Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Infect Dis ; 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38015657

RESUMO

BACKGROUND: The inflammation in the lungs and other vital organs in COVID-19 are characterized by the presence of neutrophils and high concentration of neutrophil extracellular traps (NETs), which also seems to mediate host tissue damage. However, it is not known whether NETs could have virucidal activity against SARS-CoV-2. METHODS: We investigated whether NETs could prevent SARS-CoV-2 replication in neutrophils and epithelial cells, and what the consequence of NETs degradation in K18-humanized ACE2 transgenic mice infected with SARS-CoV-2. RESULTS: Here, by immunofluorescence microscopy we observed that viral particles co-localize with NETs in neutrophils isolated from COVID-19 patients or from healthy individuals and infected in vitro. The inhibition of NETs production increased virus replication in neutrophils. In parallel, we observed that NETs inhibited virus abilities to infect and replicate in epithelial cells after 24 h of infection. Degradation of NETs with DNase I prevented their virucidal effect in vitro. Using K18-humanized ACE2 transgenic mice we observed a higher viral load in animals treated with DNase I. On the other hand, the virucidal effect of NETs was not dependent on neutrophil elastase or myeloperoxidase activity. CONCLUSION: Our results provide evidence of the role of NETosis as a mechanism of SARS-CoV-2 viral capture and inhibition.

2.
Microbiol Spectr ; : e0134723, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737615

RESUMO

In the present study, we show that SARS-CoV-2 can infect palatine tonsils, adenoids, and secretions in children without symptoms of COVID-19, with no history of recent upper airway infection. We studied 48 children undergoing tonsillectomy due to snoring/OSA or recurrent tonsillitis between October 2020 and September 2021. Nasal cytobrushes, nasal washes, and tonsillar tissue fragments obtained at surgery were tested by RT-qPCR, immunohistochemistry (IHC), flow cytometry, and neutralization assay. We detected the presence of SARS-CoV-2 in at least one specimen tested in 27% of patients. IHC revealed the presence of the viral nucleoprotein in epithelial surface and in lymphoid cells in both extrafollicular and follicular regions, in adenoids and palatine tonsils. Also, IHC for the SARS-CoV-2 non-structural protein NSP-16 indicated the presence of viral replication in 53.8% of the SARS-CoV-2-infected tissues. Flow cytometry showed that CD20+ B lymphocytes were the most infected phenotypes, followed by CD4+ lymphocytes and CD123 dendritic cells, CD8+ T lymphocytes, and CD14+ macrophages. Additionally, IF indicated that infected tonsillar tissues had increased expression of ACE2 and TMPRSS2. NGS sequencing demonstrated the presence of different SARS-CoV-2 variants in tonsils from different tissues. SARS-CoV-2 antigen detection was not restricted to tonsils but was also detected in nasal cells from the olfactory region. Palatine tonsils and adenoids are sites of prolonged RNA presence by SARS-CoV-2 in children, even without COVID-19 symptoms. IMPORTANCE This study shows that SRS-CoV-2 of different lineages can infect tonsils and adenoids in one quarter of children undergoing tonsillectomy. These findings bring advancement to the area of SARS-CoV-2 pathogenesis, by showing that tonsils may be sites of prolonged infection, even without evidence of recent COVID-19 symptoms. SARS-CoV-2 infection of B and T lymphocytes, macrophages, and dendritic cells may interfere with the mounting of immune responses in these secondary lymphoid organs. Moreover, the shedding of SARS-CoV-2 RNA in respiratory secretions from silently infected children raises concern about possible diagnostic confusion in the presence of symptoms of acute respiratory infections caused by other etiologies.

3.
Sci Rep ; 13(1): 13599, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604833

RESUMO

The TIGIT+FOXP3+Treg subset (TIGIT+Tregs) exerts robust suppressive activity on cellular immunity and predisposes septic individuals to opportunistic infection. We hypothesized that TIGIT+Tregs could play an important role in intensifying the COVID-19 severity and hampering the defense against nosocomial infections during hospitalization. Herein we aimed to verify the association between the levels of the TIGIT+Tregs with the mechanical ventilation requirement, fatal outcome, and bacteremia during hospitalization. TIGIT+Tregs were immunophenotyped by flow cytometry from the peripheral blood of 72 unvaccinated hospitalized COVID-19 patients at admission from May 29th to August 6th, 2020. The patients were stratified during hospitalization according to their mechanical ventilation requirement and fatal outcome. COVID-19 resulted in a high prevalence of the TIGIT+Tregs at admission, which progressively increased in patients with mechanical ventilation needs and fatal outcomes. The prevalence of TIGIT+Tregs positively correlated with poor pulmonary function and higher plasma levels of LDH, HMGB1, FGL2, and TNF. The non-survivors presented higher plasma levels of IL-33, HMGB1, FGL2, IL-10, IL-6, and 5.54 times more bacteremia than survivors. Conclusions: The expansion of the TIGIT+Tregs in COVID-19 patients was associated with inflammation, lung dysfunction, bacteremia, and fatal outcome.


Assuntos
Bacteriemia , COVID-19 , Infecção Hospitalar , Proteína HMGB1 , Humanos , Respiração Artificial , Linfócitos T Reguladores , Receptores Imunológicos , Fibrinogênio
4.
J Virol ; 95(23): e0112221, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34549980

RESUMO

Chikungunya virus (CHIKV) and Mayaro virus (MAYV) are closely related members of the Semliki Forest virus antigenic complex classified as belonging to the genus Alphavirus of the family Togaviridae. These viruses cause human disease, with sudden fever and joint inflammation that can persist for long periods. CHIKV is the causative agent of large outbreaks worldwide, and MAYV infection represents a growing public health concern in Latin America, causing sporadic cases and geographically limited outbreaks. Considering the relationship between CHIKV and MAYV, the present study aimed to evaluate if preexisting CHIKV immunity protects against MAYV infection. Immunocompetent C57BL/6 mice were intraperitoneally infected with CHIKV and, 4 weeks later, they were infected with MAYV in their hind paw. We observed that the preexistence of CHIKV immunity conferred partial cross-protection against secondary MAYV infection, reducing disease severity, tissue viral load, and histopathological scores. Interestingly, CHIKV antibodies from humans and mice showed low cross-neutralization to MAYV, but neutralizing activity significantly increased after secondary infection. Furthermore, depletion of adaptive immune cells (CD4+ T, CD8+ T, and CD19+ B cells) did not alter the cross-protection phenotype, suggesting that distinct cell subsets or a combination of adaptive immune cells stimulated by CHIKV are responsible for the partial cross-protection against MAYV. The reduction of proinflammatory cytokines, such as interferon gamma (IFN-γ), in animals secondarily infected by MAYV, suggests a role for innate immunity in cross-protection. Our findings shed light on how preexisting immunity to arthritogenic alphaviruses may affect secondary infection, which may further develop relevant influence in disease outcome and viral transmission. IMPORTANCE Mosquito-borne viruses have a worldwide impact, especially in tropical climates. Chikungunya virus has been present mostly in developing countries, causing millions of infections, while Mayaro virus, a close relative, has been limited to the Caribbean and tropical regions of Latin America. The potential emergence and spread of Mayaro virus to other high-risk areas have increased the scientific community's attention to an imminent worldwide epidemic. Here, we designed an experimental protocol of chikungunya and Mayaro virus mouse infection, which develops a measurable and quantifiable disease that allows us to make inferences about potential immunological effects during secondary virus infection. Our results demonstrate that previous chikungunya virus infection is able to reduce the severity of clinical outcomes during secondary Mayaro infection. We provide scientific understanding of immunological features during secondary infection with the closely related virus, thus assisting in better comprehending viral transmission and the pathological outcome of these diseases.


Assuntos
Infecções por Alphavirus/imunologia , Infecções por Alphavirus/prevenção & controle , Vírus Chikungunya/imunologia , Proteção Cruzada/imunologia , Alphavirus/imunologia , Infecções por Alphavirus/patologia , Animais , Anticorpos Antivirais/imunologia , Febre de Chikungunya/virologia , Modelos Animais de Doenças , Epidemias , Feminino , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Carga Viral
5.
Immunity ; 54(9): 2024-2041.e8, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34473957

RESUMO

Sepsis results in elevated adenosine in circulation. Extracellular adenosine triggers immunosuppressive signaling via the A2a receptor (A2aR). Sepsis survivors develop persistent immunosuppression with increased risk of recurrent infections. We utilized the cecal ligation and puncture (CLP) model of sepsis and subsequent infection to assess the role of adenosine in post-sepsis immune suppression. A2aR-deficient mice showed improved resistance to post-sepsis infections. Sepsis expanded a subset of CD39hi B cells and elevated extracellular adenosine, which was absent in mice lacking CD39-expressing B cells. Sepsis-surviving B cell-deficient mice were more resistant to secondary infections. Mechanistically, metabolic reprogramming of septic B cells increased production of ATP, which was converted into adenosine by CD39 on plasmablasts. Adenosine signaling via A2aR impaired macrophage bactericidal activity and enhanced interleukin-10 production. Septic individuals exhibited expanded CD39hi plasmablasts and adenosine accumulation. Our study reveals CD39hi plasmablasts and adenosine as important drivers of sepsis-induced immunosuppression with relevance in human disease.


Assuntos
Adenosina/imunologia , Antígenos CD/imunologia , Apirase/imunologia , Tolerância Imunológica/imunologia , Macrófagos/imunologia , Plasmócitos/imunologia , Sepse/imunologia , Adenosina/metabolismo , Animais , Antígenos CD/metabolismo , Apirase/metabolismo , Reprogramação Celular/imunologia , Macrófagos/metabolismo , Camundongos , Plasmócitos/metabolismo , Receptor A2A de Adenosina/imunologia , Receptor A2A de Adenosina/metabolismo , Sepse/metabolismo
6.
PLoS Negl Trop Dis ; 14(9): e0008667, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32986710

RESUMO

Digestive and cardiodigestive forms of Chagas' disease are observed in 2% to 27% of the patients, depending on their geographic location, Trypanosoma cruzi strain and immunopathological responses. The aim of this work was to evaluate the role of NOD2 innate immune receptor in the pathogenesis of the digestive system in Chagas' disease. Patients with digestive form of the disease showed lower mRNA expression of NOD2, higher expression of RIP2 and α-defensin 6, compared to indeterminate form, detected by Real-time PCR in peripheral blood mononuclear cells. In addition, there was a negative correlation between the expression of NOD2 and the degree of dilation of the esophagus, sigmoid and rectum in those patients. The infection of NOD2-/- mice with T. cruzi strain isolated from the digestive patient induced a decrease in intestinal motility. Histopathological analysis of the colon and jejunum of NOD2-/- and wild type C57BL/6 animals revealed discrete inflammatory foci during the acute phase of infection. Interestingly, during the chronic phase of the infection there was inflammation and hypertrophy of the longitudinal and circular muscular layer more pronounced in the colon and jejunum from NOD2-/- animals, when compared to wild type C57BL/6 mice. Together, our results suggest that NOD2 plays a protective role against the development of digestive form of Chagas' disease.


Assuntos
Doença de Chagas/imunologia , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/imunologia , Proteína Adaptadora de Sinalização NOD2/metabolismo , Trypanosoma cruzi/imunologia , Adolescente , Adulto , Idoso , Animais , Brasil , Doença de Chagas/patologia , Colo/microbiologia , Colo/patologia , Modelos Animais de Doenças , Feminino , Humanos , Imunidade Inata , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Adulto Jovem , alfa-Defensinas/genética , alfa-Defensinas/metabolismo
7.
FASEB J ; 34(8): 10907-10919, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32632939

RESUMO

Nucleotide oligomerization domain (NOD)-like receptor-12 (NLRP12) has emerged as a negative regulator of inflammation. It is well described that the Th17 cell population increases in patients with early Rheumatoid Arthritis (RA), which correlates with the disease activity. Here, we investigated the role of NLRP12 in the differentiation of Th17 cells and the development of experimental arthritis, using the antigen-induced arthritis (AIA) murine model. We found that Nlrp12-/- mice develop severe arthritis characterized by an exacerbated Th17-mediated inflammatory response with increases in the articular hyperalgesia, knee joint swelling, and neutrophil infiltration. Adoptive transfer of Nlrp12-/- cells into WT mice recapitulated the hyperinflammatory response seen in Nlrp12-/- mice and the treatment with anti-IL-17A neutralizing antibody abrogated arthritis development in Nlrp12-/- mice, suggesting that NLRP12 works as an inhibitor of Th17 cell differentiation. Indeed, Th17 cell differentiation markedly increases in Nlrp12-/- T cells cultured under the Th17-skewing condition. Mechanistically, we found that NLRP12 negatively regulates IL-6-induced phosphorylation of STAT3 in T cells. Finally, pharmacological inhibition of STAT3 reduced Th17 cell differentiation and abrogated hyperinflammatory arthritis observed in Nlrp12-/- mice. Thus, we described a novel role for NLRP12 as a checkpoint inhibitor of Th17 cell differentiation, which controls the severity of experimental arthritis.


Assuntos
Artrite Experimental/metabolismo , Artrite Reumatoide/metabolismo , Diferenciação Celular/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células Th17/metabolismo , Animais , Artrite Experimental/patologia , Artrite Reumatoide/patologia , Inflamação/metabolismo , Inflamação/patologia , Interleucina-17/metabolismo , Articulações/metabolismo , Articulações/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos/fisiologia , Fator de Transcrição STAT3/metabolismo , Células Th17/patologia
9.
PLoS Pathog ; 15(8): e1007990, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31425553

RESUMO

The granulomatous lesion resulting from infection with the fungus Paracoccidioides brasiliensis is characterized by a compact aggregate of mature cells, surrounded by a fibroblast- and collagen-rich content. Granuloma formation requires signaling elicited by inflammatory molecules such as members of the interleukin-1 family. Two members of this family have been thoroughly studied, namely IL-1α and IL-1ß. In this study, we addressed the mechanisms underlying IL-1α secretion and its functional role on the host resistance to fungal infection. We found that, the expression of caspase-11 triggered by P. brasiliensis infection of macrophages depends on IFN-ß production, because its inhibition reduced procaspase-11 levels. Curiously, caspase-11 deficiency did not impair IL-1ß production, however caspase-11 was required for a rapid pore-mediated cell lysis. The plasma membrane rupture facilitated the release of IL-1α, which was necessary to induce NO production and restrict fungal replication. Furthermore, P. brasiliensis-infected macrophages required IL-1α to produce optimal levels of IL-6, a major component of Th17 lymphocyte differentiation. Indeed, IL-1α deficiency accounted for a significant reduction of Th17 lymphocytes in lungs of infected mice, correlating with diminished neutrophil infiltration in the lungs. Strikingly, we identified that IL-1α directly reprograms the transcriptional profile of Th17-committed lymphocytes, increasing cellular proliferation, as for boosting IL-17 production by these cells. Beyond neutrophil chemotaxis in vivo, IL-17 also amplified IL-1α production by infected macrophages in vitro, endorsing a critical amplification loop of the inflammatory response. Therefore, our data suggest that the IFN-ß/caspase-11/IL-1α pathway shapes a protective antifungal Th17 immunity, revealing a molecular mechanism underlying the cross-talk between innate and adaptive immunity.


Assuntos
Caspases/fisiologia , Imunidade Inata/imunologia , Interleucina-1alfa/metabolismo , Macrófagos/imunologia , Paracoccidioides/imunologia , Paracoccidioidomicose/imunologia , Células Th17/imunologia , Animais , Caspases Iniciadoras , Inflamassomos , Macrófagos/metabolismo , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Paracoccidioidomicose/metabolismo , Paracoccidioidomicose/microbiologia , Células Th17/metabolismo , Células Th17/microbiologia
10.
Cell Death Dis ; 9(12): 1182, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30518854

RESUMO

Klebsiella pneumoniae is a Gram-negative bacterium responsible for severe cases of nosocomial pneumonia. During the infectious process, both neutrophils and monocytes migrate to the site of infection, where they carry out their effector functions and can be affected by different patterns of cell death. Our data show that clinical strains of K. pneumoniae have dissimilar mechanisms for surviving within macrophages; these mechanisms include modulation of microbicidal mediators and cell death. The A28006 strain induced high IL-1ß production and pyroptotic cell death in macrophages; by contrast, the A54970 strain induced high IL-10 production and low IL-1ß production by macrophages. Pyroptotic cell death induced by the A28006 strain leads to a significant increase in bacterial sensitivity to hydrogen peroxide, and efferocytosis of the pyroptotic cells results in efficient bacterial clearance both in vitro and in vivo. In addition, the A54970 strain was able to inhibit inflammasome activation and pyroptotic cell death by inducing IL-10 production. Here, for the first time, we present a K. pneumoniae strain able to inhibit inflammasome activation, leading to bacterial survival and dissemination in the host. The understanding of possible escape mechanisms is essential in the search for alternative treatments against multidrug-resistant bacteria.


Assuntos
Bacteriemia/microbiologia , Interações Hospedeiro-Patógeno/imunologia , Inflamassomos/imunologia , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/patogenicidade , Piroptose/imunologia , Animais , Bacteriemia/genética , Bacteriemia/imunologia , Bacteriemia/patologia , Caspase 1/deficiência , Caspase 1/genética , Caspase 1/imunologia , Caspases/deficiência , Caspases/genética , Caspases/imunologia , Caspases Iniciadoras , Feminino , Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Humanos , Inflamassomos/genética , Interleucina-10/deficiência , Interleucina-10/genética , Interleucina-10/imunologia , Infecções por Klebsiella/genética , Infecções por Klebsiella/imunologia , Infecções por Klebsiella/patologia , Klebsiella pneumoniae/imunologia , Klebsiella pneumoniae/isolamento & purificação , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Monócitos/microbiologia , Neutrófilos/imunologia , Neutrófilos/microbiologia , Fagocitose/genética , Piroptose/genética
11.
Immunobiology ; 223(10): 577-585, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30041769

RESUMO

Mutations in NOD2 predisposes to Inflammatory Bowel Diseases. Therefore, we evaluated the role of this innate receptor in the modulation of immunity in face of host microbiota changes. NOD2-/- mice presented higher susceptibility to experimental colitis than WT, with increased CD4 and CD8 T lymphocytes in the spleen. NOD2 deficiency also led to reduced Th17-related cytokines in the colon, with overall augmented IFN-γ in the gut and spleen. Nonetheless, there was increased frequency of CD4+IL-4+ cells in the mesenteric lymph nodes besides elevated CTLA-4 and FoxP3 regulatory markers in the spleen of NOD2-/- mice, although it did not result in more efficient control of gut inflammation. Indeed, these animals also had augmented IL-1ß and IL-5 in the peritoneum, indicating that this receptor may be important to control bacteria translocation too. Microbiota exchanging between cohoused WT and NOD2-/- mice led to colitis worsening in the absence of the receptor, while antibiotic therapy in WT mice abrogated this effect. Then, not only the genetic mutation confers increased susceptibility to inflammation, but it is also influenced by the microbiota harbored by the host. Finally, NOD2-/- mice are more prone to intestinal inflammation due to deregulated immune response and increased susceptibility to colitogenic bacteria.


Assuntos
Colite/genética , Disbiose/genética , Microbioma Gastrointestinal/imunologia , Proteína Adaptadora de Sinalização NOD2/genética , Animais , Colite/microbiologia , Doenças Inflamatórias Intestinais/genética , Interleucina-1beta/biossíntese , Interleucina-5/biossíntese , Camundongos , Camundongos Knockout
12.
Front Immunol ; 8: 1257, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29075257

RESUMO

Toxoplasma gondii (T. gondii) is the protozoan parasite that causes toxoplasmosis, a potentially fatal disease to immunocompromised patients, and which affects approximately 30% of the world's population. Previously, we showed that purinergic signaling via the P2X7 receptor contributes to T. gondii elimination in macrophages, through reactive oxygen species (ROS) production and lysosome fusion with the parasitophorous vacuole. Moreover, we demonstrated that P2X7 receptor activation promotes the production of anti-parasitic pro-inflammatory cytokines during early T. gondii infection in vivo. However, the cascade of signaling events that leads to parasite elimination via P2X7 receptor activation remained to be elucidated. Here, we investigated the cellular pathways involved in T. gondii elimination triggered by P2X7 receptor signaling, during early infection in macrophages. We focused on the potential role of the inflammasome, a protein complex that can be co-activated by the P2X7 receptor, and which is involved in the host immune defense against T. gondii infection. Using peritoneal and bone marrow-derived macrophages from knockout mice deficient for inflammasome components (NLRP3-/-, Caspase-1/11-/-, Caspase-11-/-), we show that the control of T. gondii infection via P2X7 receptor activation by extracellular ATP (eATP) depends on the canonical inflammasome effector caspase-1, but not on caspase-11 (a non-canonical inflammasome effector). Parasite elimination via P2X7 receptor and inflammasome activation was also dependent on ROS generation and pannexin-1 channel. Treatment with eATP increased IL-1ß secretion from infected macrophages, and this effect was dependent on the canonical NLRP3 inflammasome. Finally, treatment with recombinant IL-1ß promoted parasite elimination via mitochondrial ROS generation (as assessed using Mito-TEMPO). Together, our results support a model where P2X7 receptor activation by eATP inhibits T. gondii growth in macrophages by triggering NADPH-oxidase-dependent ROS production, and also by activating a canonical NLRP3 inflammasome, which increases IL-1ß production (via caspase-1 activity), leading to mitochondrial ROS generation.

13.
Front Immunol ; 8: 786, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28740491

RESUMO

The NOD-like receptor P3 (NLRP3) inflammasome is an intracellular multimeric complex that triggers the activation of inflammatory caspases and the maturation of IL-1ß and IL-18, important cytokines for the innate immune response against pathogens. The functional NLRP3 inflammasome complex consists of NLRP3, the adaptor protein apoptosis-associated speck-like protein, and caspase-1. Various molecular mechanisms were associated with NLRP3 activation including the presence of extracellular ATP, recognized by the cell surface P2X7 receptor (P2X7R). Several pattern recognition receptors on innate immune cells recognize Paracoccidioides brasiliensis components resulting in diverse responses that influence adaptive immunity and disease outcome. However, the role of NLRP3 inflammasome was scantily investigated in pulmonary paracoccidioidomycosis (PCM), leading us to use an intratracheal (i.t.) model of infection to study the influence of this receptor in anti-fungal immunity and severity of infection. For in vivo studies, C57BL/6 mice deficient for several NLRP3 inflammasome components (Nlrp3-/-, Casp1/11-/-, Asc-/-) as well as deficient for ATP receptor (P2x7r-/-) were infected via i.t. with P. brasiliensis and several parameters of immunity and disease severity analyzed at the acute and chronic periods of infection. Pulmonary PCM was more severe in Nlrp3-/-, Casp1/11-/-, Asc-/-, and P2x7r-/- mice as demonstrated by the increased fungal burdens, mortality rates and tissue pathology developed. The more severe disease developed by NLRP3, ASC, and Caspase-1/11 deficient mice was associated with decreased production of IL-1ß and IL-18 and reduced inflammatory reactions mediated by PMN leukocytes and activated CD4+ and CD8+ T cells. The decreased T cell immunity was concomitant with increased expansion of CD4+CD25+Foxp3 regulatory T (Treg) cells. Characterization of intracellular cytokines showed a persistent reduction of CD4+ and CD8+ T cells expressing IFN-γ and IL-17 whereas those producing IL-4 and TGF-ß appeared in increased frequencies. Histopathological studies showed that all deficient mouse strains developed more severe lesions containing elevated numbers of budding yeast cells resulting in increased mortality rates. Altogether, these findings led us to conclude that the activation of the NLRP3 inflammasome has a crucial role in the immunoprotection against pulmonary PCM by promoting the expansion of Th1/Th17 immunity and reducing the suppressive control mediated by Treg cells.

14.
Immunology ; 151(2): 154-166, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28140444

RESUMO

Sporotrichosis is a mycosis caused by fungi from the Sporothrix schenckii species complex, whose prototypical member is Sporothrix schenckii sensu stricto. Pattern recognition receptors (PRRs) recognize and respond to pathogen-associated molecular patterns (PAMPs) and shape the following adaptive immune response. A family of PRRs most frequently associated with fungal recognition is the nucleotide-binding oligomerization domain-like receptor (NLR). After PAMP recognition, NLR family pyrin domain-containing 3 (NLRP3) binds to apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and caspase-1 to form the NLRP3 inflammasome. When activated, this complex promotes the maturation of the pro-inflammatory cytokines interleukin-1ß (IL-1ß) and IL-18 and cell death through pyroptosis. In this study, we aimed to evaluate the importance of the NLRP3 inflammasome in the outcome of S. schenckii infection using the following three different knockout (KO) mice: NLRP3-/- , ASC-/- and caspase-1-/- . All KO mice were more susceptible to infection than the wild-type, suggesting that NLRP3-triggered responses contribute to host protection during S. schenckii infection. Furthermore, the NLRP3 inflammasome appeared to be critical for the ex vivo release of IL-1ß, IL-18 and IL-17 but not interferon-γ. Additionally, a role for the inflammasome in shaping the adaptive immune response was suggested by the lower frequencies of type 17 helper T (Th17) cells and Th1/Th17 but not Th1 cells in S. schenckii-infected KO mice. Overall, our results indicate that the NLRP3 inflammasome links the innate recognition of S. schenckii to the adaptive immune response, so contributing to protection against this infection.


Assuntos
Inflamassomos/imunologia , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sporothrix/imunologia , Esporotricose/imunologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , Sporothrix/citologia , Esporotricose/microbiologia
15.
Immunology ; 149(4): 374-385, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27479869

RESUMO

Periodontitis is a chronic inflammatory condition characterized by destruction of non-mineralized and mineralized connective tissues. It is initiated and maintained by a dysbiosis of the bacterial biofilm adjacent to teeth with increased prevalence of Gram-negative microorganisms. Nucleotide-binding oligomerization domain containing 1 (NOD1) is a member of the Nod-like receptors (NLRs) family of proteins that participate in the activation of the innate immune system, in response to invading bacteria or to bacterial antigens present in the cytoplasm. The specific activating ligand for NOD1 is a bacterial peptidoglycan derived primarily from Gram-negative bacteria. This study assessed the role of NOD1 in inflammation-mediated tissue destruction in the context of host-microbe interactions. We used mice with whole-genome deletion of the NOD1 gene in a microbe-induced periodontitis model using direct injections of heat-killed Gram-negative or Gram-negative/Gram-positive bacteria on the gingival tissues. In vitro experiments using primary bone-marrow-derived macrophages from wild-type and NOD1 knockout mice provide insight into the role of NOD1 on the macrophage response to Gram-negative and Gram-negative/Gram-positive bacteria. Microcomputed tomography analysis indicated that deletion of NOD1 significantly aggravated bone resorption induced by Gram-negative bacteria, accompanied by an increase in the numbers of osteoclasts. This effect was significantly attenuated by the association with Gram-positive bacteria. In vitro, quantitative PCR arrays indicated that stimulation of macrophages with heat-killed Gram-negative bacteria induced the same biological processes in wild-type and NOD1-deficient cells; however, expression of pro-inflammatory mediators was increased in NOD1-deficient cells. These results suggest a bone-sparing role for NOD1 in this model.


Assuntos
Aggregatibacter actinomycetemcomitans/imunologia , Reabsorção Óssea/imunologia , Gengiva/imunologia , Limosilactobacillus fermentum/imunologia , Macrófagos/fisiologia , Proteína Adaptadora de Sinalização NOD1/metabolismo , Doenças Periodontais/imunologia , Animais , Antígenos de Bactérias/imunologia , Reabsorção Óssea/microbiologia , Células Cultivadas , Modelos Animais de Doenças , Gengiva/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Adaptadora de Sinalização NOD1/genética , Osteoclastos/patologia , Doenças Periodontais/microbiologia
16.
J Immunol ; 194(9): 4507-17, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25825440

RESUMO

Pathogens are sensed by innate immune receptors that initiate an efficient adaptive immune response upon activation. The elements of the innate immune recognition process for Paracoccidioides brasiliensis include TLR-2, TLR-4, and dectin-1. However, there are additional receptors necessary for the host immune responses to P. brasiliensis. The nucleotide-binding oligomerization domain-like receptor (NLRs), which activate inflammasomes, are candidate receptors that deserve renewed investigation. After pathogen infection, the NLRs form large signaling platforms called inflammasomes, which lead to caspase-1 activation and maturation of proinflammatory cytokines (IL-18 and IL-1ß). In this study, we showed that NLR family pyrin domain-containing 3 (Nlrp3) is required to induce caspase-1 activation and further secretion of IL-1ß and IL-18 by P. brasiliensis-infected macrophages. Additionally, potassium efflux and lysosomal acidification induced by the fungus were important steps in the caspase-1 activation mechanism. Notably, Nlrp3 and caspase-1 knockout mice were more susceptible to infection than were the wild-type animals, suggesting that the Nlrp3-dependent inflammasomes contribute to host protection against P. brasiliensis. This protective effect occurred owing to the inflammatory response mediated by IL-18, as shown by an augmented fungus burden in IL-18 knockout mice. Taken together, our results show that the Nlrp3 inflammasome is essential for resistance against P. brasiliensis because it orchestrates robust caspase-1 activation and triggers an IL-18-dependent proinflammatory response.


Assuntos
Proteínas de Transporte/metabolismo , Imunidade Inata , Inflamassomos/metabolismo , Interleucina-18/metabolismo , Pneumopatias Fúngicas/imunologia , Pneumopatias Fúngicas/metabolismo , Animais , Caspase 1/metabolismo , Modelos Animais de Doenças , Resistência à Doença/genética , Resistência à Doença/imunologia , Granuloma/genética , Granuloma/imunologia , Granuloma/metabolismo , Inflamassomos/genética , Interleucina-18/genética , Interleucina-1beta/biossíntese , Pneumopatias Fúngicas/mortalidade , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Paracoccidioides/imunologia
17.
PLoS One ; 9(9): e107170, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25268644

RESUMO

Chronic inflammation affects most stages of tumorigenesis, including initiation, promotion, malignant differentiation, invasion and metastasis. Inflammasomes have been described as involved with persistent inflammation and are known to exert both pro and antitumour effects. We evaluated the influence of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and caspase (CASP)-1 in the antitumor immune response using a multistage model of squamous cell carcinoma (SCC) development. Absence of ASC and CASP-1 resulted in an earlier incidence and increased number of papilloma. Loss of inflammassome function in mice resulted in decreased presence of natural killer (NK), dendritic (DC), CD4(+), CD8(+) and CD45RB(+) T cells in the tumor lesions as well as in lymph nodes (LN) compared with WT mice. Increased percentage of CD4(+)CD25(+)Foxp3(+) T cells was associated with association with inflammasome loss of function. Moreover, significant differences were also found with neutrophils and macrophage infiltrating the lesions. Myeloperoxidase (MPO), but not elastase (ELA), activity oscillated among the groups during the SCC development. Levels of proinflammatory cytokines IL-1ß, IL-18, Tumor Necrosis Factor (TNF)-α and Interferon (IFN)-γ were decreased in the tumor microenvironment in the absence of inflammasome proteins. These observations suggest a link between inflammasome function and SCC tumorigenesis, indicating an important role for inflammasome activation in the control of SCC development.


Assuntos
Carcinoma de Células Escamosas/imunologia , Inflamassomos/fisiologia , Papiloma/imunologia , Neoplasias Cutâneas/imunologia , 9,10-Dimetil-1,2-benzantraceno , Animais , Carcinoma de Células Escamosas/induzido quimicamente , Feminino , Linfonodos/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Papiloma/induzido quimicamente
18.
J Immunol ; 191(6): 3373-83, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23966627

RESUMO

The innate immune response to Trypanosoma cruzi infection comprises several pattern recognition receptors (PRRs), including TLR-2, -4, -7, and -9, as well as the cytosolic receptor Nod1. However, there are additional PRRs that account for the host immune responses to T. cruzi. In this context, the nucleotide-binding oligomerization domain-like receptors (NLRs) that activate the inflammasomes are candidate receptors that deserve renewed investigation. Following pathogen infection, NLRs form large molecular platforms, termed inflammasomes, which activate caspase-1 and induce the production of active IL-1ß and IL-18. In this study, we evaluated the involvement of inflammasomes in T. cruzi infection and demonstrated that apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) inflammasomes, including NLR family, pyrin domain-containing 3 (NLRP3), but not NLR family, caspase recruitment domain-containing 4 or NLR family, pyrin domain-containing 6, are required for triggering the activation of caspase-1 and the secretion of IL-1ß. The mechanism by which T. cruzi mediates the activation of the ASC/NLRP3 pathway involves K⁺ efflux, lysosomal acidification, reactive oxygen species generation, and lysosomal damage. We also demonstrate that despite normal IFN-γ production in the heart, ASC⁻/⁻ and caspase-1⁻/⁻ infected mice exhibit a higher incidence of mortality, cardiac parasitism, and heart inflammation. These data suggest that ASC inflammasomes are critical determinants of host resistance to infection with T. cruzi.


Assuntos
Doença de Chagas/imunologia , Proteínas do Citoesqueleto/imunologia , Resistência à Doença/imunologia , Inflamassomos/imunologia , Interleucina-1beta/imunologia , Animais , Proteínas Reguladoras de Apoptose , Proteínas Adaptadoras de Sinalização CARD , Proteínas de Transporte/imunologia , Caspase 1/imunologia , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Análise de Sequência com Séries de Oligonucleotídeos , Trypanosoma cruzi/imunologia
19.
Säo Paulo; s.n; 2003. [167] p.
Tese em Português | LILACS | ID: lil-334486

RESUMO

Este trabalho aborda aspectos da biologia da infecção de macrófagos murinos eme cultura pela bactéria Coxiella burnetii de fase II. Agente da febre Q em humanos, C. burnetii é urna bactéria Gram negativa intracelular obrigatória que sobrevive e se multiplica em grandes vacúolos altamente fusogênicos com características semelhantes às dos' lisossomas. Para caracterizar quantitativamente a infecção, desenvolvemos uma metodologia baseada na quantificação da fluorescência bacteriana presente em imagens digitais das, células infectadas, adquiridas por microscopia confocal. Essa metodologia permitiu demonstrar que macrófagos primários de camundongos são menos susceptíveis à infecção quando comparados a fibroblastos da mesma espécie. Os' macrófagos são capazes de controlar tanto a formação dos vacúolos parasitóforos quanto a, multiplicação bacteriana no interior dos vacúolos. O tempo mínimo de dobramento bacteriano foi estimado em 20 horas nos fibroblastos e em cerca de 70 horas nos macrófagos. Macrófagos produzem uma variedade de' moléculas microbicidas e/ou microbistáticas. Nossas experiências demonstraram que a bactéria C. burnetii de fase II induz a produção de NO por macrófagos primários, o que sugere que NO poderia estar' relacionado com o controle da infecção. De fato, a infecção das células foi,' respectivamente, reduzida e aumentada em presença de moléculas geradoras de NO ou dei inibidoras da síntese de NO. A participação de NO no controle da infecção foi confirmada' pela utilização de macrófagos de animais nocautes para o gene da NO sintase indutível...(au)


Assuntos
Bactérias , Coxiella burnetii , Infecções , Macrófagos , Óxido Nítrico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA