Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Bioresour Technol ; 393: 130047, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37989421

RESUMO

A salt-tolerant strain, Pseudomonas mendocina A4, was isolated from brackish-water ponds showing simultaneous heterotrophic nitrification-aerobic denitrification and phosphorus removal capability. The optimal conditions for nitrogen and phosphate removal of strain A4 were pH 7-8, carbon/nitrogen ratio 10, phosphorus/nitrogen ratio 0.2, temperature 30 °C, and salinity range of 0-5 % using sodium succinate as the carbon source. The nitrogen and phosphate removal efficiencies were 96-100 % and 88-96 % within 24 h, respectively. The nitrogen and phosphate removal processes were matched with the modified Gompertz model, and the underlying mechanisms were confirmed by the activities of key metabolic enzymes. Under 10 % salinity, the immobilization technology was employed to enhance the nitrogen and phosphate removal efficiencies of strain A4, achieving 87 % and 76 %, respectively. These findings highlight the potential application of strain A4 in both freshwater and marine culture wastewater treatment.


Assuntos
Desnitrificação , Radioisótopos de Nitrogênio , Pseudomonas mendocina , Fosfatos , Pseudomonas mendocina/metabolismo , Nitrogênio/metabolismo , Aerobiose , Nitrificação , Fósforo , Processos Heterotróficos , Carbono , Nitritos/química
2.
Artigo em Inglês | MEDLINE | ID: mdl-37883838

RESUMO

The Pacific white shrimp (Litopenaeus vannamei) is a euryhaline crustacean capable of tolerating a wide range of ambient salinity, but the strategies of hepatopancreas to rapid adaptive or acute stimulatory responses to extremely low salinity fluctuations remains unclear. In this study, we integrated transcriptomic and proteomic analyses on the hepatopancreas derived from rapid adaptative (RA) and acute stimulatory (AS) responses to extremely low salinity stress (0.3 ppt) to unveil specific regulatory mechanisms. The RA group displayed normal epithelial cells and tubule structures, while the AS group showed histological changes and lesions. A total of 754 and 649 differentially expressed genes (DEGs) were identified in RA and AS treatments, respectively. For proteome, a total of 206 and 66 differentially expressed proteins (DEPs) were obtained in the RA/CT and AS/CT comparison groups, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted among the DEGs and DEPs, revealing that metabolic related pathways were significantly enriched pathways in both comparison groups. In addition, correlation analysis of transcriptomic and proteomic results showed that 20 and 3 pairs of DEGs/DEPs were identified in RA vs. CT and AS vs. CT comparison groups, respectively. This study is the first report on the rapid adaptive and acute stimulatory transcriptomic and proteomic responses of L. vannamei to extremely low salinity, shedding light on the mechanisms underlying osmoregulation in euryhaline crustaceans.


Assuntos
Penaeidae , Transcriptoma , Animais , Proteômica , Perfilação da Expressão Gênica , Osmorregulação , Estresse Salino , Penaeidae/genética , Salinidade
3.
Front Microbiol ; 13: 1097931, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713173

RESUMO

Introduction: Decapod iridescent virus 1 (DIV1) has caused severe economic losses in shrimp aquaculture. So far, Researchs on DIV1-infected shrimp have mainly focused on the hemocytes immune response, while studies on the host-intestine microbiota interactions during DIV1 infection have been scarce. Methods: This study determined the lethal concentration 50 (LC50) of DIV1 to Metapenaeus ensis, preliminarily determining that M. ensis could serve as a susceptible object for DIV1. The interactions and responses between the immune and intestine microbiota of shrimp under DIV1 infection were also investigated. Results and Discussion: DIV1 infection decreases intestine bacterial diversity and alters the composition of intestine microbiota. Specifically, DIV1 infection decreases the abundance of potentially beneficial bacteria (Bacteroidetes, Firmicutes, and Actinobacteria), and significantly increases the abundance of pathogenic bacteria such as Vibrio and Photobacterium, thereby increasing the risk of secondary bacterial infections. The results of PICRUSt functional prediction showed that altered intestine microbiota induces host metabolism disorders, which could be attributed to the bioenergetic and biosynthetic requirements for DIV1 replication in shrimp. The comparative transcriptomic analysis showed that some metabolic pathways related to host immunity were significantly activated following DIV1 infection, including ncRNA processing and metabolic process, Ascorbate and aldarate metabolism, and Arachidonic acid metabolism. M. ensis may against DIV1 infection by enhancing the expression of some immune-related genes, such as Wnt16, heat shock protein 90 (Hsp90) and C-type lectin 3 (Ctl3). Notably, correlation analysis of intestinal microbial variation with host immunity showed that expansion of pathogenic bacteria (Vibrio and Photobacterium) in DIV1 infection could increased the expression of NF-κB inhibitors cactus-like and Toll interacting protein (Tollip), which may limit the TLR-mediated immune response and ultimately lead to further DIV1 infection. Significance and Impact of the Study: This study enhances our understanding of the interactions between shrimp immunity and intestinal microbiota. The ultimate goal is to develop novel immune enhancers for shrimp and formulate a safe and effective DIV1 defense strategy.

4.
Front Microbiol ; 12: 710845, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512588

RESUMO

As a new type of shrimp lethal virus, decapod iridescent virus 1 (DIV1) has caused huge economic losses to shrimp farmers in China. Up to now, DIV1 has been detected in a variety of shrimps, but there is no report in Marsupenaeus japonicus. In the current study, we calculated the LC50 to evaluate the toxicity of DIV1 to M. japonicus and determined through nested PCR that M. japonicus can be the host of DIV1. Through enzyme activity study, it was found that DIV1 can inhibit the activities of superoxide dismutase, catalase, lysozyme, and phenoloxidase, which could be a way for DIV1 to achieve immune evasion. In a comprehensive study on the transcriptomic changes of M. japonicus in response to DIV1 infection, a total of 52,287 unigenes were de novo assembled, and 20,342 SSR markers associated with these unigenes were obtained. Through a comparative transcriptomic analysis, 6,900 differentially expressed genes were identified, including 3,882 upregulated genes and 3,018 downregulated genes. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that some GO terms related to virus invasion, replication, and host antiviral infection were promoted under DIV1 infection, such as carbohydrate binding, chitin binding, chitin metabolic process, and DNA replication initiation, and some KEGG pathways related to immune response were significantly influenced by DIV1 infection, including Toll and IMD signaling pathway, JAK-STAT signaling pathway, IL-17 signaling pathway, C-type lectin receptor signaling pathway, complement and coagulation cascades, antigen processing and presentation, necroptosis, apoptosis, NOD-like receptor signaling pathway, apoptosis-multiple species, and TNF signaling pathway. Further analysis showed that STAT, Dorsal, Relish, heat shock protein 70 (HSP70), C-type lectins, and caspase play an important role in DIV1 infection. This is the first detailed study of DIV1 infection in M. japonicus, which initially reveals the molecular mechanism of DIV1 infection in M. japonicus by using the transcriptome analysis of hemocytes combined with enzyme activity study.

5.
Artigo em Inglês | MEDLINE | ID: mdl-34243027

RESUMO

Growth traits are a vital standard for the animal culture industry. The molecular mechanism of growth traits remains poorly understood, especially in aquaculture, which hinders the development of the selective breeding industry. Genomic resources discovered by next-generation sequencing (NGS) have been widely applied in certain species. However, accurate assembly and downstream analysis by NGS are still major challenges for species without reference genomes. In this study, a comparative transcriptome analysis of an economic crustacean species (Marsupenaeus japonicus) between a fast growth group and slow growth group at different stages was performed by SMRT (single molecule real time) and NGS. A high-quality full-length transcriptome (e.g., mean length of unigenes was longer than those unigenes assembled by Illumina clean reads from previous reports, and annotation rate was higher than Illumina sequencing in the same studies) was generated and analyzed. Several differentially expressed genes (DEGs) related to growth were identified and validated by quantitative real-time PCR (qPCR). The results showed that compared with the late stage, more DEGs were identified at the early stage, indicating that the growth-related physiological activity differences between different individuals at the early stage were higher than at the late stage. Moreover, 215 DEGs were shared between the early stage and late stage, and 109 had divergent functions during development. These 109 genes may play an important role in regulating the specific growth rate (SGR) of kuruma shrimp. In addition, twelve growth-related pathways were shared between the two comparative groups. Among these pathways, the fly Hippo signaling pathway and its key gene Mj14-3-3-like were identified for the first time to be involved in growth traits in crustaceans. Further analysis showed that Mj14-3-3-like was significantly downregulated in the fast growth group at the early stage and late stage; its expression level was reduced to its lowest level at the intermolt stage (C), the most important growth stage in shrimp, suggesting that Mj14-3-3-like may inhibit the growth of kuruma shrimp. Our study helps to elucidate the genes involved in the molecular mechanisms governing growth traits in kuruma shrimp, which is valuable for future shrimp developmental research.


Assuntos
Penaeidae , Transcriptoma , Animais , Perfilação da Expressão Gênica , Genômica , Via de Sinalização Hippo , Humanos , Penaeidae/genética
6.
Eur J Med Chem ; 220: 113534, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34038857

RESUMO

Inhibition of MER receptor tyrosine kinase (MERTK) causes direct tumor cell killing and stimulation of the innate immune response. Therefore, MERTK has been identified as a therapeutic target in a wide variety of human tumors. Clinical trials targeting MERTK have recently been initiated, however, none of these drugs are MERTK-specific. Herein, we present the discovery of a highly MERTK-selective inhibitor UNC5293 (24). UNC5293 has subnanomolar activity against MERTK with an excellent Ambit selectivity score (S50 (100 nM) = 0.041). It mediated potent and selective inhibition of MERTK in cell-based assays. Furthermore, it has excellent mouse PK properties (7.8 h half-life and 58% oral bioavailability) and was active in bone marrow leukemia cells in a murine model.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , c-Mer Tirosina Quinase/antagonistas & inibidores , Administração Oral , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos NOD , Estrutura Molecular , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , c-Mer Tirosina Quinase/metabolismo
7.
Fish Shellfish Immunol ; 104: 8-17, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32473357

RESUMO

The banana shrimp (Fenneropenaeus merguiensis) is a common cultural species worldwide. With the development of the shrimp farming industry, increasing number of diseases have emerged and cause huge impacts. Decapod iridescent virus 1 (DIV1) is a new virus of the family Iridoviridae isolated in China that causes very high mortality in shrimp. In this study, DIV1 and PBS were injected into two groups of shrimp, and hemocytes were collected for comparative transcriptomic analysis. We confirmed that F. merguiensis was the new host of DIV1 by nested PCR. A total of 100,759 unigenes were assembled from the control group and the DIV1 infected group, with an average length of 733.06 bp and N50 of 1136 bp. Significant hits were found in 21,465 unigenes compared to known sequences in major databases including COG (33.30%), GO (42.17%), KEGG (46.76%), KOG (61.37%), Pfam (66.90%), Swissprot (54.21%) and Nr (93.86%). A total of 1003 differentially expressed genes (DEGs) were identified, including 929 up-regulated genes and 74 down-regulated genes. Several known immune-related genes, including caspase, C-type lectin, Wnt5 and integrin, were among the differentially expressed transcripts. A total of 14,459 simple sequence repeats, including 8128 monomers, 3276 dimers, 1693 trimers, 150 quadmers, 4 pentamers and 16 hexamers, were found in the transcriptomic dataset. Our study is the first comprehensive investigation of the transcriptomic response to DIV1 infection in F. merguiensis. Collectively, these results not only provide valuable information for characterizing the immune mechanisms of the shrimp responses to DIV1 infection, they open new ways for the study of the molecular mechanisms of DIV1 infection in F. merguiensis.


Assuntos
Hemócitos/imunologia , Imunidade Inata/genética , Iridoviridae/fisiologia , Penaeidae/imunologia , Transcriptoma , Animais , Perfilação da Expressão Gênica , Penaeidae/genética
8.
Cancer Immunol Res ; 7(10): 1672-1686, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31451482

RESUMO

Myeloid cell receptor tyrosine kinases TYRO3, AXL, and MERTK and their ligands, GAS6 and PROTEIN S, physiologically suppress innate immune responses, including in the tumor microenvironment. Here, we showed that myeloid-derived suppressor cells (MDSC) dramatically upregulated TYRO3, AXL, and MERTK and their ligands [monocytic MDSCs (M-MDSC)>20-fold, polymorphonuclear MDSCs (PMN-MDSC)>15-fold] in tumor-bearing mice. MDSCs from tumor-bearing Mertk-/-, Axl-/- , and Tyro3-/- mice exhibited diminished suppressive enzymatic capabilities, displayed deficits in T-cell suppression, and migrated poorly to tumor-draining lymph nodes. In coimplantation experiments using TYRO3-/-, AXL-/-, and MERTK-/- MDSCs, we showed the absence of these RTKs reversed the protumorigenic properties of MDSCs in vivo Consistent with these findings, in vivo pharmacologic TYRO3, AXL, and MERTK inhibition diminished MDSC suppressive capability, slowed tumor growth, increased CD8+ T-cell infiltration, and augmented anti-PD-1 checkpoint inhibitor immunotherapy. Mechanistically, MERTK regulated MDSC suppression and differentiation in part through regulation of STAT3 serine phosphorylation and nuclear localization. Analysis of metastatic melanoma patients demonstrated an enrichment of circulating MERTK+ and TYRO3+ M-MDSCs, PMN-MDSCs, and early-stage MDSCs (e-MDSC) relative to these MDSC populations in healthy controls. These studies demonstrated that TYRO3, AXL, and MERTK control MDSC functionality and serve as promising pharmacologic targets for regulating MDSC-mediated immune suppression in cancer patients.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Linfócitos T CD8-Positivos/imunologia , Melanoma/tratamento farmacológico , Células Supressoras Mieloides/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , c-Mer Tirosina Quinase/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Feminino , Voluntários Saudáveis , Humanos , Masculino , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Células Supressoras Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/imunologia , Microambiente Tumoral , Adulto Jovem , Receptor Tirosina Quinase Axl
9.
Proc Natl Acad Sci U S A ; 116(33): 16541-16550, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31346082

RESUMO

Non-Hodgkin lymphomas (NHLs) make up the majority of lymphoma diagnoses and represent a very diverse set of malignancies. We sought to identify kinases uniquely up-regulated in different NHL subtypes. Using multiplexed inhibitor bead-mass spectrometry (MIB/MS), we found Tyro3 was uniquely up-regulated and important for cell survival in primary effusion lymphoma (PEL), which is a viral lymphoma infected with Kaposi's sarcoma-associated herpesvirus (KSHV). Tyro3 was also highly expressed in PEL cell lines as well as in primary PEL exudates. Based on this discovery, we developed an inhibitor against Tyro3 named UNC3810A, which hindered cell growth in PEL, but not in other NHL subtypes where Tyro3 was not highly expressed. UNC3810A also significantly inhibited tumor progression in a PEL xenograft mouse model that was not seen in a non-PEL NHL model. Taken together, our data suggest Tyro3 is a therapeutic target for PEL.


Assuntos
Linfoma não Hodgkin/enzimologia , Linfoma de Efusão Primária/enzimologia , Terapia de Alvo Molecular , Proteoma/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linfócitos B/efeitos dos fármacos , Linfócitos B/virologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
10.
Fish Shellfish Immunol ; 92: 480-488, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31207301

RESUMO

Antibacterial peptides (AMPs) are expected to replace some or all of the antibiotics and become a new feed additive. However, the high production cost and unclear mechanism limited the application of AMPs. In this research, the effects of a commercial polypeptide (Polypeptide S100) whose main components are AMPs on the growth, antibacterial immune and intestinal microbial of Litopenaeus vannamei were study. L. vannamei (initial weight of 0.16 ±â€¯0.03 g) were fed for 123 days with basal diet added Polypeptide S100 at two levels each (0.5% and 1%) as experimental groups, and a basal diet as control. Dietary inclusion of Polypeptide S100 at 1% level significantly increased the weight gain (WG) and specific growth rate (SGR) of L. vannamei. The survival rates of L. vannamei in 0.5% and 1% Polypeptide S100 groups were significantly higher than the control when infected by Vibrio harveyi but not Vibrio parahaemolyticus. The activities of total superoxide dismutase (T-SOD) and lysozyme (LZM) in the two experimental groups were all significantly higher than the control. Differently, the activities of amylase (AMS) and lipase (LPS) were significantly higher in 0.5% Polypeptide S100 group but lower in 1.0% Polypeptide S100 group. Illumina MiSeq high-throughput sequencing showed that the dominant phyla in the intestine of L. vannamei were Proteobacteria, followed by Actinobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Fusobacteria and Tenericutes, and the abundance of predominant phyla Cyanobacteria were upregulated significantly in the experimental groups. At the family level, significant increase was observed in Pseudomonadaceae and Xanthomonadaceae but decrease in Vibrionaceae in the 1.0% Polypeptide S100 group. The abundance of predominant genus Photobacterium were obviously downregulated in the two experimental groups. Unlikely, the abundance of Pseudomonas and Stenotrophomonas were distinctly increased in the 1.0% Polypeptide S100 group but not significantly different from the control in 0.5% Polypeptide S100 group. All these results suggested that Polypeptide S100 could improve the growth performance, antibacterial immune and intestinal microbiota structure of L. vannamei.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Penaeidae/efeitos dos fármacos , Penaeidae/imunologia , Peptídeos/metabolismo , Proteínas S100/metabolismo , Ração Animal/análise , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Dieta , Suplementos Nutricionais/análise , Penaeidae/crescimento & desenvolvimento , Penaeidae/microbiologia , Peptídeos/administração & dosagem , Proteínas S100/administração & dosagem
11.
Fish Shellfish Immunol ; 92: 712-718, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31252048

RESUMO

The survival and immune responses of Litopenaeus vannamei were evaluated during white spot syndrome virus (WSSV) or Vibrio parahaemolyticus single and concurrent infections. The mortality, WSSV load, activities of 4 immune enzymes: acid phosphatase (ACP), alkaline phosphatase (AKP), peroxidase (POD) and superoxide dismutase (SOD), and the transcription of Evolutionarily Conserved Signaling Intermediate in Toll pathways of L.vannamei (LvECSIT) were quantified at 0, 3, 6, 12, 24, 48, 72 and 96 h post-infection (pi). The results showed: (i) the cumulative mortality of the co-infection group (WSSV and V. Parahaemolyticus 83%) was significantly lower than the WSSV infection group (97%) (P < 0.05) at 96 hpi; (ii) copies of WSSV in the co-infection group were significantly lower than that of the single infection group from 24 to 96 hpi (P < 0.05); (iii) ACP, AKP,POD and SOD activity in the gills of the co-infection group was higher than that of the WSSV group at12, 48 and 96 hpi (P < 0.05).The expression of LvECSIT mRNA in the co-infection group was significantly higher than in the WSSV infection group from 12 to 72 hpi (P < 0.05).The results indicate that proliferation of WSSV is inhibited by V.parahaemolyticus infection. In addition, infection with WSSV alone causes a significant reduction in some immune responses of shrimp than co-infection with WSSV and V.parahaemolyticus occurs at 26 °C. Third, LvECSIT, an essential member of TLR signaling pathway might play a crucial role in shrimp defense against WSSV - Vibrio co-infection.


Assuntos
Imunidade Inata , Penaeidae/imunologia , Vibrio parahaemolyticus/fisiologia , Vírus da Síndrome da Mancha Branca 1/fisiologia , Animais , Longevidade/imunologia , Penaeidae/microbiologia , Penaeidae/virologia
12.
J Med Chem ; 61(22): 10242-10254, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30347155

RESUMO

Although all kinases share the same ATP binding pocket, subtle differences in the residues that form the pocket differentiate individual kinases' affinity for ATP competitive inhibitors. We have found that by introducing a single methyl group, the selectivity of our MERTK inhibitors over another target, FLT3, was increased up to 1000-fold (compound 31). Compound 19 was identified as an in vivo tool compound with subnanomolar activity against MERTK and 38-fold selectivity over FLT3 in vitro. The potency and selectivity of 19 for MERTK over FLT3 were confirmed in cell-based assays using human cancer cell lines. Compound 19 had favorable pharmacokinetic properties in mice. Phosphorylation of MERTK was decreased by 75% in bone marrow leukemia cells from mice treated with 19 compared to vehicle-treated mice.


Assuntos
Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , c-Mer Tirosina Quinase/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Desenho de Fármacos , Humanos , Metilação , Camundongos , Modelos Moleculares , Conformação Proteica , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacocinética , Pirimidinas/química , Pirimidinas/metabolismo , Pirimidinas/farmacocinética , Pirimidinas/farmacologia , Relação Estrutura-Atividade , Distribuição Tecidual , c-Mer Tirosina Quinase/química , c-Mer Tirosina Quinase/metabolismo
13.
Org Lett ; 15(17): 4300-3, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-23931155

RESUMO

The first total synthesis of ent-(-)-azonazine has been accomplished using a hypervalent iodine-mediated biomimetic oxidative cyclization to construct the highly strained core. Based on the results from the completed synthesis, both the relative and absolute configurations of natural (+)-azonazine were revised.


Assuntos
Produtos Biológicos/síntese química , Dipeptídeos/síntese química , Aspergillus/química , Produtos Biológicos/química , Biomimética , Cristalografia por Raios X , Ciclização , Dipeptídeos/química , Conformação Molecular , Estrutura Molecular , Oxirredução , Estereoisomerismo
14.
J Org Chem ; 76(16): 6832-6, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21793533

RESUMO

In this novel acid-base jointly promoted CuAAC, the combination of CuI/DIPEA/HOAc was developed as a highly efficient catalytic system. The functions of DIPEA and HOAc have been assigned, and HOAc was recognized to accelerate the conversions of the C-Cu bond-containing intermediates and buffer the basicity of DIPEA. As a result, all drawbacks occurring in the popular catalytic system CuI/NR(3) were overcome easily.

15.
J Org Chem ; 75(20): 7002-5, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20849130

RESUMO

In this article, we proved that all three key steps in the catalytic cycle of CuAAC can proceed in the presence of carboxylic acids and the latter two steps can be promoted significantly by carboxylic acids. Benzoic acid showed the best promotion activity, and the acids with strong chelating ability to Cu(I) ion could not serve for this purpose. Thus, the first carboxylic acid-promoted highly efficient CuAAC was established.


Assuntos
Alcinos/química , Azidas/química , Ácidos Carboxílicos/química , Cobre/química , Triazóis/síntese química , Catálise , Ciclização , Estrutura Molecular , Estereoisomerismo , Triazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA