Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Reprod Biol ; 24(2): 100890, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38723297

RESUMO

Recently we reported expressional alterations in 219 genes and their transcripts in Leydig cell tumors but nowadays there is still a lack of full basic biochemical characteristics of these tumors. The discovery of potential biochemical markers for tumor management from early detection, treatments, and control of therapy results may markedly supplement genetic data. Leydig cell micronodules were obtained from patients with azoospermia who were qualified for testicular biopsy. The biochemistry of Leydig cell tumors was analyzed using histological staining and spectrophotometric measurements of total proteins, carbohydrates, lipids, and nucleic acids. In addition, the levels of calcium (Ca2 +), copper (Cu2 +), zinc (Zn2 +), and selenium (Se2 +) ions were measured. When compared to healthy testis we revealed, for the first time, that in the interstitial tissue with Leydig cell tumors, great amounts of proteins, carbohydrates, lipids, and acids were dislocated from the seminiferous tubules. Measurements of organic compounds showed a decrease (P < 0.05) only in the Cu2 + content in Leydig cell tumors which may be related to their altered biochemical structure. This specific result may be promising for designing further approaches to manage this tumor based on combining morphological and molecular data.

2.
Molecules ; 29(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338335

RESUMO

Methanolic-aqueous extracts of Salvia tomentosa Miller roots, aerial parts, and inflorescences were examined for their content of polyphenolic derivatives and the antimicrobial and cytotoxic effect. In the polyphenolic-rich profile, rosmarinic, salvianolic, and lithospermic acids along with various derivatives were predominant. A total of twenty phenolic compounds were identified using the UPLC/DAD/qTOF-MS technique. These were caffeic acid, rosmarinic acid derivatives, lithospermic acid derivatives, salvianolic acids B, F, and K derivatives, as well as sagerinic acid, although rosmarinic acid (426-525 mg/100 g of dry weight-D.W.) and salvianolic acid B (83-346.5 mg/100 g D.W.) were significantly predominant in the metabolic profile. Strong antibacterial activity of S. tomentosa extracts was observed against Staphylococcus epidermidis (MIC/MBC = 0.625 mg/mL) and Bacillus cereus (MIC = 0.312-1.25 mg/mL). The extracts showed low cytotoxicity towards the reference murine fibroblasts L929 and strong cytotoxicity to human AGS gastric adenocarcinoma epithelial cells in the MTT reduction assay. The observed cytotoxic effect in cancer cells was strongest for the roots of 2-year-old plant extracts.


Assuntos
Benzofuranos , Depsídeos , Infecções Oportunistas , Salvia miltiorrhiza , Salvia , Animais , Camundongos , Humanos , Pré-Escolar , Extratos Vegetais/farmacologia , Bactérias
3.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338807

RESUMO

Biofilm-related ocular infections can lead to vision loss and are difficult to treat with antibiotics due to challenges with application and increasing microbial resistance. In turn, the design and testing of new synthetic drugs is a time- and cost-consuming process. Therefore, in this work, for the first time, we assessed the in vitro efficacy of the plant-based abietic acid molecule, both alone and when introduced to a polymeric cellulose carrier, against biofilms formed by Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans in standard laboratory settings as well as in a self-designed setting using the topologically challenging surface of the artificial eye. These analyses were performed using the standard microdilution method, the biofilm-oriented antiseptic test (BOAT), a modified disk-diffusion method, and eyeball models. Additionally, we assessed the cytotoxicity of abietic acid against eukaryotic cell lines and its anti-staphylococcal efficacy in an in vivo model using Galleria mellonella larvae. We found that abietic acid was more effective against Staphylococcus than Pseudomonas (from two to four times, depending on the test applied) and that it was generally more effective against the tested bacteria (up to four times) than against the fungus C. albicans at concentrations non-cytotoxic to the eukaryotic cell lines and to G. mellonella (256 and 512 µg/mL, respectively). In the in vivo infection model, abietic acid effectively prevented the spread of staphylococcus throughout the larvae organisms, decreasing their lethality by up to 50%. These initial results obtained indicate promising features of abietic acid, which may potentially be applied to treat ocular infections caused by pathogenic biofilms, with higher efficiency manifested against bacterial than fungal biofilms.


Assuntos
Infecções Oculares , Mariposas , Animais , Biofilmes , Mariposas/microbiologia , Abietanos/farmacologia , Antibacterianos/farmacologia , Larva/microbiologia , Staphylococcus , Testes de Sensibilidade Microbiana
4.
Theriogenology ; 216: 69-81, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38159387

RESUMO

Liquid storage of turkey semen without the loss of fertilizing ability is of practical interest to the poultry industry. However, fertility rates from liquid-stored turkey semen decline within a few hours. A clear cause of the decline in spermatozoa quality remains unidentified. Therefore, the purpose of the present study was to monitor the dynamics of proteomic changes in spermatozoa during 48 h of liquid storage by 2-dimensional difference in-gel electrophoresis coupled with matrix-assisted laser desorption/ionization mass spectrometry. A total of 57 protein spots were differentially expressed between fresh and stored spermatozoa; 42 spots were more and 15 were less abundant after 48 h of semen storage. Raw proteomic data are available via ProteomeXchange with identifier PXD043050. The selected differentially expressed proteins (DEPs) were validated by western blotting and localized in specific spermatozoa structures by immunofluorescence, such as the head (acrosin and tubulin α), midpiece (acrosin, aconitate hydratase 2, and glycerol-3-phosphate dehydrogenase) and tail (tubulin α). Most of the DEPs that changed in response to liquid storage were related to flagellum-dependent cell motility, energy derivation through oxidation of organic compounds and induction of fertilization, suggesting the complexity of the processes leading to the decrease in stored semen quality. The damaging effect of liquid storage on spermatozoa flagellum manifested as more microtubule proteins, such as tubulins and tektins, most likely formed by posttranslational modifications, tubulin α relocation from the tail to the sperm head, which appeared after 48 h of semen storage, and decreases in fibrous shelf proteins at the same time. Motility could be affected by dysregulation of Ca2+-binding proteins and disturbances in energy metabolism in spermatozoa flagellum. Regarding sperm mitochondria, DEPs involved in energy derivation through the oxidation of organic compounds indicated disturbances in fatty acid beta oxidation and the tricarboxylic acid cycle as possible reasons for energy deficiency during liquid storage. Disturbances in acrosin and 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase zeta may be involved in rapid declines in the fertility potential of stored turkey spermatozoa. These results showed the complexity of the processes leading to a decrease in stored semen quality and broadened knowledge of the detrimental effects of liquid storage on turkey spermatozoa physiology.


Assuntos
Preservação do Sêmen , Sêmen , Masculino , Animais , Sêmen/fisiologia , Análise do Sêmen/veterinária , Acrosina/análise , Tubulina (Proteína) , Proteômica , Motilidade dos Espermatozoides/fisiologia , Preservação do Sêmen/veterinária , Preservação do Sêmen/métodos , Espermatozoides/fisiologia , Perus/fisiologia
5.
J Mech Behav Biomed Mater ; 148: 106205, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37948920

RESUMO

Gelatin-based films modified with sorbitol were produced from gelatin solution or gelatin/starch blends using a simple and low-cost solvent casting method, and subsequently, their physicochemical, mechanical, and biocompatibility properties were characterized. This work focused on developing and optimizing a biopolymeric blend to improve the pure biopolymers' properties for potential biomedical applications such as wound dressing. The films were characterized in terms of morphology and transparency, mechanical, moisture and swelling properties, thermal stability, and degradation potential. Moreover, hemocompatibility, as well as cytocompatibility of prepared films, were examined. The addition of sorbitol contributed to improving mechanical properties, swelling reduction, and increasing biostability over time. The cytocompatibility of obtained films was confirmed in vitro with two different human cell lines, fibroblastic and osteoblastic, and a more favorable cellular response was received for fibroblasts. Further, in hemocompatibility studies, it was found that all films may be classified as non-hemolytic as they did not have a negative effect on the human erythrocytes. The obtained results indicate the great potential of the gelatin/starch blends modified with sorbitol as regenerative biomaterials intended for wound healing applications.


Assuntos
Gelatina , Amido , Humanos , Amido/química , Gelatina/química , Sorbitol/farmacologia , Materiais Biocompatíveis/farmacologia , Cicatrização
6.
Biomedicines ; 11(10)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37893027

RESUMO

Although the impact of age, gender, and obesity on the skin wound healing process has been extensively studied, the data related to gender differences in aspects of skin scarring are limited. The present study performed on abdominal human intact and scar skin focused on determining gender differences in extracellular matrix (ECM) composition, dermal white adipose tissue (dWAT) accumulation, and Foxn1 expression as a part of the skin response to injury. Scar skin of men showed highly increased levels of COLLAGEN 1A1, COLLAGEN 6A3, and ELASTIN mRNA expression, the accumulation of thick collagen I-positive fibers, and the accumulation of α-SMA-positive cells in comparison to the scar skin of women. However, post-injured skin of women displayed an increase (in comparison to post-injured men's skin) in collagen III accumulation in the scar area. On the contrary, women's skin samples showed a tendency towards higher levels of adipogenic-related genes (PPARγ, FABP4, LEPTIN) than men, regardless of intact or scar skin. Intact skin of women showed six times higher levels of LEPTIN mRNA expression in comparison to men intact (p < 0.05), men post-injured (p < 0.05), or women post-injured scar (p < 0.05) skin. Higher levels of FOXN1 mRNA and protein were also detected in women than in men's skin. In conclusion, the present data confirm and extend (dWAT layer) the data related to the presence of differences between men and women in the skin, particularly in scar tissues, which may contribute to the more effective and gender-tailored improvement of skin care interventions.

7.
FASEB J ; 37(10): e23171, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37682531

RESUMO

Intradermal adipocytes form dermal white adipose tissue (dWAT), a unique fat depot localized in the lower layer of the dermis. However, recognition of molecular factors regulating dWAT development, homeostasis, and bioactivity is limited. Using Foxn1-/- and Foxn1+/+ mice, we demonstrated that epidermally expressed Foxn1 regulates dWAT development and defines the adipogenic capacity of dermal fibroblasts. In intact and post-wounded skin, Foxn1 contributes to the initial stimulation of dWAT adipogenesis and participates in the modulation of lipid metabolism processes. Furthermore, Foxn1 activity strengthens adipogenic processes through Bmp2 and Igf2 signaling and regulates lipid metabolism in differentiated dermal fibroblasts. The results reveal the contribution of Foxn1 to dWAT metabolism, thus identifying possible targets for modulation and regulation of dWAT in physiological and pathological processes in the skin.


Assuntos
Adipogenia , Tecido Adiposo Branco , Fatores de Transcrição Forkhead , Regulação da Expressão Gênica , Animais , Camundongos , Homeostase , Metabolismo dos Lipídeos , Fatores de Transcrição Forkhead/metabolismo
8.
Foods ; 12(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36981267

RESUMO

This article provides a summarization of present knowledge on the fabrication and characterization of polymeric food packaging materials that can be an alternative to synthetic ones. The review aimed to explore different studies related to the use of phenolic acids as cross-linkers, as well as bioactive additives, to the polymer-based materials upon their application as packaging. This article further discusses additives such as benzoic acid derivatives (sinapic acid, gallic acid, and ellagic acid) and cinnamic acid derivatives (p-coumaric acid, caffeic acid, and ferulic acid). These phenolic acids are mainly used as antibacterial, antifungal, and antioxidant agents. However, their presence also improves the physicochemical properties of materials based on polymers. Future perspectives in polymer food packaging are discussed.

9.
Sci Total Environ ; 864: 160653, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36529391

RESUMO

The accumulation of allantoin and trace metals (TMs) in nine moss species was examined after the exposure to stress conditions. Both the environmental anthropopressure effect and laboratory-simulated stress conditions were monitored. Moss samples were collected from different locations, i.e. a non-TM contaminated area, an urban area, and a metalliferous area. The effect of Cd, Pb, Hg, Ni, Zn, salinity, and an acidic environment on the allantoin content was tested. Principal component analysis was performed to reveal the relationship between samples of different origin. Large differences in the metal and allantoin accumulation capability of mosses were noted between samples harvested from the different locations. Seven species were considered as potential metal accumulators, as they exhibited tolerance to elevated levels of heavy metals. The observed TM effect on the allantoin accumulation indicated TM pollution as an important environmental factor that can significantly influence the content of this compound in mosses. Further studies on the contribution of various environmental factors and individual characteristics of plant species are highly expected to recognize the trend in the accumulation of specialized metabolites and TMs in response to hazardous growth conditions.


Assuntos
Briófitas , Mercúrio , Metais Pesados , Oligoelementos , Alantoína/análise , Metais Pesados/análise , Poluição Ambiental/análise , Mercúrio/análise , Oligoelementos/análise , Monitoramento Ambiental
10.
Front Plant Sci ; 13: 888509, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646028

RESUMO

Plant in vitro culture is a feasible system for the testing influence of an environmental factor on the accumulation and chemodiversity of specialized metabolites, especially in medicinal plants. Light and temperature are among the most important factors affecting the physiology of plant organisms but their influence on specific metabolic pathways is not completely understood. Here, we examined the morphogenetic response, photosynthetic pigments content, lipid peroxidation level, DPPH radical scavenging activity, and the production of volatile and non-volatile constituents in Salvia yangii B. T. Drew (syn. Perovskia atriplicifolia Benth.) in vitro cultures kept under different light intensities (70, 130, and 220 µmol m-2 s-1) and at two selected temperatures (25 and 30°C). The experiment was continued for 7 months to monitor the changes in the treatment response in time. Phytochemical analysis was performed using chromatographic (GC-MS and UHLPC) and spectrophotometric techniques. The light intensity significantly influenced metabolic response in a non-linear manner, whereas temperature-induced adaptive modifications varied within the long cultivation. Significant differences were noted in the content of carnosic and rosmarinic acid, as well as in several sesquiterpenes (alloaromadendrene, ß-caryophyllene, α-humulene). At elevated (30°C) temperature, a trend of differently modulated content of two major antioxidants-rosmarinic acid (RA, a phenylpropanoid pathway derived phenolic acid) and carnosic acid (CA, an abietane diterpenoid) was observed, where RA, but not CA, was depending on the light intensity. At 25°C, both compounds depended on light but in various ways. Among the volatile terpenoid compounds, the influence of light was pronounced, leading to modulation of proportions between individual mono- and sesquiterpenes as well as between hydrocarbon and oxygenated compounds. The study provided new information on the metabolic profile plasticity in S. yangii and added to the existing knowledge on the chemical adaptations in plant species from severe habitats.

11.
Molecules ; 27(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35566166

RESUMO

The Chelidonium majus plant is rich in biologically active isoquinoline alkaloids. These alkaline polar compounds are isolated from raw materials with the use of acidified water or methanol; next, after alkalisation of the extract, they are extracted using chloroform or dichloromethane. This procedure requires the use of toxic solvents. The present study assessed the possibility of using volatile natural deep eutectic solvents (VNADESs) for the efficient and environmentally friendly extraction of Chelidonium alkaloids. The roots and herb of the plant were subjected three times to extraction with various menthol, thymol, and camphor mixtures and with water and methanol (acidified and nonacidified). It has been shown that alkaloids can be efficiently isolated using menthol-camphor and menthol-thymol mixtures. In comparison with the extraction with acidified methanol, the use of appropriate VNADESs formulations yielded higher amounts of protopine (by 16%), chelidonine (35%), berberine (76%), chelerythrine (12%), and coptisine (180%). Sanguinarine extraction efficiency was at the same level. Additionally, the values of the contact angles of the raw materials treated with the tested solvents were assessed, and higher wetting dynamics were observed in the case of VNADESs when compared with water. These results suggest that VNADESs can be used for the efficient and environmentally friendly extraction of Chelidonium alkaloids.


Assuntos
Alcaloides , Chelidonium , Cânfora , Solventes Eutéticos Profundos , Isoquinolinas , Mentol , Metanol , Extratos Vegetais , Solventes , Timol , Água
12.
Polymers (Basel) ; 14(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35566989

RESUMO

In this work, dialdehyde chitosan (DAC) and collagen (Coll) scaffolds have been prepared and their physico-chemical properties have been evaluated. Their structural properties were studied by Fourier Transform Infrared Spectroscopy with Attenuated Internal Reflection (FTIR-ATR) accompanied by evaluation of thermal stability, porosity, density, moisture content and microstructure by Scanning Electron Microscopy-SEM. Additionally, cutaneous assessment using human epidermal keratinocytes (NHEK), dermal fibroblasts (NHDF) and melanoma cells (A375 and G-361) was performed. Based on thermal studies, two regions in DTG curves could be distinguished in each type of scaffold, what can be assigned to the elimination of water and the polymeric structure degradation of the materials components. The type of scaffold had no major effect on the porosity of the materials, but the water content of the materials decreased with increasing dialdehyde chitosan content in subjected matrices. Briefly, a drop in proliferation was noticed for scaffolds containing 20DAC/80Coll compared to matrices with collagen alone. Furthermore, increased content of DAC (50DAC/50Coll) either significantly induced the proliferation rate or maintains its ratio compared to the control matrix. This delivery is a promising technique for additional explorations targeting therapies in regenerative dermatology. The using of dialdehyde chitosan as one of the main scaffolds components is the novelty in terms of bioengineering.

13.
Foods ; 11(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35627058

RESUMO

Polymeric films based on polylactide (PLA) with the addition of poly(ethylene glycol) (PEG) and a chloroformic extract of propolis were obtained. In the case of the studied films, polylactide (PLA) played the role of polymeric matrix and poly(ethylene glycol) was used as a plasticizer, while the extract of propolis was incorporated as a compound that could significantly affect the properties of the obtained materials, especially the water vapour permeation rate and the stability of the food products. Moreover, changes in structure, morphology, mechanical and storage properties as well as differences in colour, thickness and transparency after introducing propolis into the PLA-PEG system were determined. Based on the obtained results, it was established that the addition of the chloroformic extract of propolis significantly influences the most important properties taken into account during food packaging. It was also noticed that films with incorporated propolis were characterised by a significant improvement in the water vapour barrier property. Moreover, the obtained results prove that packaging containing a chloroformic propolis extract allow for the maintenance of the quality of the fruit stored for an extended period of time. To summarise, the application of a chloroformic propolis extract enables the formation of packaging materials that extend the shelf life of stored food products.

14.
Polymers (Basel) ; 14(7)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35406217

RESUMO

This review provides a report on recent advances in the field of chitosan (CTS) and silk fibroin (SF) biopolymer blends as new biomaterials. Chitosan and silk fibroin are widely used to obtain biomaterials. However, the materials based on the blends of these two biopolymers have not been summarized in a review paper yet. As these materials can attract both academic and industrial attention, we propose this review paper to showcase the latest achievements in this area. In this review, the latest literature regarding the preparation and properties of chitosan and silk fibroin and their blends has been reviewed.

15.
Oxid Med Cell Longev ; 2022: 1504929, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35340213

RESUMO

Inflammatory diseases are a common therapeutic problem and nonsteroidal anti-inflammatory drugs are not deprived of side effects, of which ulcerogenic activity is one of the most frequent. The aim of the study was to evaluate the anti-inflammatory activity of the sanguinarine-chelerythrine (SC) fraction of Coptis chinensis and its influence on the integrity of gastric mucosa. The study was conducted on sixty male rats randomly divided into six experimental groups: two control groups (a negative control group CON and a positive control group CAR); three groups receiving an investigational fraction of C. chinensis (1, 5, 10 mg/kg i.g.) named SC1, SC5, and SC10, respectively; and a group receiving indomethacin (IND) (10 mg/kg i.g.) as a reference drug. In all animals, the carrageenan-induced paw oedema was measured; PGE2 release, TNFα production, and MMP-9 concentration in inflamed tissue were determined. Additionally, the macroscopic and microscopic damage of gastric mucosa was evaluated. Administration of SC dose-dependently inhibited the second phase of carrageenan rat paw oedema and PGE2 release, decreased the production of TNFα, and reduced the concentration of MMP-9, and the efficacy of the highest dose was comparable to the effect of IND. Contrary to IND, no gastrotoxic activity of SC was detected. The investigated sanguinarine-chelerythrine fraction of C. chinensis seems to be a promising candidate for further research on new anti-inflammatory and analgesic drugs characterized with a safer gastric profile compared to existing NSAIDs.


Assuntos
Coptis chinensis , Edema , Animais , Anti-Inflamatórios/efeitos adversos , Benzofenantridinas , Carragenina/toxicidade , Edema/induzido quimicamente , Edema/tratamento farmacológico , Isoquinolinas , Masculino , Ratos
16.
Materials (Basel) ; 14(24)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34947221

RESUMO

The aim of this work was to obtain and characterize polylactide films (PLA) with the addition of poly(ethylene glycol) (PEG) as a plasticizer and chloroformic olive leaf extract (OLE). The composition of OLE was characterized by LC-MS/MS techniques. The films with the potential for using in the food packaging industry were prepared using a solvent evaporation method. The total content of the phenolic compounds and DPPH radical scavenging assay of all the obtained materials have been tested. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (FTIR-ATR) allows for determining the molecular structure, while Scanning Electron Microscopy (SEM) indicated differences in the films' surface morphology. Among other crucial properties, mechanical properties, thickness, degree of crystallinity, water vapor permeation rate (WVPR), and color change have also been evaluated. The results showed that OLE contains numerous active substances, including phenolic compounds, and PLA/PEG/OLE films are characterized by improved antioxidant properties. The OLE addition into PLA/PEG increases the material crystallinity, while the WVPR values remain almost unaffected. From these studies, significant insight was gained into the possibility of the application of chloroform as a solvent for both olive leaf extraction and for the preparation of OLE, PLA, and PEG-containing film-forming solutions. Finally, evaporation of the solvent from OLE can be omitted.

17.
Materials (Basel) ; 14(17)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34501083

RESUMO

In this work, two-component dialdehyde chitosan/hyaluronic acid scaffolds were developed and characterized. Dialdehyde chitosan was obtained by one-step synthesis with chitosan and sodium periodate. Three-dimensional scaffolds were prepared by the lyophilization method. Fourier transform infrared spectroscopy (FTIR) was used to observe the chemical structure of scaffolds and scanning electron microscopy (SEM) imaging was done to assess the microstructure of resultant materials. Thermal analysis, mechanical properties measurements, density, porosity and water content measurements were used to characterize physicochemical properties of dialdehyde chitosan/hyaluronic acid 3D materials. Additionally, human epidermal keratinocytes (NHEK), dermal fibroblasts (NHDF) and human melanoma cells (A375 and G-361) were used to evaluate cell viability in the presence of subjected scaffolds. It was found that scaffolds were characterized by a porous structure with interconnected pores. The scaffold composition has an influence on physicochemical properties, such as mechanical strength, thermal resistance, porosity and water content. There were no significant differences between cell viability proliferation of all scaffolds, and this observation was visible for all subjected cell lines.

18.
Molecules ; 26(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34443363

RESUMO

The antimicrobial properties of herbs from Papaveraceae have been used in medicine for centuries. Nevertheless, mutual relationships between the individual bioactive substances contained in these plants remain poorly elucidated. In this work, phytochemical composition of extracts from the aerial and underground parts of five Papaveraceae species (Chelidonium majus L., Corydalis cava (L.) Schweigg. and Körte, C. cheilanthifolia Hemsl., C. pumila (Host) Rchb., and Fumaria vaillantii Loisel.) were examined using LC-ESI-MS/MS with a triple quadrupole analyzer. Large differences in the quality and quantity of all analyzed compounds were observed between species of different genera and also within one genus. Two groups of metabolites predominated in the phytochemical profiles. These were isoquinoline alkaloids and, in smaller amounts, non-phenolic carboxylic acids and phenolic compounds. In aerial and underground parts, 22 and 20 compounds were detected, respectively. These included: seven isoquinoline alkaloids: protopine, allocryptopine, coptisine, berberine, chelidonine, sanguinarine, and chelerythrine; five of their derivatives as well as non-alkaloids: malic acid, trans-aconitic acid, quinic acid, salicylic acid, trans-caffeic acid, p-coumaric acid, chlorogenic acid, quercetin, and kaempferol; and vanillin. The aerial parts were much richer in phenolic compounds regardless of the plant species. Characterized extracts were studied for their antimicrobial potential against planktonic and biofilm-producing cells of S. aureus, P. aeruginosa, and C. albicans. The impact of the extracts on cellular metabolic activity and biofilm biomass production was evaluated. Moreover, the antimicrobial activity of the extracts introduced to the polymeric carrier made of bacterial cellulose was assessed. Extracts of C. cheilanthifolia were found to be the most effective against all tested human pathogens. Multiple regression tests indicated a high antimicrobial impact of quercetin in extracts of aerial parts against planktonic cells of S. aureus, P. aeruginosa, and C. albicans, and no direct correlation between the composition of other bioactive substances and the results of antimicrobial activity were found. Conclusively, further investigations are required to identify the relations between recognized and unrecognized compounds within extracts and their biological properties.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Produtos Biológicos/farmacologia , Papaveraceae/química , Extratos Vegetais/farmacologia , Antibacterianos/química , Biofilmes/crescimento & desenvolvimento , Produtos Biológicos/química , Avaliação Pré-Clínica de Medicamentos , Extratos Vegetais/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia
19.
Pathogens ; 10(8)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34451497

RESUMO

Helicobacter pylori is a Gram-negative bacterium that colonizes the stomach of about 60% of people worldwide. The search for new drugs with activity against H. pylori is now a hotspot in the effective and safe control of this bacterium. Therefore, the aim of this research was to determine the antibacterial activity of extracts from selected plants of the Papaveraceae family against planktonic and biofilm forms of the multidrug-resistant clinical strain of H. pylori using a broad spectrum of analytical in vitro methods. It was revealed that among the tested extracts, those obtained from Corydalis cheilanthifolia and Chelidonium majus were the most active, with minimal inhibitory concentrations (MICs) of 64 µg/mL and 128 µg/mL, respectively. High concentrations of both extracts showed cytotoxicity against cell lines of human hepatic origin. Therefore, we attempted to lower their MICs through the use of a synergistic combination with synthetic antimicrobials as well as by applying cellulose as a drug carrier. Using checkerboard assays, we determined that both extracts presented synergistic interactions with amoxicillin (AMX) and 3-bromopyruvate (3-BP) (FICI = 0.5) and additive relationships with sertraline (SER) (FICI = 0.75). The antibiofilm activity of extracts and their combinations with AMX, 3-BP, or SER, was analyzed by two methods, i.e., the microcapillary overgrowth under flow conditions (the Bioflux system) and assessment of the viability of lawn biofilms after exposure to drugs released from bacterial cellulose (BC) carriers. Using both methods, we observed a several-fold decrease in the level of H. pylori biofilm, indicating the ability of the tested compounds to eradicate the microbial biofilm. The obtained results indicate that application of plant-derived extracts from the Papaveraceae family combined with synthetic antimicrobials, absorbed into organic BC carrier, may be considered a promising way of fighting biofilm-forming H. pylori.

20.
Materials (Basel) ; 14(6)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808809

RESUMO

This review supplies a report on fresh advances in the field of silk fibroin (SF) biopolymer and its blends with biopolymers as new biomaterials. The review also includes a subsection about silk fibroin mixtures with synthetic polymers. Silk fibroin is commonly used to receive biomaterials. However, the materials based on pure polymer present low mechanical parameters, and high enzymatic degradation rate. These properties can be problematic for tissue engineering applications. An increased interest in two- and three-component mixtures and chemically cross-linked materials has been observed due to their improved physico-chemical properties. These materials can be attractive and desirable for both academic, and, industrial attention because they expose improvements in properties required in the biomedical field. The structure, forms, methods of preparation, and some physico-chemical properties of silk fibroin are discussed in this review. Detailed examples are also given from scientific reports and practical experiments. The most common biopolymers: collagen (Coll), chitosan (CTS), alginate (AL), and hyaluronic acid (HA) are discussed as components of silk fibroin-based mixtures. Examples of binary and ternary mixtures, composites with the addition of magnetic particles, hydroxyapatite or titanium dioxide are also included and given. Additionally, the advantages and disadvantages of chemical, physical, and enzymatic cross-linking were demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA