Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chromatogr A ; 1730: 465141, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38986402

RESUMO

Functional protein immobilization forms the basis for bio-detections. A series of one-point, site-specific immobilization methods have been developed, however, it still remains as a challenge how to avoid the proteins to move in all directions as well as conveniently regenerate the bio-devices. Herein, we have developed a bivalent affinity binding-inspired method for PPARγ immobilization using DNA aptamer and nickel-nitrilotriacetic acid (Ni2+-NTA) chelation. The specific DNA aptamer (Apt 2) was selected by an on-column systematic evolution of ligands by exponential enrichment (SELEX) method with affinity of (1.57 ± 0.15) × 105 M-1, determined by isothermal titration calorimetry (ITC). Apt 2 and nickel-nitrilotriacetic acid (Ni2+-NTA) were modified on macroporous silica gels via L-α-allylglycine as a linker. They respectively interacted with PPARγ and 6×His tag via bivalent affinity binding for the receptor immobilization. After comprehensive surface characterization, PPARγ was proved to be successful immobilized. Chromatographic studies revealed that the immobilized PPARγ has conformation selectivity, which discriminated agonist and antagonist of the receptor. Ligand-binding parameters (affinity and rate constant) of four agonists (rosiglitazone, pioglitazone, troglitazone, and magnolol) with PPARγ were determined. Troglitazone showed the lowest dissociation rate constant. The binding affinities (3.28 × 107, 1.91 × 106, 2.25 × 107, and 2.43 × 107 M-1) were highly consistent with the data obtained using purified receptor in solution (2.16 × 107, 4.52 × 106, 1.20 × 107, and 1.56 × 107 M-1), offering reliable bio-detection method for PPARγ and its ligands. Due to the biocompatibility of nuclear receptor with DNA, it is conceivable that the bivalent affinity-based method will be a general method for the immobilization of other nuclear receptors, which may provide selective conformation and improved ligand-binding activity for the receptors.

2.
Exp Aging Res ; : 1-12, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39003730

RESUMO

BACKGROUND: Cognitive models of depression assert that attentional biases play an important role in the maintenance of depression. However, few studies have explored attentional bias in depressed older adults, and no consistent conclusions have been reached. METHODS: In the current study, we investigated attentional bias in older adults with non-clinical depression. Older adults aged over 60 with non-clinical depression and without depression were instructed to perform a free viewing task while their eye movements were tracked. RESULTS: The results showed that, compared to older adults without depression, non-clinically depressed older adults had longer total fixation durations and a greater number of fixations on sad stimuli. Moreover, non-depressed older adults exhibited a preference for pleasant images, whereas this effect was not observed in older adults with non-clinical depression. CONCLUSION: This study suggested that non-clinically depressed older adults have attentional bias, which is manifested as increased attention to sad stimuli and decreased attention to pleasant stimuli.The current study has functional and potential functional implications.

3.
Biomed Chromatogr ; 38(8): e5931, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38881185

RESUMO

As a result of the lack of modern techniques, the study of Tibetan medicine has been hindered in identifying bioactive compounds. Herein, we established a chromatographic approach using an immobilized angiotensin II type 1 receptor (AT1R) via a one-step method triggered by haloalkane dehalogenase. The bioactive compounds from Choerospondias axillaris (Guangzao) were screened and identified using the immobilized AT1R followed by MS. Frontal analysis (FA) and adsorption energy distribution (AED) were used to evaluate the association constants. Molecular docking was used to investigate the binding configurations, and the surface efficiency index, binding efficiency index, and ligand-lipophilicity efficiency (LLE) were calculated to assess the drug-like properties. The results identified naringenin, pinocembrin, and chrysin as the compounds that specifically bind to AT1R in Guangzao. FA and AED confirmed that there is only one type of binding site between these compounds and AT1R. The association constants were (2.40 ± 0.02) × 104 M-1 for naringenin (5.22 ± 0.26) × 104 M-1 for pinocembrin, and (4.27 ± 0.14) × 104 M-1 for chrysin, respectively. These compounds can bind with AT1R through the orthosteric binding pocket. Naringenin exhibited better LLE than pinocembrin and chrysin. These results confirmed the feasibility of using the immobilized AT1R column for screening and analyzing bioactive compounds in Tibetan medicines.


Assuntos
Simulação de Acoplamento Molecular , Extratos Vegetais , Receptor Tipo 1 de Angiotensina , Extratos Vegetais/química , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 1 de Angiotensina/química , Cromatografia Líquida de Alta Pressão/métodos
4.
Sci Adv ; 10(24): eadn6211, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38865453

RESUMO

Semi-artificial Z-scheme systems offer promising potential toward efficient solar-to-chemical conversion, yet sustainable and stable designs are currently lacking. Here, we developed a sustainable hybrid Z-scheme system capable for visible light-driven overall water splitting by integrating the durability of inorganic photocatalysts with the interfacial adhesion and regenerative property of bacterial biofilms. The Z-scheme configuration is fabricated by drop casting a mixture of photocatalysts onto a glass plate, followed by the growth of biofilms for conformal conductive paste through oxidative polymerization of pyrrole molecules. Notably, the system exhibited scalability indicated by consistent catalytic efficiency across various sheet areas, resistance observed by remarkable maintaining of photocatalytic efficiency across a range of background pressures, and high stability as evidenced by minimal decay of photocatalytic efficiency after 100-hour reaction. Our work thus provides a promising avenue toward sustainable and high-efficiency artificial photosynthesis, contributing to the broader goal of sustainable energy solutions.

5.
Life Sci ; 344: 122452, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38462226

RESUMO

The intestinal tract plays a vital role in both digestion and immunity, making its equilibrium crucial for overall health. This equilibrium relies on the dynamic interplay among intestinal epithelial cells, macrophages, and crypt stem cells. Intestinal epithelial cells play a pivotal role in protecting and regulating the gut. They form vital barriers, modulate immune responses, and engage in pathogen defense and cytokine secretion. Moreover, they supervise the regulation of intestinal stem cells. Macrophages, serving as immune cells, actively influence the immune response through the phagocytosis of pathogens and the release of cytokines. They also contribute to regulating intestinal stem cells. Stem cells, known for their self-renewal and differentiation abilities, play a vital role in repairing damaged intestinal epithelium and maintaining homeostasis. Although research has primarily concentrated on the connections between epithelial and stem cells, interactions with macrophages have been less explored. This review aims to fill this gap by exploring the roles of the intestinal epithelial-macrophage-crypt stem cell axis in maintaining intestinal balance. It seeks to unravel the intricate dynamics and regulatory mechanisms among these essential players. A comprehensive understanding of these cell types' functions and interactions promises insights into intestinal homeostasis regulation. Moreover, it holds potential for innovative approaches to manage conditions like radiation-induced intestinal injury, inflammatory bowel disease, and related diseases.


Assuntos
Mucosa Intestinal , Células-Tronco , Macrófagos , Células Epiteliais , Homeostase
6.
Plant Cell ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38299372

RESUMO

Alternative complex III (ACIII) couples quinol oxidation and electron acceptor reduction with potential transmembrane proton translocation. It is compositionally and structurally different from the cytochrome bc1/b6f complexes, but functionally replaces these enzymes in the photosynthetic and/or respiratory electron transport chains (ETCs) of many bacteria. However, the true compositions and architectures of ACIIIs remain unclear, as do their structural and functional relevance in mediating the ETCs. We here determined cryogenic electron microscopy structures of photosynthetic ACIII isolated from Chloroflexus aurantiacus (CaACIIIp), in apo-form and in complexed form bound to a menadiol analog 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO). Besides six canonical subunits (ActABCDEF), the structures revealed conformations of two previously unresolved subunits, ActG and I, which contributed to the complex stability. We also elucidated the structural basis of menaquinol oxidation and subsequent electron transfer along the [3Fe-4S]-6 hemes wire to its periplasmic electron acceptors, using electron paramagnetic resonance (EPR), spectroelectrochemistry, enzymatic analyses and molecular dynamics (MD) simulations. A unique insertion loop in ActE was shown to function in determining the binding specificity of CaACIIIp for downstream electron acceptors. This study broadens our understanding of the structural diversity and molecular evolution of ACIIIs, enabling further investigation of the (mena)quinol oxidoreductases evolved coupling mechanism in bacterial energy conservation.

7.
New Phytol ; 241(4): 1605-1620, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38179647

RESUMO

Dynamic DNA methylation regulatory networks are involved in many biological processes. However, how DNA methylation patterns change during flower senescence and their relevance with gene expression and related molecular mechanism remain largely unknown. Here, we used whole genome bisulfite sequencing to reveal a significant increase of DNA methylation in the promoter region of genes during natural and ethylene-induced flower senescence in carnation (Dianthus caryophyllus L.), which was correlated with decreased expression of DNA demethylase gene DcROS1. Silencing of DcROS1 accelerated while overexpression of DcROS1 delayed carnation flower senescence. Moreover, among the hypermethylated differentially expressed genes during flower senescence, we identified two amino acid biosynthesis genes, DcCARA and DcDHAD, with increased DNA methylation and reduced expression in DcROS1 silenced petals, and decreased DNA methylation and increased expression in DcROS1 overexpression petals, accompanied by decreased or increased amino acids content. Silencing of DcCARA and DcDHAD accelerates carnation flower senescence. We further showed that adding corresponding amino acids could largely rescue the senescence phenotype of DcROS1, DcCARA and DcDHAD silenced plants. Our study not only demonstrates an essential role of DcROS1-mediated remodeling of DNA methylation in flower senescence but also unravels a novel epigenetic regulatory mechanism underlying DNA methylation and amino acid biosynthesis during flower senescence.


Assuntos
Dianthus , Syzygium , Dianthus/genética , Syzygium/metabolismo , Senescência Vegetal , Metilação de DNA/genética , Aminoácidos/metabolismo , Flores/genética , Flores/metabolismo
8.
Clin Chem Lab Med ; 62(6): 1092-1100, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38253403

RESUMO

OBJECTIVES: The standardization of cystatin C (CysC) measurement has received increasing attention in recent years due to its importance in estimating glomerular filtration rate (GFR). Mass spectrometry-based assays have the potential to provide an accuracy base for CysC measurement. However, a precise, accurate and sustainable LC-MS/MS method for CysC is still lacking. METHODS: The developed LC-MS/MS method quantified CysC by detecting signature peptide (T3) obtained from tryptic digestion. Stable isotope labeled T3 peptide (SIL-T3) was spiked to control matrix effects and errors caused by liquid handling. The protein denaturation, reduction and alkylation procedures were combined into a single step with incubation time of 1 h, and the digestion lasted for 3.5 h. In the method validation, digestion time-course, imprecision, accuracy, matrix effect, interference, limit of quantification (LOQ), carryover, linearity, and the comparability to two routine immunoassays were evaluated. RESULTS: No significant matrix effect or interference was observed with the CysC measurement. The LOQ was 0.21 mg/L; the within-run and total imprecision were 1.33-2.05 % and 2.18-3.90 % for three serum pools (1.18-5.34 mg/L). The LC-MS/MS method was calibrated by ERM-DA471/IFCC and showed good correlation with two immunoassays traceable to ERM-DA471/IFCC. However, significant bias was observed for immunoassays against the LC-MS/MS method. CONCLUSIONS: The developed LC-MS/MS method is robust and simpler and holds the promise to provide an accuracy base for routine immunoassays, which will promote the standardization of CysC measurement.


Assuntos
Cistatina C , Espectrometria de Massas em Tandem , Cistatina C/sangue , Humanos , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas em Tandem/normas , Imunoensaio/métodos , Imunoensaio/normas , Cromatografia Líquida/métodos , Limite de Detecção , Espectrometria de Massa com Cromatografia Líquida
9.
Comput Biol Med ; 167: 107597, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37875042

RESUMO

BACKGROUND: Cancer-associated fibroblasts (CAFs) play pivotal roles in tumor invasion and metastasis. However, studies on CAF biomarkers in Cutaneous Melanoma (CM) are still scarce. This study aimed to explore the potential CAF biomarkers in CM, propose the potential therapeutic targets, and provide new insights for targeted therapy of CAFs in CM. METHODS: We utilized weighted gene co-expression network analysis to identify CAF signature genes in CM, and conducted comprehensive bioinformatics analysis on the CAF risk score established by these genes. Moreover, single-cell sequencing analysis, spatial transcriptome analysis, and cell experiments were utilized for verifying the expression and distribution pattern of signature genes. Furthermore, molecular docking was employed to screen potential target drugs. RESULTS: FBLN1 and COL5A1, two crucial CAF signature genes, were screened to establish the CAF risk score. Subsequently, a comprehensive bioinformatic analysis of the CAF risk score revealed that high-risk score group was significantly enriched in pathways associated with tumor progression. Besides, CAF risk score was significantly negatively correlated with clinical prognosis, immunotherapy response, and tumor mutational burden in CM patients. In addition, FBLN1 and COL5A1 were further identified as CAF-specific biomarkers in CM by multi-omics analysis and experimental validation. Eventually, based on these two targets, Mifepristone and Dexamethasone were screened as potential anti-CAFs drugs. CONCLUSION: The findings indicated that FBLN1 and COL5A1 were the CAF signature genes in CM, which were associated with the progression, treatment, and prognosis of CM. The comprehensive exploration of CAF signature genes is expected to provide new insight for clinical CM therapy.


Assuntos
Fibroblastos Associados a Câncer , Melanoma , Neoplasias Cutâneas , Humanos , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Melanoma/tratamento farmacológico , Melanoma/genética , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Simulação de Acoplamento Molecular , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Melanoma Maligno Cutâneo
10.
Reproduction ; 166(6): 473-484, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37732584

RESUMO

In brief: Post-ovulatory aging (POA) results in a decline in oocyte quality and embryonic developmental capacity although the underlying mechanisms remain elusive. This study provides comprehensive mRNA expression profiles of fresh and aging oocytes in mice for the first time. Abstract: POA impairs the quality of mammalian oocytes with harmful effects on the developmental potential of the embryo. This is a major problem for humans since it is associated with low rate of natural fertility, with high rate of spontaneous abortion and low efficiency of in vitro fertilization. However, the molecular mechanisms underlying this process remain unclear and new methods are demanded to control POA. In this study, we performed single-cell RNA-sequencing (scRNA-seq) analysis on fresh and aging MII mouse oocytes and compared their global RNA transcription patterns. Nine hundred and twenty-one differentially expressed genes (DEGs) were identified. Five hundred and sixty-nine genes were downregulated, while 356 were upregulated in the group of aging oocytes. Gene ontology (GO) enrichment analysis demonstrated that a series of DEGs were significantly enriched involving mitochondrial functions, spindle functions and protein metabolism. The results of qPCR and a series of functional tests further confirmed that the disorder of mitochondrial functions, spindle functions and impairment of protein metabolism were actually involved in the progression of POA. In this study, panoramic mRNA expression profiles of fresh and aging oocytes were depicted and fully validated. Our data will provide a useful resource for further research on the regulation of gene expression of POA and suggest potential strategies to delay and reverse POA.


Assuntos
Senescência Celular , Mitocôndrias , Oócitos , Animais , Feminino , Camundongos , Gravidez , Mitocôndrias/metabolismo , Oócitos/metabolismo , RNA , RNA Mensageiro/metabolismo
11.
Elife ; 122023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737710

RESUMO

Carotenoid (Car) pigments perform central roles in photosynthesis-related light harvesting (LH), photoprotection, and assembly of functional pigment-protein complexes. However, the relationships between Car depletion in the LH, assembly of the prokaryotic reaction center (RC)-LH complex, and quinone exchange are not fully understood. Here, we analyzed native RC-LH (nRC-LH) and Car-depleted RC-LH (dRC-LH) complexes in Roseiflexus castenholzii, a chlorosome-less filamentous anoxygenic phototroph that forms the deepest branch of photosynthetic bacteria. Newly identified exterior Cars functioned with the bacteriochlorophyll B800 to block the proposed quinone channel between LHαß subunits in the nRC-LH, forming a sealed LH ring that was disrupted by transmembrane helices from cytochrome c and subunit X to allow quinone shuttling. dRC-LH lacked subunit X, leading to an exposed LH ring with a larger opening, which together accelerated the quinone exchange rate. We also assigned amino acid sequences of subunit X and two hypothetical proteins Y and Z that functioned in forming the quinone channel and stabilizing the RC-LH interactions. This study reveals the structural basis by which Cars assembly regulates the architecture and quinone exchange of bacterial RC-LH complexes. These findings mark an important step forward in understanding the evolution and diversity of prokaryotic photosynthetic apparatus.


Photosynthesis is a biological process that converts energy from sunlight into a form of chemical energy that supports almost all life on Earth. Over the course of evolution, photosynthesis has gone from being only performed by bacteria to appearing in algae and green plants. While this has given rise to a range of different machineries for photosynthesis, the process always begins the same way: with a structure called the reaction center-light harvesting (RC-LH) complex. Two pigments in the light-harvesting (LH) region ­ known as chlorophyll and carotenoids ­ absorb light energy and transfer it to another part of the complex known as the quinone-type reaction center (RC). This results in the release of electrons that interact with a molecule called quinone converting it to hydroquinone. The electron-bound hydroquinone then shuttles to other locations in the cell where it initiates further steps that ultimately synthesize forms of chemical energy that can power essential cellular processes. In photosynthetic bacteria, hydroquinone must first pass through a ring structure in the light harvesting region in order to leave the reaction center. Previous studies suggest that carotenoids influence the architecture of this ring, but it remains unclear how this may affect the ability of hydroquinone to move out of the RC-LH complex. To investigate, Xin, Shi, Zhang et al. used a technique called cryo-electron microscopy to study the three-dimensional structure of RC-LH complexes in one of the first bacterial species to employ photosynthesis, Roseiflexus castenholzii. The experiments found that fully assembled complexes bind two groups of carotenoids: one nestled in the interior of the LH ring and the other on the exterior. The exterior carotenoids work together with bacteriochlorophyll molecules to form a closed ring that blocks hydroquinone from leaving the RC-LH complex. To allow hydroquinone to leave, two groups of regulatory proteins, including a cytochrome and subunit X, then disrupt the structure of the ring to 'open' it up. These findings broaden our knowledge of the molecules involved in photosynthesis. A better understanding of this process may aid the development of solar panels and other devices that use RC-LH complexes rather than silicon or other inorganic materials to convert energy from sunlight into electricity.


Assuntos
Carotenoides , Quinonas , Citoplasma
12.
Plant Biotechnol J ; 21(11): 2307-2321, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37626478

RESUMO

Petal senescence is the final stage of flower development. Transcriptional regulation plays key roles in this process. However, whether and how post-transcriptional regulation involved is still largely unknown. Here, we identified an ethylene-induced NAC family transcription factor DcNAP in carnation (Dianthus caryophyllus L.). One allele, DcNAP-dTdic1, has an insertion of a dTdic1 transposon in its second exon. The dTdic1 transposon disrupts the structure of DcNAP and causes alternative splicing, which transcribes multiple domain-deleted variants (DcNAP2 and others). Conversely, the wild type allele DcNAP transcribes DcNAP1 encoding an intact NAC domain. Silencing DcNAP1 delays and overexpressing DcNAP1 accelerates petal senescence in carnation, while silencing and overexpressing DcNAP2 have the opposite effects, respectively. Further, DcNAP2 could interact with DcNAP1 and interfere the binding and activation activity of DcNAP1 to the promoters of its downstream target ethylene biosynthesis genes DcACS1 and DcACO1. Lastly, ethylene signalling core transcriptional factor DcEIL3-1 can activate the expression of DcNAP1 and DcNAP2 in the same way by binding their promoters. In summary, we discovered a novel mechanism by which DcNAP regulates carnation petal senescence at the post-transcriptional level. It may also provide a useful strategy to manipulate the NAC domains of NAC transcription factors for crop genetic improvement.


Assuntos
Dianthus , Syzygium , Dianthus/genética , Syzygium/metabolismo , Flores , Etilenos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Sci Adv ; 9(31): eadh8442, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37531428

RESUMO

El Niño-Southern Oscillation (ENSO) is the strongest interannual climate variability with far-reaching socioeconomic consequences. Many studies have investigated ENSO-projected changes under future greenhouse warming, but its responses to plausible mitigation behaviors remain unknown. We show that ENSO sea surface temperature (SST) variability and associated global teleconnection patterns exhibit strong hysteretic responses to carbon dioxide (CO2) reduction based on the 28-member ensemble simulations of the CESM1.2 model under an idealized CO2 ramp-up and ramp-down scenario. There is a substantial increase in the ensemble-averaged eastern Pacific SST anomaly variance during the ramp-down period compared to the ramp-up period. Such ENSO hysteresis is mainly attributed to the hysteretic response of the tropical Pacific Intertropical Convergence Zone meridional position to CO2 removal and is further supported by several selected single-member Coupled Model Intercomparison Project Phase 6 (CMIP6) model simulations. The presence of ENSO hysteresis leads to its amplified and prolonged impact in a warming climate, depending on the details of future mitigation pathways.

14.
Life Sci ; 331: 122059, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37652154

RESUMO

DNA damage caused by internal or external factors lead to increased genomic instability and various diseases. The DNA damage response (DDR) is a crucial mechanism that maintaining genomic stability through detecting and repairing DNA damage timely. Post-translational modifications (PTMs) play significant roles in regulation of DDR. Among the present PTMs, crotonylation has emerged as a novel identified modification that is involved in a wide range of biological processes including gene expression, spermatogenesis, cell cycle, and the development of diverse diseases. In the past decade, numerous crotonylation sites have been identified in histone and non-histone proteins, leading to a more comprehensive and deep understanding of the function and mechanisms in protein crotonylation. This review provides a comprehensive overview of the regulatory mechanisms of protein crotonylation and the effect of crotonylation in DDR. Furthermore, the effect of protein crotonylation in tumor development and progression is presented, to inspire and explore the novel strategies for tumor therapy.


Assuntos
Fenômenos Biológicos , Histonas , Masculino , Humanos , Ciclo Celular , Divisão Celular , Dano ao DNA , Instabilidade Genômica
15.
iScience ; 26(8): 107392, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37554464

RESUMO

Numerosity perception is a fundamental cognitive function in humans and animals. Using an individual difference approach with a comprehensive dataset (N = 249), we performed a voxel-based morphometry analysis to unravel the neuroanatomical substrates associated with individual differences in numerosity perception sensitivity, measured by a classical non-symbolic numerical judgment task. Results showed that greater gray matter volume (GMV) in the left cerebellum, right temporal pole, and right parahippocampal was positively correlated to higher perceptual sensitivity to numerosity. In contrast, the GMV in the left intraparietal sulcus, and bilateral precentral/postcentral gyrus was negatively correlated to the sensitivity of numerosity perception. These findings indicate that a wide range of brain structures, rather than a specific anatomical structure or circuit, forms the neuroanatomical basis of numerosity perception, lending support to the emerging network view of the neural representation of numerosity. This work contributes to a more comprehensive understanding of how the brain processes numerical information.

16.
Sci Total Environ ; 892: 164732, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37290642

RESUMO

Short-term high-concentration exposure to airborne fine particulate matter (PM2.5) is strongly associated with the risk of acute lung injury (ALI). It has been recently reported that exosomes (Exos) involve in the progression of respiratory diseases. However, the molecular mechanisms by which exosome-mediated intercellular signaling exacerbate PM2.5-induced ALI remains largely unaddressed. In the present study, we firstly investigated the effect of macrophage-derived exosomal tumor necrosis factor α (TNF-α) on pulmonary surfactant proteins (SPs) expression in epithelial MLE-12 cells after PM2.5 exposure. The higher levels of exosomes in the bronchoalveolar lavage fluid (BALF) of PM2.5-induced ALI mice were found. BALF-exosomes significantly up-regulated SPs expression in MLE-12 cells. Moreover, we found that remarkably high expression of TNF-α in exosomes secreted by PM2.5-treated RAW264.7 cells. Exosomal TNF-α promoted thyroid transcription factor-1 (TTF-1) activation and SPs expression in MLE-12 cells. Furthermore, intratracheal instillation of macrophage-derived TNF-α-containing exosomes increased epithelial cell SPs expression in the lungs of mice. Taken together, these results suggest that macrophages-secreted exosomal TNF-α can trigger epithelial cell SPs expression, which provides new insight and potential target in the mechanism of epithelial cell dysfunction in PM2.5-induced ALI.


Assuntos
Lesão Pulmonar Aguda , Surfactantes Pulmonares , Animais , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Pulmão/metabolismo , Macrófagos/metabolismo , Material Particulado/toxicidade , Surfactantes Pulmonares/metabolismo , Surfactantes Pulmonares/toxicidade , Fator de Necrose Tumoral alfa/metabolismo
17.
Opt Lett ; 48(11): 2941-2944, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37262249

RESUMO

We propose a simple and inexpensive method for the fabrication of polarization splitters with designable separation angles and a controllable active area, based on polarization holography of tensor theory. First, we design two polarization holograms that reconstruct waves with only p- or s-polarization components, respectively. Then, after we recorded these two holograms on the same position of the recording material using the interference approach, as a result, a polarization splitter could readily be prepared. The separation angles of fabricated polarization splitters can be easily adjusted by changing the interference angle, and the active area can also be easily modified by changing the sizes of the interference beams and recording material during the recording process. The experimental results verify the reliability and accuracy of this method. We believe that this work may broaden the application field of polarization holography.

18.
Appl Ergon ; 113: 104078, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37385130

RESUMO

In an effort to mitigate the homogenization of in-ear wearables, designers have been focusing on finding new solutions to enhance user comfort. While the concept of pressure discomfort thresholds (PDT) in humans has been applied to product design, research on the auricular concha remains scarce. In this study, we conducted an experiment to measure the PDT at six points in the auricular concha of 80 participants. Our results showed that the tragus was the most sensitive area and that gender, symmetry, and Body Mass Index (BMI)had no significant effect on PDT. Based on these findings, we generated pressure sensitivity maps of the auricular concha to aid in the optimization of in-ear wearable design.


Assuntos
Pavilhão Auricular , Dispositivos Eletrônicos Vestíveis , Humanos
19.
Opt Express ; 31(5): 7764-7773, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36859901

RESUMO

Polarization holography is an effective tool for realizing light field manipulation and can be utilized to generate vector beams. Based on the diffraction characteristics of a linear polarization hologram in coaxial recording, an approach for generating arbitrary vector beams is proposed. Unlike the previous methods for generating vector beams, in this work, it is independent of faithful reconstruction effect and the arbitrary linear polarization waves can be used as reading waves. The desired generalized vector beam polarization patterns can be adjusted by changing the polarized direction angle of the reading wave. Therefore, it is more flexible than the previously reported methods in generating vector beams. The experimental results are consistent with the theoretical prediction.

20.
Plant J ; 114(3): 636-650, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36808165

RESUMO

Carnation (Dianthus caryophyllus L.) is a respiratory climacteric flower, comprising one of the most important cut flowers that is extremely sensitive to plant hormone ethylene. Ethylene signaling core transcription factor DcEIL3-1 plays a key role in ethylene induced petal senescence in carnation. However, how the dose of DcEIL3-1 is regulated in the carnation petal senescence process is still not clear. Here, we screened out two EBF (EIN3 Binding F-box) genes, DcEBF1 and DcEBF2, which showed quick elevation by ethylene treatment according to the ethylene induced carnation petal senescence transcriptome. Silencing of DcEBF1 and DcEBF2 accelerated, whereas overexpression of DcEBF1 and DcEBF2 delayed, ethylene induced petal senescence in carnation by influencing DcEIL3-1 downstream target genes but not DcEIL3-1 itself. Furthermore, DcEBF1 and DcEBF2 interact with DcEIL3-1 to degrade DcEIL3-1 via an ubiquitination pathway in vitro and in vivo. Finally, DcEIL3-1 binds to the promoter regions of DcEBF1 and DcEBF2 to activate their expression. In conclusion, the present study reveals the mutual regulation between DcEBF1/2 and DcEIL3-1 during ethylene induced petal senescence in carnation, which not only expands our understanding about ethylene signal regulation network in the carnation petal senescence process, but also provides potential targets with respect to breeding a cultivar of long-lived cut carnation.


Assuntos
Dianthus , Syzygium , Dianthus/genética , Syzygium/metabolismo , Melhoramento Vegetal , Etilenos/metabolismo , Flores/genética , Flores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA