmid pAR3651-OXA-72 harbouring blaOXA-72. This blaOXA-72 was flanked by XerC/XerD recombination sites. The conjugation of plasmids pAR3676-OXA-58 and pAR3651-OXA-72 from A. pittii to Acinetobacter baumannii ATCC 17978RIFR failed three independent times. Phylogenetic analysis of A. pittii strains AR3676, AR3651, and a further 504 A. pittii strains collected between 1966 and 2022 from various geographic localities revealed genetic diversity with a heterogeneous distribution of carbapenemase genes. CONCLUSIONS: A. pittii strains with a plasmid carrying blaOXA-58 or blaOXA-72 may serve as an important reservoir of carbapenemase genes. Carbapenemase genes on a single plasmid may facilitate their dissemination and persistence. Additionally, pdif sites and mobile elements play an important role in the mobilization of resistance genes and plasmid evolution.

9.
J Infect Public Health ; 17(7): 102456, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38820896

RESUMO

BACKGROUND: A. baumannii is an important and common clinical pathogen, especially in the intensive care unit (ICU). This study aimed to characterize one hypervirulent A. baumannii strain in a patient with community-acquired pneumonia and herpes simplex type 1 virus infection. METHODS: Minimum inhibitory concentrations (MICs) were determined using the Kirby-Bauer (K-B) and broth microdilution methods. Galleria mellonella infection model experiment was conducted. Whole-genome sequencing (WGS) was performed using the Illumina and Nanopore platforms. The resistance and virulence determinants were identified using the ABRicate program with ResFinder and the VFDB database. The capsular polysaccharide locus (K locus) and lipooligosaccharide outer core locus (OC locus) were identified using Kleborate with Kaptive. Phylogenetic analyses were conducted using the BacWGSTdb server. RESULTS: A. baumannii XH2146 strain belongs to ST10Pas and ST447Oxf. The strain was resistant to cefazolin, ciprofloxacin, and trimethoprim/sulfamethoxazole (TMP-SMX). Bautype and Kaptive analyses showed that XH2146 contains OCL2 and KL49. WGS analysis revealed that the strain harbored blaADC-76, blaOXA-68, ant(3'')-IIa, tet(B), and sul2. Notably, tet(B) and sul2, both were located within a 114,700-bp plasmid (designated pXH2146-1). Virulence assay revealed A. baumannii XH2146 possessed higher virulence than A. baumannii AB5075 at 12 h. Comparative genomic analysis showed that A. baumannii ST447 strains were mainly isolated from the USA and exhibited a relatively close genetic relationship. Importantly, 11 strains were observed to carry blaOXA-58; blaOXA-23 was identified in 11 isolates and three ST447 A. baumannii strains harbored blaNDM-1. CONCLUSIONS: Early detection of community-acquired hypervirulent Acinetobacter baumannii strains is recommended to prevent their extensive spread in hospitals.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Infecções Comunitárias Adquiridas , Herpesvirus Humano 1 , Testes de Sensibilidade Microbiana , Filogenia , Sequenciamento Completo do Genoma , Infecções Comunitárias Adquiridas/microbiologia , Infecções Comunitárias Adquiridas/epidemiologia , Humanos , Acinetobacter baumannii/genética , Acinetobacter baumannii/patogenicidade , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/isolamento & purificação , China/epidemiologia , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/epidemiologia , Animais , Virulência/genética , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/patogenicidade , Herpesvirus Humano 1/isolamento & purificação , Antibacterianos/farmacologia , Fatores de Virulência/genética , Herpes Simples/virologia , Pneumonia Bacteriana/microbiologia , Masculino , Genoma Bacteriano , Mariposas/microbiologia , Mariposas/virologia
10.
Int J Antimicrob Agents ; 64(1): 107185, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38692492

RESUMO

OBJECTIVES: Using a random forest algorithm, we previously found that teicoplanin-associated gene A (tcaA) might play a role in resistance of methicillin-resistant Staphylococcus aureus (MRSA) to ß-lactams, which we have investigated further here. METHODS: Representative MRSA strains of prevalent clones were selected to identify the role of tcaA in the MRSA response to ß-lactams. tcaA genes were deleted by homologous recombination in the selected MRSA strains, and antibiotic susceptibility tests were applied to evaluate the effect of tcaA on the minimum inhibitory concentrations (MICs) of glycopeptides and ß-lactams. Scanning electron microscopy, RNA sequencing, and quantitative reverse transcription-polymerase chain reaction were performed to explore the mechanism of tcaA in MRSA resistance to ß-lactams. RESULTS: The MIC of penicillin plus clavulanate decreased from 3 mg/L to 0.064 mg/L and that of oxacillin decreased from 16 to 0.5 mg/L when tcaA was knocked out in the LAC strain. Compared with wild-type MRSA isolates, when tcaA was deleted, all selected strains were more susceptible to ß-lactams. Susceptibility to ceftobiprole was restored in the ceftobiprole-resistant strain when tcaA was deleted. tcaA knockout caused "log-like" abnormal division of MRSA, and tcaA deficiency mediated low expression of mecA, ponA, and murA2. CONCLUSIONS: Machine learning is a reliable tool for identifying drug resistance-related genes. tcaA may be involved in S. aureus cell division and may affect mecA, ponA, and murA2 expression. Furthermore, tcaA is a potential resistance breaker target for ß-lactams, including ceftobiprole, in MRSA.


Assuntos
Antibacterianos , Cefalosporinas , Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Resistência beta-Lactâmica , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/genética , Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Humanos , Resistência beta-Lactâmica/genética , Proteínas de Bactérias/genética , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , beta-Lactamas/farmacologia , Técnicas de Inativação de Genes
11.
Environ Pollut ; 355: 124184, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38782162

RESUMO

While sodium hypochlorite (NaClO) has long been used to disinfect drinking water, concerns have risen over its use due to causing potentially hazardous byproducts. Catalytic ozonation with metal-free catalysts has attracted increasing attention to eliminate the risk of secondary pollution of byproducts in water treatment. Here, we compared the disinfection efficiency and microbial community of catalytic ozone with a type of metal-free catalyst fluorinated ceramic honeycomb (FCH) and NaClO disinfectants under laboratory- and pilot-scale conditions. Under laboratory conditions, the disinfection rate of catalytic ozonation was 3∼6-fold that of ozone when the concentration of Escherichia coli was 1 × 106 CFU/ml, and all E. coli were killed within 15 s. However, 0.65 mg/L NaClO retained E. coli after 30 min using the traditional culturable approach. The microorganism inactivation results of raw reservoir water disinfected by catalytic ozonation and ozonation within 15 s were incomparable based on the cultural method. In pilot-scale testing, catalytic ozonation inactivated all environmental bacteria within 4 min, while 0.65 mg/L NaClO could not achieve this success. Both catalytic ozonation and NaClO-disinfected methods significantly reduced the number of microorganisms but did not change the relative abundances of different species, i.e., bacteria, viruses, eukaryotes, and archaea, based on metagenomic analyses. The abundance of virulence factors (VFs) and antimicrobial resistance genes (ARGs) was detected few in catalytic ozonation, as determined by metagenomic sequencing. Some VFs or ARGs, such as virulence gene 'FAS-II' which was hosted by Mycobacterium_tuberculosis, were detected solely by the NaClO-disinfected method. The enriched genes and pathways of cataO3-disinfected methods exhibited an opposite trend, especially in human disease, compared with NaClO disinfection. These results indicated that the disinfection effect of catalytic ozone is superior to NaClO, this finding contributed to the large-scale application of catalytic ozonation with FCH in practical water treatment.


Assuntos
Cerâmica , Desinfetantes , Desinfecção , Água Potável , Ozônio , Hipoclorito de Sódio , Purificação da Água , Ozônio/química , Desinfetantes/farmacologia , Água Potável/microbiologia , Água Potável/química , Desinfecção/métodos , Cerâmica/química , Purificação da Água/métodos , Hipoclorito de Sódio/farmacologia , Hipoclorito de Sódio/química , Catálise , Halogenação , Escherichia coli/efeitos dos fármacos , Projetos Piloto , Microbiologia da Água , Bactérias/efeitos dos fármacos
12.
Infect Dis (Lond) ; : 1-12, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753988

RESUMO

BACKGROUND: There is a critical need for a rapid and sensitive pathogen detection method for septic patients. This study aimed to investigate the diagnostic efficacy of Digital droplet polymerase chain reaction (ddPCR) in identifying pathogens among suspected septic patients. METHODS: We conducted a prospective pilot diagnostic study to clinically validate the multiplex ddPCR panel in diagnosing suspected septic patients. A total of 100 sepsis episodes of 89 patients were included in the study. RESULTS: In comparison to blood culture, the ddPCR panel exhibited an overall sensitivity of 75.0% and a specificity of 69.7%, ddPCR yielded an additional detection rate of 17.0% for sepsis cases overall, with a turnaround time of 2.5 h. The sensitivity of ddPCR in the empirical antibiotic treatment and the non-empirical antibiotic treatment group were 78.6% versus 80.0% (p > 0.05). Antimicrobial resistance genes were identified in a total of 13 samples. Whenever ddPCR detected the genes beta-lactamase-Klebsiella pneumoniae carbapenemase (blaKPC) or beta-lactamase-New Delhi metallo (blaNDM), these findings corresponded to the cultivation of carbapenem-resistant gram-negative bacteria. Dynamic ddPCR monitoring revealed a consistent alignment between the quantitative ddPCR results and the trends observed in C-reactive protein and procalcitonin levels. CONCLUSIONS: Compared to blood culture, ddPCR exhibited higher sensitivity for pathogen diagnosis in suspected septic patients, and it provided pathogen and drug resistance information in a shorter time. The quantitative results of ddPCR generally aligned with the trends seen in C-reactive protein and procalcitonin levels, indicating that ddPCR can serve as a dynamic monitoring tool for pathogen load in septic patients.

13.
Antibiotics (Basel) ; 13(5)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38786182

RESUMO

Salmonella Enteritidis was the primary foodborne pathogen responsible for acute gastroenteritis. The growing ceftriaxone resistance poses a significant threat to public health. Infection with S. Enteritidis has emerged as a major public health concern, particularly in developing countries. However, research on ceftriaxone-resistant S. Enteritidis (CRO-RSE) remains limited, particularly concerning its resistance mechanism, plasmid structure, and transmission characteristics. This study aims to address these gaps comprehensively. We collected 235 S. Enteritidis isolates from Hangzhou First People's Hospital between 2010 and 2020. Among these, 8.51% (20/235) exhibited resistance to ceftriaxone. Whole-genome analysis revealed that 20 CRO-RSE isolates harbored blaCTX-M-55 or blaCTX-M-14 on the plasmid. Moreover, the dissemination of the blaCTX-M-type gene was associated with IS26 and ISEcp1. Plasmid fusion entailing the integration of the p1 plasmid with antibiotic resistance genes and the p2 (pSEV) virulence plasmid was observed in certain CRO-RSE. Additionally, the structural analysis of the plasmids unveiled two types carrying the blaCTX-M-type gene: type A with multiple replicons and type B with IncI1 (Alpha) replicon. Type B plasmids exhibited superior adaptability and stability compared to type A plasmids within Enterobacteriaceae. Interestingly, although the type B (S808-p1) plasmid displayed the potential to spread to Acinetobacter baumannii, it failed to maintain stability in this species.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38777180

RESUMO

As a widely spread Gram-negative bacteria, klebsiella pneumoniae mainly causes acquired infections in hospitals, such as lung infections, urinary tract infections, bloodstream infections, etc. In recent years, the number of multidrug-resistant K. pneumoniae strains has increased dramatically, posing a great threat to human health. Carbapenem-resistant Klebsiella pneumoniae (CRKP) can be colonized in human body, especially in gastrointestinal tract, and some colonized patients can be infected during hospitalization, among which invasive operation, underlying disease, admission to intensive care unit, antibiotic use, severity of the primary disease, advanced age, operation, coma and renal failure are common risk factors for secondary infection. Active screening and preventive measures can effectively prevent the occurrence of CRKP infection. Based on the epidemiological status, this study aims to discuss the correlation between colonization and secondary infection induced by carbapenem-resistant Klebsiella pneumoniae and risk factors for their happening, and provide some reference for nosocomial infection prevention and control.

15.
BMC Infect Dis ; 24(1): 501, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760687

RESUMO

BACKGROUND: The study aims were to evaluate the species distribution and antimicrobial resistance profile of Gram-negative pathogens isolated from specimens of intra-abdominal infections (IAI), urinary tract infections (UTI), respiratory tract infections (RTI), and blood stream infections (BSI) in emergency departments (EDs) in China. METHODS: From 2016 to 2019, 656 isolates were collected from 18 hospitals across China. Minimum inhibitory concentrations were determined by CLSI broth microdilution and interpreted according to CLSI M100 (2021) guidelines. In addition, organ-specific weighted incidence antibiograms (OSWIAs) were constructed. RESULTS: Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae) were the most common pathogens isolated from BSI, IAI and UTI, accounting for 80% of the Gram-negative clinical isolates, while Pseudomonas aeruginosa (P. aeruginosa) was mainly isolated from RTI. E. coli showed < 10% resistance rates to amikacin, colistin, ertapenem, imipenem, meropenem and piperacillin/tazobactam. K. pneumoniae exhibited low resistance rates only to colistin (6.4%) and amikacin (17.5%) with resistance rates of 25-29% to carbapenems. P. aeruginosa exhibited low resistance rates only to amikacin (13.4%), colistin (11.6%), and tobramycin (10.8%) with over 30% resistance to all traditional antipseudomonal antimicrobials including ceftazidime, cefepime, carbapenems and levofloxacin. OSWIAs were different at different infection sites. Among them, the susceptibility of RTI to conventional antibiotics was lower than for IAI, UTI or BSI. CONCLUSIONS: Gram-negative bacteria collected from Chinese EDs exhibited high resistance to commonly used antibiotics. Susceptibilities were organ specific for different infection sites, knowledge which will be useful for guiding empirical therapies in the clinic.


Assuntos
Antibacterianos , Serviço Hospitalar de Emergência , Bactérias Gram-Negativas , Infecções por Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana , Humanos , China/epidemiologia , Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/isolamento & purificação , Serviço Hospitalar de Emergência/estatística & dados numéricos , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/epidemiologia , Infecções Urinárias/microbiologia , Infecções Urinárias/epidemiologia , Infecções Respiratórias/microbiologia , Infecções Respiratórias/epidemiologia , Infecções Intra-Abdominais/microbiologia , Infecções Intra-Abdominais/epidemiologia , Farmacorresistência Bacteriana , Feminino , Masculino
16.
Int J Antimicrob Agents ; 63(6): 107162, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38561093

RESUMO

OBJECTIVES: Fosfomycin has regained attention for treating infections caused by methicillin-resistant Staphylococcus aureus and multidrug-resistant coagulase-negative staphylococci. In this research, our objective was to investigate the mechanisms underlying fosfomycin resistance in Staphylococcus capitis. METHODS: The minimum inhibitory concentrations (MICs) of fosfomycin were assessed in 109 clinical S. capitis isolates by the agar dilution method. By cloning the fos-like genes into the shuttle vector, pTSSCm-Pcap, and observing the change in fosfomycin MICs, the gene function was verified. Core genome multilocus sequence typing and comparative genomics analysis were conducted to determine the population characteristics of S. capitis isolates and analyse the genetic environment of the fos-like genes. RESULTS: We identified a novel fosfomycin resistance gene, fosSC, on the chromosome in 58 out of 109 (53.2%) S. capitis isolates. The deduced products of the fosSC genes shared 67.15-67.88% amino acid sequence identity with FosB. The RN-pT-fosSC transformants carrying fosSC showed a 512-fold increase in the fosfomycin MICs. The fosSC gene was embedded in a conserved genetic context, but IS431mec was located to the left of the fosSC gene in cluster L due to the insertion of staphylococcal cassette chromosome mec. CONCLUSIONS: The chromosomal fosSC genes in some lineages of S. capitis explained their high-level fosfomycin resistance. Ongoing surveillance is crucial for monitoring the potential threat of horizontal transfer, which could be facilitated by the presence of mobile genetic elements surrounding the fosSC gene.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Fosfomicina , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas , Staphylococcus capitis , Fosfomicina/farmacologia , Antibacterianos/farmacologia , Humanos , Infecções Estafilocócicas/microbiologia , Staphylococcus capitis/genética , Staphylococcus capitis/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Tipagem de Sequências Multilocus , Genes Bacterianos/genética
18.
Emerg Microbes Infect ; 13(1): 2339942, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38584569

RESUMO

To investigate the epidemiology of ST20 carbapenem-resistant Klebsiella pneumoniae (CRKP) in China, and further explore the genomic characteristics of blaIMP-4 and blaNDM-1 coharboring isolates and plasmid contributions to resistance and fitness. Seven ST20 CRKP isolates were collected nationwide, and antimicrobial susceptibility testing was performed. Antimicrobial resistance genes, virulence genes, and plasmid replicons were identified via whole-genome sequencing, and clonality assessed via core-genome multilocus sequence typing. Furthermore, we found four dual-metallo-ß-lactamases (MBL)-harbouring isolates, the gene location was detected by Southern blotting, and plasmid location analysis showed that blaIMP-4 was located on a separate plasmid, a self-conjugative fusion plasmid, or the bacterial chromosome. These isolates were subjected to long-read sequencing, the presence of blaIMP-4 in different locations was identified by genomic comparison, and transposon units were detected via inverse PCR. We subsequently found that blaIMP-4 on the fusion plasmid and bacterial chromosome was formed via intact plasmid recombination by the IS26 and ltrA, respectively, and the circular transposon unit was related to cointegration, however, blaIMP-4 in different locations did not affect the gene stability. The blaNDM-1-harbouring plasmid contributed to the increased resistance to ß-lactams and shortened survival lag time which was revealed in plasmid cured isolates. In summary, the K. pneumoniae ST20 clone is a high-risk resistant clone. With the use of ceftazidime/avibactam, MBL-positive isolates, especially dual-MBL-harbouring isolates, should be given additional attention.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Klebsiella pneumoniae , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Plasmídeos/genética , beta-Lactamases/genética , beta-Lactamases/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Tipagem de Sequências Multilocus , Testes de Sensibilidade Microbiana
19.
Comput Struct Biotechnol J ; 23: 1418-1428, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38616963

RESUMO

Research on megaplasmids that contribute to the spread of antimicrobial resistance (AMR) in Pseudomonas aeruginosa strains has grown in recent years due to the now widely used technologies allowing long-read sequencing. Here, we systematically analyzed distinct and consistent genetic characteristics of megaplasmids found in P. aeruginosa. Our data provide information on their phylogenetic distribution and hypotheses tracing the potential evolutionary paths of megaplasmids. Most of the megaplasmids we found belong to the IncP-2-type, with conserved and syntenic genetic backbones carrying modules of genes associated with chemotaxis apparatus, tellurite resistance and plasmid replication, segregation, and transmission. Extensively variable regions harbor abundant AMR genes, especially those encoding ß-lactamases such as VIM-2, IMP-45, and KPC variants, which are high-risk elements in nosocomial infection. IncP-2 megaplasmids act as effective vehicles transmitting AMR genes to diverse regions. One evolutionary model of the origin of megaplasmids claims that chromids can develop from megaplasmids. These chromids have been characterized as an intermediate between a megaplasmid and a chromosome, also containing core genes that can be found on the chromosome but not on the megaplasmid. Using in silico prediction, we identified the "PABCH45 unnamed replicon" as a putative chromid in P. aeruginosa, which shows a much higher similarity and closer phylogenetic relationship to chromosomes than to megaplasmids while also encoding plasmid-like partition genes. We propose that such a chromid could facilitate genome expansion, allowing for more rapid adaptations to novel ecological niches or selective conditions, in comparison to megaplasmids.

20.
Infect Drug Resist ; 17: 1357-1365, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38600953

RESUMO

Background: Carbapenem-resistant P. aeruginosa (CRPA) is a common hospital-acquired bacterium. It exhibits high resistance to many antibiotics, including ceftazidime/avibactam and cefteolozane/tazobactam. The presence of carbapenem-resistant genes and co-existence Klebsiella pneumoniae carbapenemase (KPC) and metallo-ß-lactamases (MBLs) further inactivated all ß-lactams. Understanding the resistance genes of CRPA can help in uncovering the resistance mechanism and guiding anti-infective treatment. Herein, we reported a case of perianal infection with hypervirulent ST463 Pseudomonas aeruginosa. Case Presentation: The case is a 32-year-old acute myeloid leukemia (AML) patient with fever and septic shock during hematopoietic stem cell transplantation (HSCT), and the pathogen was finally identified as a highly virulent sequence type 463 (ST463) P. aeruginosa harboring carbapenem-resistant genes blaAFM-1 and blaKPC-2, which was detected in the bloodstream and originated from a perianal infection. The strain was resistant to ceftazidime/avibactam but successfully treated with polymyxin B, surgical debridement, and granulocyte engraftment after HSCT. The AML was cured during the 19-month follow-up. Conclusion: This case emphasizes the importance of metagenomic next-generation sequencing (mNGS) and whole-genome sequencing (WGS) in identifying microbes with rare resistant genes, and managing CRPA, especially in immunocompromised patients. Polymyxin B may be the least resistant option.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA