Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Adv Sci (Weinh) ; 10(36): e2303484, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37946697

RESUMO

Ferroptosis, which is caused by iron-dependent accumulation of lipid peroxides, is an emerging form of regulated cell death and is considered a potential target for cancer therapy. However, the regulatory mechanisms underlying ferroptosis remain unclear. This study defines a distinctive role of ferroptosis. Inhibition of CARM1 can increase the sensitivity of tumor cells to ferroptosis inducers in vitro and in vivo. Mechanistically, it is found that ACSL4 is methylated by CARM1 at arginine 339 (R339). Furthermore, ACSL4 R339 methylation promotes RNF25 binding to ACSL4, which contributes to the ubiquitylation of ACSL4. The blockade of CARM1 facilitates ferroptosis and effectively enhances ferroptosis-associated cancer immunotherapy. Overall, this study demonstrates that CARM1 is a critical contributor to ferroptosis resistance and highlights CARM1 as a candidate therapeutic target for improving the effects of ferroptosis-based antitumor therapy.


Assuntos
Neoplasias Colorretais , Ferroptose , Humanos , Metilação , Proteína-Arginina N-Metiltransferases/genética , Neoplasias Colorretais/genética
2.
Dalton Trans ; 52(37): 13358-13366, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37671899

RESUMO

Six phosphorescence-emitting metal-organic mononuclear Cu(I) complexes, namely four quinoline-containing three-coordinate Cu(I) complexes and two N-heterocyclic carbene-containing four-coordinate Cu(I) complexes, have been successfully developed and fully characterized. All these Cu(I) complexes include the same bis(2-diphenylphosphinophenyl)ether bidentate auxiliary ligand. Significantly, four-coordinate Cu(I) complexes 1 and 2 display typical aggregation-induced emission phenomena. Their solid samples of luminogenic complexes 1-6 emit a variety of different phosphorescence. Furthermore, solid-state phosphorescence of these Cu(I) complexes can be effectively manipulated by external mechanical force. Remarkably, luminophores 1, 2 and 5 exhibit blue-shifted mechanoluminochromism responses, while luminophores 3, 4 and 6 present red-shifted mechanoluminochromism characteristics. All of the observed mechano-responsive phosphorescence changes of solids 1-6 are reversible by the method of solvent fuming. Powder X-ray diffraction results confirm that the reversible mechanically induced phosphorescence changes of complexes 1-6 are due to the mutual transformation of ordered crystalline and metastable amorphous states.

3.
Nanomaterials (Basel) ; 13(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36770487

RESUMO

Photocatalytic technology, with features of wide applicability, mild reaction conditions and sunlight availability, satisfies the requirements of "green chemistry". As the star photoanode material for photoelectrochemical catalysis, WO3 has a suitable band gap of 2.8 eV and a strong oxidation capacity, as well as displaying great potential in organic wastewater degradation. However, its performance is usually hindered by competition with water oxidation to generate peroxides, rapid charge complexation caused by surface defect sites, and so on. Herein, WO3 films modified with cobalt-phosphate (Co-Pi/WO3) film were prepared and involved in photocatalytic organic wastewater degradation. A degradation rate constant of 0.63311 h-1 was obtained for Co-Pi/WO3, which was much higher than that of WO3, 10.23 times that of direct photocatalysis (DP) and 23.99 times that of electrocatalysis (EC). After three cycles of degradation, the film can maintain a relatively good level of stability and a degradation efficiency of 93.79%.

4.
ACS Appl Mater Interfaces ; 14(42): 47765-47774, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36251743

RESUMO

High quality of hydrogen is the key to the long lifetime of proton-exchange membrane fuel cell (PEMFC) vehicles, while trace H2S impurities in hydrogen significantly affect their durability and fuel expense. Herein, we demonstrate a robust PtRu alloy catalyst with an intriguing H2S tolerance as the PEMFC anode, showing a stronger antipoisoning capability toward hydrogen oxidation reaction compared with the Pt/C anode. The PtRu/C-based single PEMFC shows approximately 14.3% loss of cell voltage after 3 h operation with 1 ppm of H2S in hydrogen, significantly lower than that of Pt/C-based PEMFCs (65%). By adopting PtRu/C as the anode, the H2S limit in hydrogen can be increased to 1.7 times that of the Pt/C anode, assuming that the PEMFC runs for 5000 h, which is conductive for the cost reduction of hydrogen purification. The three-electrode electrochemical test indicates that PtRu/C exhibits a slower adsorption kinetics toward S2- species with poisoning rates of 0.02782, 0.02982, and 0.03682 min-1 at temperatures of 25, 35, and 45 °C, respectively, all lower than those of Pt/C. X-ray absorption fine structure spectra indicate the weakened Pt-S binding for PtRu/C in comparison to Pt/C with a longer Pt-S bond length. Density functional theory calculation analyses reveal that adsorption energy of sulfur on the Pt surface was reduced for PtRu/C, showing 1-10% decrease at different Pt sites for (111), (110), and (100) planes, which is ascribed to the downshifted Pt d-band center caused by the ligand and strain effects due to the introduction of second metallic Ru. This work provides a valuable guide for the development of the H2S-tolerant catalysts for long-term application of PEMFCs.

5.
Nanoscale ; 14(27): 9849-9859, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35772340

RESUMO

Exploring cost-effective non-precious metal electrocatalysts is vital for the large-scale application of clean energy conversion devices (i.e., fuel cells, metal-air batteries and water electrolysers). Herein, we present the construction of a three-dimensional cobalt sulfide/multi-heteroatom co-doped carbon composite as a trifunctional electrocatalyst for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) through one-step sulfidation of zeolitic-imidazolate frameworks (ZIFs) using sulfur powder as a sulfur source. By virtue of the distinct periodic metal-nitrogen coordination structure and the abundant micropores within the ZIF precursor, sub-10 nm Co9S8 nanoparticles (NPs) are homogenously anchored on a Co, S and N multi-heteroatom co-doped carbon framework with a large specific surface area that exposes sufficient reactive sites for these electrocatalytic reactions. The optimized Co9S8/CoNSC exhibits outstanding ORR, OER and HER performance, comparable or even superior to those of commercial Pt/C and RuO2. The small Co9S8 NPs and Co-Nx species embedded in the carbon matrix cooperatively catalyze the OER and ORR, while the HER catalysis is mainly contributed by Co9S8 NPs. Furthermore, the Co9S8/CoNSC shows outstanding anti-poisoning capability towards sulfur species during ORR catalysis with no obvious activity degradation observed in 0.1 M KOH containing 50 µM SO32- species, significantly outperforming commercial Pt/C. The assembled rechargeable Zn-air battery using the Co9S8/CoNSC as a cathode shows a high power density (150 mW cm-2) and the assembled water electrolyzer only requires 1.585 V at a current density of 10 mA cm-2 when using this material as an anode and a cathode. This work provides an effective strategy to design and synthesize efficient, durable and anti-poisoning cobalt chalcogenide-based trifunctional electrocatalysts for the large-scale application of clean energy conversion devices.

6.
Nat Commun ; 13(1): 253, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017532

RESUMO

Super-enhancers are expansive regions of genomic DNA comprised of multiple putative enhancers that contribute to the dynamic gene expression patterns during development. This is particularly important in neurogenesis because many essential transcription factors have complex developmental stage- and cell-type specific expression patterns across the central nervous system. In the developing retina, Vsx2 is expressed in retinal progenitor cells and is maintained in differentiated bipolar neurons and Müller glia. A single super-enhancer controls this complex and dynamic pattern of expression. Here we show that deletion of one region disrupts retinal progenitor cell proliferation but does not affect cell fate specification. The deletion of another region has no effect on retinal progenitor cell proliferation but instead leads to a complete loss of bipolar neurons. This prototypical super-enhancer may serve as a model for dissecting the complex gene expression patterns for neurogenic transcription factors during development. Moreover, it provides a unique opportunity to alter expression of individual transcription factors in particular cell types at specific stages of development. This provides a deeper understanding of function that cannot be achieved with traditional knockout mouse approaches.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Neurogênese/fisiologia , Sequências Reguladoras de Ácido Nucleico , Retina/metabolismo , Animais , Sistemas CRISPR-Cas , Diferenciação Celular/genética , Proliferação de Células , Epigenômica , Feminino , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Masculino , Camundongos , Neurogênese/genética , Neuroglia/fisiologia , Neurônios/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Células-Tronco/fisiologia , Fatores de Transcrição/química , Fatores de Transcrição/fisiologia
7.
ACS Appl Mater Interfaces ; 14(4): 5287-5297, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35072443

RESUMO

Hydrogen fuel cells are regarded as a promising new carbon mitigation strategy to realize carbon neutrality. The exploitation of robust and efficient cathode catalysts is thus vital to the commercialization of proton exchange membrane fuel cells (PEMFCs). Herein, we demonstrate a facile and scalable surface engineering route to achieve superior durability and high activity of a Pt-based material as a PEMFC cathode catalyst through a controllable liquid-phase reduction approach. The proposed surface engineering strategy by modifying Pt/C reduces the oxygen content on the carbon support and also decreases the surface defects on Pt nanoparticles (NPs), which effectively alleviate the corrosion of carbon and inhibit the detachment, agglomeration, and growth of Pt NPs. The resulting catalyst exhibits superior durability after a 10,000 potential cycling test in an acid electrolyte─outperforming commercial Pt/C. Moreover, the catalyst also demonstrates an improved oxygen reduction reaction (ORR) activity in comparison to commercial Pt/C by virtue of the high content of metallic Pt and the weakened Pt-OH bonding that releases more Pt active sites for ORR catalysis. Most importantly, the developed catalyst shows outstanding PEMFC performance and excellent long-term durability over 50 h of a constant-current test and 100 h of a load-cycling operation. This effective route provides a new avenue for exploiting robust Pt-based catalysts with superior activity in practical applications of PEMFCs.

8.
Shanghai Kou Qiang Yi Xue ; 31(6): 643-647, 2022 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-36970802

RESUMO

PURPOSE: To investigate the clinical effect of rapid maxillary expansion with cortical osteotomy combined with orthodontic- orthognathic treatment for skeletal Class Ⅲ malocclusion. METHODS: A total of 84 patients with skeletal Class Ⅲ malocclusion admitted to Jining Dental Hospital from March 2018 to May 2020 were randomly divided into experimental group and control group, with 42 cases in each group. The control group was treated with orthodontic-orthognathic treatment, while the experimental group was treated with orthodontic-orthognathic treatment with rapid maxillary arch expansion by cortical incision. The time of closing gap, alignment time, maxillary first molar and maxillary central incisor tooth movement distance in the sagittal direction were compared between the two groups. Before treatment and 4 weeks after treatment, the vertical distance from the end of the upper central incisor edge to the horizontal plane(U1I-HP), the distance from the apex of the upper central incisor to the coronal plane(U1I-CP), the vertical distance from the edge of the upper pressure groove to the coronal plane(Sd-CP), the vertical distance from the upper alveolar seat point to the horizontal plane(A-HP), the vertical distance from the point of the upper lip to the coronal plane(Ls-CP), and the vertical distance from the inferior point of nose to coronal plane(Sn-CP) were measured, and the relevant changes were calculated. During the treatment period, the complications of the two groups were compared. SPSS 20.0 software package was used for statistical analysis of the data. RESULTS: There was no significant difference in alignment time, A-HP change, Sn-CP change, maxillary first molar movement distance and maxillary central incisor movement distance between the two groups (P>0.05). The closing interval in the experimental group was significantly shorter than that of the control group (P<0.05). The changes of U1I-HP, U1I-CP, Sd-CP, and Ls-CP in the experimental group were significantly higher than those in the control group (P<0.05). There was no significant difference in the incidence of complications between the two groups during treatment (P>0.05). CONCLUSIONS: Rapid maxillary expansion of cortical incision assisted orthodontic-orthognathic treatment of skeletal Class Ⅲ malocclusion patients can shorten the closing gap time and improve the treatment effect, which has no obvious influence on the sagittal direction of the teeth.


Assuntos
Má Oclusão Classe III de Angle , Mandíbula , Humanos , Técnica de Expansão Palatina , Maxila/diagnóstico por imagem , Maxila/cirurgia , Má Oclusão Classe III de Angle/diagnóstico por imagem , Má Oclusão Classe III de Angle/cirurgia , Incisivo/cirurgia , Cefalometria
9.
Nat Commun ; 12(1): 4535, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315877

RESUMO

Retinoblastoma is a childhood cancer of the developing retina that initiates with biallelic inactivation of the RB1 gene. Children with germline mutations in RB1 have a high likelihood of developing retinoblastoma and other malignancies later in life. Genetically engineered mouse models of retinoblastoma share some similarities with human retinoblastoma but there are differences in their cellular differentiation. To develop a laboratory model of human retinoblastoma formation, we make induced pluripotent stem cells (iPSCs) from 15 participants with germline RB1 mutations. Each of the stem cell lines is validated, characterized and then differentiated into retina using a 3-dimensional organoid culture system. After 45 days in culture, the retinal organoids are dissociated and injected into the vitreous of eyes of immunocompromised mice to support retinoblastoma tumor growth. Retinoblastomas formed from retinal organoids made from patient-derived iPSCs have molecular, cellular and genomic features indistinguishable from human retinoblastomas. This model of human cancer based on patient-derived iPSCs with germline cancer predisposing mutations provides valuable insights into the cellular origins of this debilitating childhood disease as well as the mechanism of tumorigenesis following RB1 gene inactivation.


Assuntos
Organoides/patologia , Retina/patologia , Retinoblastoma/patologia , Células-Tronco/patologia , Adulto , Diferenciação Celular , Linhagem Celular , Epigênese Genética , Éxons/genética , Feminino , Genoma Humano , Mutação em Linhagem Germinativa/genética , Humanos , Imageamento Tridimensional , Células-Tronco Pluripotentes Induzidas/metabolismo , Retinoblastoma/genética , Proteína do Retinoblastoma/genética
10.
Neuron ; 104(3): 512-528.e11, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31493975

RESUMO

More than 8,000 genes are turned on or off as progenitor cells produce the 7 classes of retinal cell types during development. Thousands of enhancers are also active in the developing retinae, many having features of cell- and developmental stage-specific activity. We studied dynamic changes in the 3D chromatin landscape important for precisely orchestrated changes in gene expression during retinal development by ultra-deep in situ Hi-C analysis on murine retinae. We identified developmental-stage-specific changes in chromatin compartments and enhancer-promoter interactions. We developed a machine learning-based algorithm to map euchromatin and heterochromatin domains genome-wide and overlaid it with chromatin compartments identified by Hi-C. Single-cell ATAC-seq and RNA-seq were integrated with our Hi-C and previous ChIP-seq data to identify cell- and developmental-stage-specific super-enhancers (SEs). We identified a bipolar neuron-specific core regulatory circuit SE upstream of Vsx2, whose deletion in mice led to the loss of bipolar neurons.


Assuntos
Eucromatina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Heterocromatina/metabolismo , Retina/embriologia , Células Bipolares da Retina/metabolismo , Animais , Cromatina/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação , Elementos Facilitadores Genéticos , Redes Reguladoras de Genes , Proteínas de Homeodomínio/genética , Aprendizado de Máquina , Camundongos , Lâmina Nuclear/metabolismo , Regiões Promotoras Genéticas , RNA-Seq , Receptores Citoplasmáticos e Nucleares/genética , Retina/citologia , Retina/metabolismo , Retina/ultraestrutura , Células Bipolares da Retina/citologia , Células Fotorreceptoras Retinianas Bastonetes/citologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Análise de Célula Única , Fatores de Transcrição/genética , Receptor de Lamina B
11.
Cell Rep ; 22(10): 2601-2614, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29514090

RESUMO

Diverse cell types can be reprogrammed into pluripotent stem cells by ectopic expression of Oct4 (Pou5f1), Klf4, Sox3, and Myc. Many of these induced pluripotent stem cells (iPSCs) retain memory, in terms of DNA methylation and histone modifications (epigenetic memory), of their cellular origins, and this may bias subsequent differentiation. Neurons are difficult to reprogram, and there has not been a systematic side-by-side characterization of reprogramming efficiency or epigenetic memory across different neuronal subtypes. Here, we compare reprogramming efficiency of five different retinal cell types at two different stages of development. Retinal differentiation from each iPSC line was measured using a quantitative standardized scoring system called STEM-RET and compared to the epigenetic memory. Neurons with the lowest reprogramming efficiency produced iPSC lines with the best retinal differentiation and were more likely to retain epigenetic memory of their cellular origins. In addition, we identified biomarkers of iPSCs that are predictive of retinal differentiation.


Assuntos
Reprogramação Celular , Metilação de DNA , Histonas/metabolismo , Organogênese , Organoides/crescimento & desenvolvimento , Processamento de Proteína Pós-Traducional , Retina/citologia , Retina/metabolismo , Animais , Biomarcadores/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Núcleo Celular/metabolismo , Elementos Facilitadores Genéticos/genética , Epigênese Genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , Camundongos , Regiões Promotoras Genéticas/genética
12.
Sci Rep ; 8(1): 994, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29343857

RESUMO

The cardiac sympathetic nerves distribute across cardiac tissues with uneven density. Yet, to what extent this anatomical heterogeneity affects electrical activity of the left ventricle is largely unknown. Dogs were randomized into non-stimulation control (NC), posterior basal-stimulation (PB), anterior superior-stimulation (AS), apical part-stimulation (AP) group. The epicardial sympathetic nerves at different sites along their distribution were with electrical stimulation (ES) for 4 hours except in the NC group. The myocardial effective refractory period (ERP), ventricular fibrillation threshold (VFT) and density of sympathetic nerves were recorded. Compared with ES at other places, the stimulation at PB site significantly shortened ERP (left ventricular anterior and posterior walls; PB group, 118 ± 4 ms, 106 ± 2 ms; Versus NC group, 155 ± 3.5 ms, 160 ± 3 ms; p < 0.01) and VFT (PB group, 11.5 ± 1.5 V; Versus NC group, 20.5 ± 0.9 V; p < 0.01), and induced remarkable regeneration of the cardiac sympathetic nerves, hence influencing electrical activity of the left ventricle to the most extent. Our study demonstrates that the degree of induced ventricular electrical instability is correlated tightly with the density of sympathetic nerves around ES site, and PB site is a potential target for modulating ventricular electrical activity to the maximal extent.


Assuntos
Estimulação Elétrica/métodos , Sistema de Condução Cardíaco/fisiologia , Pericárdio/fisiologia , Período Refratário Eletrofisiológico/efeitos dos fármacos , Sistema Nervoso Simpático/fisiologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Cães , Eletrodos , Sistema de Condução Cardíaco/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/inervação , Masculino , Pericárdio/efeitos dos fármacos , Pericárdio/inervação , Propanolaminas/farmacologia , Receptores Adrenérgicos beta/metabolismo , Respiração Artificial , Sistema Nervoso Simpático/efeitos dos fármacos , Sístole
13.
Neuron ; 94(3): 550-568.e10, 2017 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-28472656

RESUMO

In the developing retina, multipotent neural progenitors undergo unidirectional differentiation in a precise spatiotemporal order. Here we profile the epigenetic and transcriptional changes that occur during retinogenesis in mice and humans. Although some progenitor genes and cell cycle genes were epigenetically silenced during retinogenesis, the most dramatic change was derepression of cell-type-specific differentiation programs. We identified developmental-stage-specific super-enhancers and showed that most epigenetic changes are conserved in humans and mice. To determine how the epigenome changes during tumorigenesis and reprogramming, we performed integrated epigenetic analysis of murine and human retinoblastomas and induced pluripotent stem cells (iPSCs) derived from murine rod photoreceptors. The retinoblastoma epigenome mapped to the developmental stage when retinal progenitors switch from neurogenic to terminal patterns of cell division. The epigenome of retinoblastomas was more similar to that of the normal retina than that of retina-derived iPSCs, and we identified retina-specific epigenetic memory.


Assuntos
Carcinogênese/genética , Diferenciação Celular/genética , Reprogramação Celular/genética , Metilação de DNA/genética , Epigênese Genética , Código das Histonas/genética , Retina/metabolismo , Retinoblastoma/genética , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Retina/embriologia , Células Fotorreceptoras Retinianas Bastonetes/citologia , Proteína do Retinoblastoma/genética
14.
J Nanosci Nanotechnol ; 16(1): 152-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27398440

RESUMO

Co-delivery system has been proposed in pharmaceutical field aim to synergistic treatments. The combination formulation is also important in traditional pesticides formulations based on the low pest resistance risk and wide fungicidal spectrum. However, co-delivery nanoparticles (NPs) tend to be more environmentally friendly for the sustained-release behaviour and none of toxic organic solvents or dusts. Hence, we constructed co-delivery NPs which could delivery two kinds of pesticides, which function was similar with pesticides combination formulation. The co-delivery NPs of validamycin and hexaconazole were prepared with the amphiphilic copolymer methoxy poly(ethylene glycol)- poly(lactide-co-glycolide) (mPEG-PLGA) used an improved double emulsion method. The chemical structure of mPEG-PLGA copolymer was confirmed using fourier transform infrared spectroscopy (FT-IR), and nuclear magnetic resonance spectroscopy (NMR). The co-delivery NPs all exhibited good size distribution and held sustained-release property. Germicidal efficacy of the co-delivery NPs against Rhizoctonia cerealis was also studied. The germicidal efficacy of co-delivery NPs against Rhizoctonia cerealis was better than that of traditional pesticides formulation. In addition, co-delivery NPs showed a lasting impact against Rhizoctonia cerealis.


Assuntos
Antifúngicos , Inositol , Nanopartículas/química , Poliésteres , Polietilenoglicóis , Rhizoctonia/crescimento & desenvolvimento , Triazóis , Antifúngicos/química , Antifúngicos/farmacocinética , Antifúngicos/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Inositol/análogos & derivados , Inositol/química , Inositol/farmacocinética , Inositol/farmacologia , Poliésteres/química , Poliésteres/farmacocinética , Poliésteres/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/farmacologia , Triazóis/química , Triazóis/farmacocinética , Triazóis/farmacologia
15.
J Nanosci Nanotechnol ; 16(6): 6231-7, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27427695

RESUMO

As a controlled release formulation, polymer-based pesticide particle, provide an effective approach to achieve the target crop sites of increasing the pesticide utilization and reducing side effects. The particle size impacts on the dispersibility, pesticide loading content, control effect, etc. It is essential to investigate size-dependent effect. Hence, size-dependent effect of polymer-based pesticide particle was studied systematically in this paper. The biodegradable mPEG-PLGA copolymer with suitable molecular weight (45 KDa) was selected as carrier. Prochloraz-loaded mPEG-PLGA particles with different sizes (190.7 nm, 708.8 nm and 3980.0 nm) were constructed by emulsion/solvent evaporation method based on the same carrier. With the constant mass ratio of copolymer/prochloraz, as the particle size became large, the prochloraz loading content increased, and prochloraz released speed decreased. All prochloraz-loaded particles showed a sustained-release process and sustained impact against the Fusarium graminearum. Among the prochloraz-loaded mPEG-PLGA particles, the 190.7 nm particles exhibited the best germicidal efficacy in two weeks. Hence, the smaller size particles hold a better control efficacy in short time.


Assuntos
Portadores de Fármacos/química , Imidazóis/química , Microesferas , Nanopartículas/química , Tamanho da Partícula , Poliésteres/química , Polietilenoglicóis/química , Preparações de Ação Retardada , Fusarium/efeitos dos fármacos , Imidazóis/farmacologia , Peso Molecular
16.
Nanomaterials (Basel) ; 6(7)2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28335254

RESUMO

Nanotechnology-based pesticide formulations would ensure effective utilization of agricultural inputs. In the present work, mesoporous silica nanoparticles (MSNs) with particle diameters of ~110 nm and pore sizes of ~3.7 nm were synthesized via a liquid crystal templating mechanism. A water-soluble chitosan (CS) derivative (N-(2-hydroxyl)propyl-3-trimethyl ammonium CS chloride, HTCC) was successfully capped on the surface of pyraclostrobin-loaded MSNs. The physicochemical and structural analyses showed that the electrostatic interactions and hydrogen bonding were the major forces responsible for the formation of HTCC-capped MSNs. HTCC coating greatly improved the loading efficiency (LC) (to 40.3%) compared to using bare MSNs as a single encapsulant (26.7%). The microstructure of the nanoparticles was revealed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The pyraclostrobin-loaded nanoparticles showed an initial burst and subsequent sustained release behavior. HTCC-capped MSNs released faster than bare MSNs in the initial stage. Pyraclostrobin-loaded HTCC-capped MSNs with half doses of pyraclostrobin technical demonstrated almost the same fungicidal activity against Phomopsis asparagi (Sacc.), which obviously reduced the applied pesticide and enhanced the utilization efficiency. Therefore, HTCC-decorated MSNs demonstrated great potential as nanocarriers in agrochemical applications.

17.
Development ; 142(23): 4092-106, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26628093

RESUMO

Retinal development requires precise temporal and spatial coordination of cell cycle exit, cell fate specification, cell migration and differentiation. When this process is disrupted, retinoblastoma, a developmental tumor of the retina, can form. Epigenetic modulators are central to precisely coordinating developmental events, and many epigenetic processes have been implicated in cancer. Studying epigenetic mechanisms in development is challenging because they often regulate multiple cellular processes; therefore, elucidating the primary molecular mechanisms involved can be difficult. Here we explore the role of Brg1 (Smarca4) in retinal development and retinoblastoma in mice using molecular and cellular approaches. Brg1 was found to regulate retinal size by controlling cell cycle length, cell cycle exit and cell survival during development. Brg1 was not required for cell fate specification but was required for photoreceptor differentiation and cell adhesion/polarity programs that contribute to proper retinal lamination during development. The combination of defective cell differentiation and lamination led to retinal degeneration in Brg1-deficient retinae. Despite the hypocellularity, premature cell cycle exit, increased cell death and extended cell cycle length, retinal progenitor cells persisted in Brg1-deficient retinae, making them more susceptible to retinoblastoma. ChIP-Seq analysis suggests that Brg1 might regulate gene expression through multiple mechanisms.


Assuntos
DNA Helicases/genética , DNA Helicases/fisiologia , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Retina/metabolismo , Retinoblastoma/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Animais , Apoptose , Padronização Corporal , Adesão Celular , Ciclo Celular , Diferenciação Celular , Linhagem da Célula , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Epigênese Genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Camundongos , Microftalmia/genética , Retina/patologia , Fatores de Tempo , Transgenes
18.
Cell Stem Cell ; 17(1): 101-15, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26140606

RESUMO

Cell-based therapies to treat retinal degeneration are now being tested in clinical trials. However, it is not known whether the source of stem cells is important for the production of differentiated cells suitable for transplantation. To test this, we generated induced pluripotent stem cells (iPSCs) from murine rod photoreceptors (r-iPSCs) and scored their ability to make retinae by using a standardized quantitative protocol called STEM-RET. We discovered that r-iPSCs more efficiently produced differentiated retinae than did embryonic stem cells (ESCs) or fibroblast-derived iPSCs (f-iPSCs). Retinae derived from f-iPSCs had fewer amacrine cells and other inner nuclear layer cells. Integrated epigenetic analysis showed that DNA methylation contributes to the defects in f-iPSC retinogenesis and that rod-specific CTCF insulator protein-binding sites may promote r-iPSC retinogenesis. Together, our data suggest that the source of stem cells is important for producing retinal neurons in three-dimensional (3D) organ cultures.


Assuntos
Epigênese Genética , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Retina/crescimento & desenvolvimento , Células Fotorreceptoras Retinianas Bastonetes/citologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Animais , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Linhagem Celular , Reprogramação Celular , Metilação de DNA , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Retina/citologia , Retina/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Degeneração Retiniana/terapia
19.
Artigo em Chinês | MEDLINE | ID: mdl-25966555

RESUMO

OBJECTIVE: To construct and obtain ideal protein delivery vectors by researching the delivery efficiency and cytotoxicity to Hela cells using mPEG-PLGA-BSA-FITC-NPs. METHOD: The mPEG-PLGA nanoparticle was obtained through surface modification of PLGA with PEG, and deliver BSA-FITC into Hela cells in vitro. The positive cells were counted by Laser scanning confocal microscopy and the survival rate of Hela cells was calculated by MTT assay at different time points. RESULT: mPEG-PLGA-BSA-FITC-NPs shows the classic nanometer size, and the encapsulation efficiency reached 51. 2%. At the same time, the nanoparticles possess characteristics of slow release. By optimizing the delivery conditions, the highest efficiency of mPEG-PLGA-BSA-FITC-NPs was above 65.2%, and the cellular viability was about 85.7%. CONCLUSION: mPEG-PLGA-BSA-FITC-NPs nanoparticles can successfully carry the target protein into cells as safe and effective as novel delivery materials of protein in vitro, and has shown slow release characteristics. The mPEG-PLGA-BSA-FITC-NPs provide ideal delivery vector for future application in clinical treatment of disease using nano-materials.


Assuntos
Portadores de Fármacos , Poliésteres , Polietilenoglicóis , Fluoresceína-5-Isotiocianato/análogos & derivados , Células HeLa , Humanos , Nanopartículas , Tamanho da Partícula , Soroalbumina Bovina
20.
Nanoscale ; 7(18): 8607-18, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25898852

RESUMO

Cancer stem cells (CSCs) have the ability to transform into bulk cancer cells, to promote tumor growth and establish tumor metastasis. To effectively inhibit tumor growth and prevent metastasis, treatments with conventional chemotherapy drugs should be combined with CSC targeted drugs. In this study, we describe the synthesis and characterization of a new amphiphilic polymer, hyaluronic acid-cystamine-polylactic-co-glycolic acid (HA-SS-PLGA), composed of a hydrophobic PLGA head and a hydrophilic HA segment linked by a bioreducible disulfide bond. With a double emulsion method, a nano delivery system was constructed to deliver doxorubicin (DOX) and cyclopamine (CYC, a primary inhibitor of the hedgehog signaling pathway of CSCs) to both a CD44-overexpressing breast CSC subpopulation and bulk breast cancer cells and allow an on-demand release. The resulting drug-loaded NPs exhibited a redox-responsive drug release profile. Dual drug-loaded particles potently diminished the number and size of tumorspheres and HA showed a targeting effect towards breast CSCs. In vivo combination therapy further demonstrated a remarkable synergistic anti-tumor effect and prolonged survival compared to mono-therapy using the orthotopic mammary fat pad tumor growth model. The co-delivery of drug and the CSC specific inhibitor towards targeted cancer chemotherapeutics provides an insight into anticancer strategy with facile control and high efficacy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Preparações de Ação Retardada/administração & dosagem , Ácido Hialurônico/química , Nanocápsulas/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Protocolos de Quimioterapia Combinada Antineoplásica/química , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada/química , Difusão , Doxorrubicina/administração & dosagem , Feminino , Interações Hidrofóbicas e Hidrofílicas , Ácido Láctico/química , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanocápsulas/ultraestrutura , Células-Tronco Neoplásicas/patologia , Oxirredução , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Resultado do Tratamento , Alcaloides de Veratrum/administração & dosagem , Alcaloides de Veratrum/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA