Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Immune Netw ; 24(2): e17, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38725672

RESUMO

We have reported that anterior cruciate ligament (ACL) injury leads to the differential dysregulation of the complement system in the synovium as compared to meniscus tear (MT) and proposed this as a mechanism for a greater post-injury prevalence of post traumatic osteoarthritis (PTOA). To explore additional roles of complement proteins and regulators, we determined the presence of decay-accelerating factor (DAF), C5b, and membrane attack complexes (MACs, C5b-9) in discarded surgical synovial tissue (DSST) collected during arthroscopic ACL reconstructive surgery, MT-related meniscectomy, osteoarthritis (OA)-related knee replacement surgery and normal controls. Multiplexed immunohistochemistry was used to detect and quantify complement proteins. To explore the involvement of body mass index (BMI), after these 2 injuries, we examined correlations among DAF, C5b, MAC and BMI. Using these approaches, we found that synovial cells after ACL injury expressed a significantly lower level of DAF as compared to MT (p<0.049). In contrast, C5b staining synovial cells were significantly higher after ACL injury (p<0.0009) and in OA DSST (p<0.039) compared to MT. Interestingly, there were significantly positive correlations between DAF & C5b (r=0.75, p<0.018) and DAF & C5b (r=0.64 p<0.022) after ACL injury and MT, respectively. The data support that DAF, which should normally dampen C5b deposition due to its regulatory activities on C3/C5 convertases, does not appear to exhibit that function in inflamed synovia following either ACL injury or MT. Ineffective DAF regulation may be an additional mechanism by which relatively uncontrolled complement activation damages tissue in these injury states.

2.
bioRxiv ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38562830

RESUMO

Over 1,100 independent signals have been identified with genome-wide association studies (GWAS) for bone mineral density (BMD), a key risk factor for mortality-increasing fragility fractures; however, the effector gene(s) for most remain unknown. Informed by a variant-to-gene mapping strategy implicating 89 non-coding elements predicted to regulate osteoblast gene expression at BMD GWAS loci, we executed a single-cell CRISPRi screen in human fetal osteoblast 1.19 cells (hFOBs). The BMD relevance of hFOBs was supported by heritability enrichment from cross-cell type stratified LD-score regression involving 98 cell types grouped into 15 tissues. 24 genes showed perturbation in the screen, with four (ARID5B, CC2D1B, EIF4G2, and NCOA3) exhibiting consistent effects upon siRNA knockdown on three measures of osteoblast maturation and mineralization. Lastly, additional heritability enrichments, genetic correlations, and multi-trait fine-mapping revealed that many BMD GWAS signals are pleiotropic and likely mediate their effects via non-bone tissues that warrant attention in future screens.

3.
Front Immunol ; 14: 1146563, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37207197

RESUMO

Anterior cruciate ligament (ACL) injury and meniscal tear (MT) are major causal factors for developing post-traumatic osteoarthritis (PTOA), but the biological mechanism(s) are uncertain. After these structural damages, the synovium could be affected by complement activation that normally occurs in response to tissue injury. We explored the presence of complement proteins, activation products, and immune cells, in discarded surgical synovial tissue (DSST) collected during arthroscopic ACL reconstructive surgery, MT-related meniscectomy and from patients with OA. Multiplexed immunohistochemistry (MIHC) was used to determine the presence of complement proteins, receptors and immune cells from ACL, MT, OA synovial tissue vs. uninjured controls. Examination of synovium from uninjured control tissues did not reveal the presence of complement or immune cells. However, DSST from patients undergoing ACL and MT repair demonstrated increases in both features. In ACL DSST, a significantly higher percentage of C4d+, CFH+, CFHR4+ and C5b-9+ synovial cells were present compared with MT DSST, but no major differences were seen between ACL and OA DSST. Increased cells expressing C3aR1 and C5aR1, and a significant increase in mast cells and macrophages, were found in ACL as compared to MT synovium. Conversely, the percentage of monocytes was increased in the MT synovium. Our data demonstrate that complement is activated in the synovium and is associated with immune cell infiltration, with a more pronounced effect following ACL as compared to MT injury. Complement activation, associated with an increase in mast cells and macrophages after ACL injury and/or MT, may contribute to the development of PTOA.


Assuntos
Lesões do Ligamento Cruzado Anterior , Artroplastia do Joelho , Menisco , Osteoartrite do Joelho , Humanos , Lesões do Ligamento Cruzado Anterior/complicações , Lesões do Ligamento Cruzado Anterior/cirurgia , Osteoartrite do Joelho/etiologia , Artroplastia do Joelho/efeitos adversos , Ativação do Complemento , Menisco/cirurgia
4.
Curr Osteoporos Rep ; 20(2): 141-152, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35156183

RESUMO

PURPOSE OF REVIEW: RNA-sequencing (RNA-seq) is a novel and highly sought-after tool in the field of musculoskeletal regenerative medicine. The technology is being used to better understand pathological processes, as well as elucidate mechanisms governing development and regeneration. It has allowed in-depth characterization of stem cell populations and discovery of molecular mechanisms that regulate stem cell development, maintenance, and differentiation in a way that was not possible with previous technology. This review introduces RNA-seq technology and how it has paved the way for advances in musculoskeletal regenerative medicine. RECENT FINDINGS: Recent studies in regenerative medicine have utilized RNA-seq to decipher mechanisms of pathophysiology and identify novel targets for regenerative medicine. The technology has also advanced stem cell biology through in-depth characterization of stem cells, identifying differentiation trajectories and optimizing cell culture conditions. It has also provided new knowledge that has led to improved growth factor use and scaffold design for musculoskeletal regenerative medicine. This article reviews recent studies utilizing RNA-seq in the field of musculoskeletal regenerative medicine. It demonstrates how transcriptomic analysis can be used to provide insights that can aid in formulating a regenerative strategy.


Assuntos
Sistema Musculoesquelético , Medicina Regenerativa , Técnicas de Cultura de Células , Humanos , Células-Tronco , Engenharia Tecidual , Transcriptoma
5.
Curr Rheumatol Rep ; 23(11): 78, 2021 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-34716494

RESUMO

PURPOSE OF REVIEW: Osteoarthritis (OA) is the most common forms of arthritis in the general population, accounting for more pain and functional disability than any other musculoskeletal disease. There are currently no approved disease modifying drugs for OA. In the absence of effective pharmacotherapy, many patients with OA turn to nutritional supplements and nutraceuticals, including collagen derivatives. Collagen hydrolyzates and ultrahydrolyzates are terms used to describe collagens that have been broken down into small peptides and amino acids in the presence of collagenases and high pressure. RECENT FINDINGS: This article reviews the relevant literature and serves as a White Paper on collagen hydrolyzates and ultrahydrolyzates as emerging supplements often advertised to support joint health in OA. Collagen hydrolyzates have demonstrated some evidence of efficacy in a handful of small scale clinical trials, but their ability to treat and reverse advanced joint disease remains highly speculative, as is the case for other nutritional supplements. The aim of this White Paper is to stimulate research and development of collagen-based supplements for patients with OA and other musculoskeletal diseases at academic and industrial levels. This White Paper does not make any treatment recommendations for OA patients in the clinical context, but simply aims to highlight opportunities for scientific innovation and interdisciplinary collaboration, which are crucial for the development of novel products and nutritional interventions based on the best available and published evidence.


Assuntos
Artropatias , Osteoartrite , Colágeno , Suplementos Nutricionais , Humanos , Osteoartrite/tratamento farmacológico , Dor
6.
Sci Signal ; 14(701): eabf3535, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34546791

RESUMO

Canonical nuclear factor κB (NF-κB) signaling mediated by homo- and heterodimers of the NF-κB subunits p65 (RELA) and p50 (NFKB1) is associated with age-related pathologies and with disease progression in posttraumatic models of osteoarthritis (OA). Here, we established that NF-κB signaling in articular chondrocytes increased with age, concomitant with the onset of spontaneous OA in wild-type mice. Chondrocyte-specific expression of a constitutively active form of inhibitor of κB kinase ß (IKKß) in young adult mice accelerated the onset of the OA-like phenotype observed in aging wild-type mice, including degenerative changes in the articular cartilage, synovium, and menisci. Both in vitro and in vivo, chondrocytes expressing activated IKKß had a proinflammatory secretory phenotype characterized by markers typically associated with the senescence-associated secretory phenotype (SASP). Expression of these factors was differentially regulated by p65, which contains a transactivation domain, and p50, which does not. Whereas the loss of p65 blocked the induction of genes encoding SASP factors in chondrogenic cells treated with interleukin-1ß (IL-1ß) in vitro, the loss of p50 enhanced the IL-1ß­induced expression of some SASP factors. The loss of p50 further exacerbated cartilage degeneration in mice with chondrocyte-specific IKKß activation. Overall, our data reveal that IKKß-mediated activation of p65 can promote OA onset and that p50 may limit cartilage degeneration in settings of joint inflammation including advanced age.


Assuntos
NF-kappa B , Osteoartrite , Animais , Condrócitos/metabolismo , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Osteoartrite/genética , Transdução de Sinais
7.
Sci Transl Med ; 13(580)2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568523

RESUMO

Osteoarthritis (OA) is a debilitating joint disease characterized by progressive cartilage degeneration, with no available disease-modifying therapy. OA is driven by pathological chondrocyte hypertrophy (CH), the cellular regulators of which are unknown. We have recently reported the therapeutic efficacy of G protein-coupled receptor kinase 2 (GRK2) inhibition in other diseases by recovering protective G protein-coupled receptor (GPCR) signaling. However, the role of GPCR-GRK2 pathway in OA is unknown. Thus, in a surgical OA mouse model, we performed genetic GRK2 deletion in chondrocytes or pharmacological inhibition with the repurposed U.S. Food and Drug Administration (FDA)-approved antidepressant paroxetine. Both GRK2 deletion and inhibition prevented CH, abated OA progression, and promoted cartilage regeneration. Supporting experiments with cultured human OA cartilage confirmed the ability of paroxetine to mitigate CH and cartilage degradation. Our findings present elevated GRK2 signaling in chondrocytes as a driver of CH in OA and identify paroxetine as a disease-modifying drug for OA treatment.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Cartilagem , Condrócitos , Quinase 2 de Receptor Acoplado a Proteína G , Camundongos , Osteoartrite/tratamento farmacológico , Paroxetina/farmacologia , Paroxetina/uso terapêutico
8.
Methods Mol Biol ; 2230: 91-103, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33197010

RESUMO

Given the prevalence and the scope of the personal and societal burden of osteoarthritis (OA), investigators continue to be deeply interested in understanding the pathogenic basis of disease and developing novel disease modifying OA therapies. Because joint trauma/injury is considered a leading predisposing factor in the development of OA, and since posttraumatic OA is one of the most common forms of OA in general, large animal and rodent models of knee injury that accurately recapitulate the OA disease process have become increasingly widespread over the past decade. To enable study in the context of defined genetic backgrounds, investigative teams have developed standardized protocols for injuring the mouse knee that aim to induce a reproducible degenerative process both in terms of severity and temporal pacing of disease progression. The destabilization of the medial meniscus (DMM) is one of the most commonly employed surgical procedure in rodents that reproducibly models posttraumatic OA and allows for the study of disease progression from initiation to end-stage disease. The description provided here sets the stage for both inexperienced and established investigators to employ the DMM procedure, or other similar surgical destabilization methods, to initiate the development of posttraumatic OA in the mouse. Successful application of this method provides a preclinical platform to study the mechanisms driving the pathogenesis of posttraumatic OA and for testing therapeutic strategies to treat it.


Assuntos
Cartilagem Articular/crescimento & desenvolvimento , Traumatismos do Joelho/cirurgia , Meniscos Tibiais/cirurgia , Osteoartrite/cirurgia , Animais , Modelos Animais de Doenças , Progressão da Doença , Humanos , Traumatismos do Joelho/fisiopatologia , Articulação do Joelho/fisiopatologia , Articulação do Joelho/cirurgia , Meniscos Tibiais/fisiopatologia , Camundongos , Osteoartrite/fisiopatologia
9.
Aging Cell ; 19(11): e13255, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33112509

RESUMO

Osteoarthritis (OA) is the most prevalent disabling disease, affecting quality of life and contributing to morbidity, particularly during aging. Current treatments for OA are limited to palliation: pain management and surgery for end-stage disease. Innovative approaches and animal models are needed to develop curative treatments for OA. Here, we investigated the naked mole-rat (NMR) as a potential model of OA resistance. NMR is a small rodent with the maximum lifespan of over 30 years, resistant to a wide range of age-related diseases. NMR tissues accumulate large quantities of unique, very high molecular weight, hyaluronan (HA). HA is a major component of cartilage and synovial fluid. Importantly, both HA molecular weight and cartilage stiffness decline with age and progression of OA. As increased polymer length is known to result in stiffer material, we hypothesized that NMR high molecular weight HA contributes to stiffer cartilage. Our analysis of biomechanical properties of NMR cartilage revealed that it is significantly stiffer than mouse cartilage. Furthermore, NMR chondrocytes were highly resistant to traumatic damage. In vivo experiments using an injury-induced model of OA revealed that NMRs were highly resistant to OA. While similarly treated mice developed severe cartilage degeneration, NMRs did not show any signs of OA. Our study shows that NMRs are remarkably resistant to OA, and this resistance is likely conferred by high molecular weight HA. This work suggests that NMR is a useful model to study OA resistance and NMR high molecular weight HA may hold therapeutic potential for OA treatment.


Assuntos
Osteoartrite/fisiopatologia , Animais , Modelos Animais de Doenças , Ratos-Toupeira
10.
Curr Opin Rheumatol ; 32(1): 92-101, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31724973

RESUMO

PURPOSE OF REVIEW: Osteoarthritis is a debilitating disease leading to joint degeneration, inflammation, pain, and disability. Despite efforts to develop a disease modifying treatment, the only accepted and available clinical approaches involve palliation. Although many factors contribute to the development of osteoarthritis, the gut microbiome has recently emerged as an important pathogenic factor in osteoarthritis initiation and progression. This review examines the literature to date regarding the link between the gut microbiome and osteoarthritis. RECENT FINDINGS: Studies showing correlations between serum levels of bacterial metabolites and joint degeneration were the first links connecting a dysbiosis of the gut microbiome with osteoarthritis. Further investigations have demonstrated that microbial community shifts induced by antibiotics, a germ-free environment or high-fat are important underlying factors in joint homeostasis and osteoarthritis. It follows that strategies to manipulate the microbiome have demonstrated efficacy in mitigating joint degeneration in osteoarthritis. Moreover, we have observed that dietary supplementation with nutraceuticals that are joint protective may exert their influence via shifts in the gut microbiome. SUMMARY: Although role of the microbiome in osteoarthritis is an area of intense study, no clear mechanism of action has been determined. Increased understanding of how the two factors interact may provide mechanistic insight into osteoarthritis and lead to disease modifying treatments.


Assuntos
Disbiose/complicações , Microbioma Gastrointestinal/fisiologia , Inflamação/microbiologia , Osteoartrite/microbiologia , Disbiose/metabolismo , Disbiose/microbiologia , Humanos , Inflamação/metabolismo , Osteoartrite/metabolismo
11.
J Bone Miner Res ; 34(9): 1676-1689, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31189030

RESUMO

RUNX2 is a transcription factor critical for chondrocyte maturation and normal endochondral bone formation. It promotes the expression of factors catabolic to the cartilage extracellular matrix and is upregulated in human osteoarthritic cartilage and in murine articular cartilage following joint injury. To date, in vivo studies of RUNX2 overexpression in cartilage have been limited to forced expression in osteochondroprogenitor cells preventing investigation into the effects of chondrocyte-specific RUNX2 overexpression in postnatal articular cartilage. Here, we used the Rosa26Runx2 allele in combination with the inducible Col2a1CreERT2 transgene or the inducible AcanCreERT2 knock-in allele to achieve chondrocyte-specific RUNX2 overexpression (OE) during embryonic development or in the articular cartilage of adult mice, respectively. RUNX2 OE was induced at embryonic day 13.5 (E13.5) for all developmental studies. Histology and in situ hybridization analyses suggest an early onset of chondrocyte hypertrophy and accelerated terminal maturation in the limbs of the RUNX2 OE embryos compared to control embryos. For all postnatal studies, RUNX2 OE was induced at 2 months of age. Surprisingly, no histopathological signs of cartilage degeneration were observed even 6 months following induction of RUNX2 OE. Using the meniscal/ligamentous injury (MLI), a surgical model of knee joint destabilization and meniscal injury, however, we found that RUNX2 OE accelerates the progression of cartilage degeneration following joint trauma. One month following MLI, the numbers of MMP13-positive and TUNEL-positive chondrocytes were significantly greater in the articular cartilage of the RUNX2 OE joints compared to control joints and 2 months following MLI, histomorphometry and Osteoarthritis Research Society International (OARSI) scoring revealed decreased cartilage area in the RUNX2 OE joints. Collectively, these results suggest that although RUNX2 overexpression alone may not be sufficient to initiate the OA degenerative process, it may predetermine the rate of OA onset and/or progression following traumatic joint injury. © 2019 American Society for Bone and Mineral Research.


Assuntos
Envelhecimento/patologia , Condrócitos/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Progressão da Doença , Osteoartrite/etiologia , Osteoartrite/metabolismo , Ferimentos e Lesões/complicações , Animais , Animais Recém-Nascidos , Cartilagem Articular/patologia , Condrócitos/patologia , Feminino , Humanos , Articulação do Joelho/patologia , Masculino , Metaloproteinase 13 da Matriz/metabolismo , Camundongos , Especificidade de Órgãos , Osteocondrodisplasias/patologia , Fenótipo
12.
J Bone Joint Surg Am ; 101(6): 523-530, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30893233

RESUMO

BACKGROUND: Peripheral nerve compression and entrapment can be debilitating. Using a validated animal model of peripheral nerve compression, we examined the utility of 2 drugs approved for other uses in humans, 4-aminopyridine (4-AP) and erythropoietin (EPO), as treatments for surgically induced ischemia and as adjuvants to surgical decompression. METHODS: Peripheral nerve compression was induced in wild-type mice by placing an inert silicone sleeve around the sciatic nerve. Decompression surgery was performed at 6 weeks with mice receiving 4-AP, EPO, or saline solution either during and after compression or only after decompression. A nerve conduction study and morphometric analyses were performed to compare the extent of the injury and the efficacy of the therapies, and the findings were subjected to statistical analysis. RESULTS: During peripheral nerve compression, there was a progressive decline in nerve conduction velocity compared with that in sham-treatment animals, in which nerve conduction velocity remained normal (∼55 m/s). Mice treated with 4-AP or EPO during the compression phase had significantly smaller declines in nerve conduction velocity and increased plateau nerve conduction velocities compared with untreated controls (animals that received saline solution). Histomorphometric analyses of newly decompressed nerves (i.e., nerves that underwent decompression on the day that the mouse was sacrificed) revealed that both treated groups had significantly greater proportions of large (>5-µm) axons than the untreated controls. Following surgical decompression, all animals recovered to a normal baseline nerve conduction velocity by day 15; however, treatment significantly accelerated improvement (in both the 4-AP and the EPO group), even when it was only started after decompression. Histomorphometric analyses at 7 and 15 days following surgical decompression revealed significantly increased myelin thickness and significantly greater proportions of large axons among the treated animals. CONCLUSIONS: Both the 4-AP and the EPO-treated group demonstrated improvements in tissue architectural and electrodiagnostic measurements, both during and after peripheral nerve compression, compared with untreated mice. CLINICAL RELEVANCE: Peripheral nerve decompression is one of the most commonly performed procedures in orthopaedic surgery. We believe that there is reason for some optimism about the translation of our findings to the clinical setting. Our findings in this murine model suggest that 4-AP and EPO may lessen the effects of nerve entrapment and that the use of these agents after decompression may speed and perhaps otherwise optimize recovery after surgery.


Assuntos
4-Aminopiridina/uso terapêutico , Epoetina alfa/uso terapêutico , Hematínicos/uso terapêutico , Síndromes de Compressão Nervosa/terapia , Bloqueadores dos Canais de Potássio/uso terapêutico , Neuropatia Ciática/terapia , Animais , Descompressão Cirúrgica , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Síndromes de Compressão Nervosa/fisiopatologia , Condução Nervosa/fisiologia , Neuropatia Ciática/fisiopatologia
13.
Arthritis Rheumatol ; 71(2): 244-257, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30144298

RESUMO

OBJECTIVE: To investigate the roles of the synovial lymphatic system in the severity and progression of joint tissue damage and functional responses of synovial lymphatic endothelial cells (LECs) to macrophage subsets, and to evaluate the therapeutic potential of the proteasome inhibitor bortezomib (BTZ) in a mouse model of experimental posttraumatic osteoarthritis (OA). METHODS: C57BL/6J wild-type mice received a meniscal ligamentous injury to induce posttraumatic knee OA. Lymphangiogenesis was blocked by a vascular endothelial growth factor receptor 3 (VEGFR-3) neutralizing antibody. Synovial lymphatic drainage was examined by near-infrared imaging. Joint damage was assessed by histology. RNA-sequencing and pathway analyses were applied to synovial LECs. Macrophage subsets in the mouse synovium were identified by flow cytometry and immunofluorescence staining. M1 and M2 macrophages were induced from mouse bone marrow cells, and their effects on LECs were examined in cocultures in the presence or absence of BTZ. The effects of BTZ on joint damage, LEC inflammation, and synovial lymphatic drainage were examined. RESULTS: Injection of a VEGFR-3 neutralizing antibody into the joints of mice with posttraumatic knee OA reduced synovial lymphatic drainage and accelerated joint tissue damage. Synovial LECs from the mouse OA joints had dysregulated inflammatory pathways and expressed high levels of inflammatory genes. The number of M1 macrophages was increased in the knee joints of mice with posttraumatic OA, thereby promoting the expression of inflammatory genes by LECs; this effect was blocked by BTZ. Treatment with BTZ decreased cartilage loss, reduced the expression of inflammatory genes by LECs, and improved lymphatic drainage in the knee joints of mice with posttraumatic OA. CONCLUSION: Experimental posttraumatic knee OA is associated with decreased synovial lymphatic drainage, increased numbers of M1 macrophages, and enhanced inflammatory gene expression by LECs, all of which was improved by treatment with BTZ. Intraarticular administration of BTZ may represent a new therapy for the restoration of synovial lymphatic function in subjects with posttraumatic knee OA.


Assuntos
Bortezomib/farmacologia , Células Endoteliais/efeitos dos fármacos , Vasos Linfáticos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Osteoartrite do Joelho/imunologia , Inibidores de Proteassoma/farmacologia , Membrana Sinovial/efeitos dos fármacos , Animais , Anticorpos Neutralizantes/farmacologia , Bortezomib/uso terapêutico , Técnicas de Cocultura , Progressão da Doença , Inflamação , Traumatismos do Joelho/complicações , Linfangiogênese/efeitos dos fármacos , Vasos Linfáticos/imunologia , Macrófagos/imunologia , Camundongos , Osteoartrite do Joelho/tratamento farmacológico , Osteoartrite do Joelho/etiologia , Inibidores de Proteassoma/uso terapêutico , Espectroscopia de Luz Próxima ao Infravermelho , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/imunologia
14.
J Immunol ; 201(2): 560-572, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29858265

RESUMO

Obese patients with type 2 diabetes (T2D) are at an increased risk of foot infection, with impaired immune function believed to be a critical factor in the infectious process. In this study, we test the hypothesis that humoral immune defects contribute to exacerbated foot infection in a murine model of obesity/T2D. C57BL/6J mice were rendered obese and T2D by a high-fat diet for 3 mo and were compared with controls receiving a low-fat diet. Following injection of Staphylococcus aureus into the footpad, obese/T2D mice had greater foot swelling and reduced S. aureus clearance than controls. Obese/T2D mice also had impaired humoral immune responses as indicated by lower total IgG levels and lower anti-S. aureus Ab production. Within the draining popliteal lymph nodes of obese/T2D mice, germinal center formation was reduced, and the percentage of germinal center T and B cells was decreased by 40-50%. Activation of both T and B lymphocytes was similarly suppressed in obese/T2D mice. Impaired humoral immunity in obesity/T2D was independent of active S. aureus infection, as a similarly impaired humoral immune response was demonstrated when mice were administered an S. aureus digest. Isolated splenic B cells from obese/T2D mice activated normally but had markedly suppressed expression of Aicda, with diminished IgG and IgE responses. These results demonstrate impaired humoral immune responses in obesity/T2D, including B cell-specific defects in Ab production and class-switch recombination. Together, the defects in humoral immunity may contribute to the increased risk of foot infection in obese/T2D patients.


Assuntos
Linfócitos B/fisiologia , Diabetes Mellitus Tipo 2/imunologia , Pé/microbiologia , Centro Germinativo/imunologia , Obesidade/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Animais , Diferenciação Celular , Células Cultivadas , Citidina Desaminase/metabolismo , Diabetes Mellitus Tipo 2/microbiologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Progressão da Doença , Pé/patologia , Humanos , Imunidade Humoral , Switching de Imunoglobulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/microbiologia , Infecções Estafilocócicas/microbiologia
15.
JCI Insight ; 3(8)2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29669931

RESUMO

Obesity is a risk factor for osteoarthritis (OA), the greatest cause of disability in the US. The impact of obesity on OA is driven by systemic inflammation, and increased systemic inflammation is now understood to be caused by gut microbiome dysbiosis. Oligofructose, a nondigestible prebiotic fiber, can restore a lean gut microbial community profile in the context of obesity, suggesting a potentially novel approach to treat the OA of obesity. Here, we report that - compared with the lean murine gut - obesity is associated with loss of beneficial Bifidobacteria, while key proinflammatory species gain in abundance. A downstream systemic inflammatory signature culminates with macrophage migration to the synovium and accelerated knee OA. Oligofructose supplementation restores the lean gut microbiome in obese mice, in part, by supporting key commensal microflora, particularly Bifidobacterium pseudolongum. This is associated with reduced inflammation in the colon, circulation, and knee and protection from OA. This observation of a gut microbiome-OA connection sets the stage for discovery of potentially new OA therapeutics involving strategic manipulation of specific microbial species inhabiting the intestinal space.


Assuntos
Microbioma Gastrointestinal/fisiologia , Inflamação/microbiologia , Obesidade/microbiologia , Osteoartrite/microbiologia , Animais , Bifidobacterium longum/imunologia , Bifidobacterium longum/metabolismo , Disbiose/microbiologia , Humanos , Inflamação/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/complicações , Obesidade/metabolismo , Obesidade/patologia , Oligossacarídeos/metabolismo , Osteoartrite/etiologia , Osteoartrite/metabolismo , Osteoartrite/patologia , Transcriptoma/genética
16.
J Orthop Res ; 36(6): 1614-1623, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29227579

RESUMO

Obese and type 2 diabetic (T2D) patients have a fivefold increased rate of infection following placement of an indwelling orthopaedic device. Though implant infections are associated with inflammation, periosteal reactive bone formation, and osteolysis, the effect of obesity/T2D on these complicating factors has not been studied. To address this question, C57BL/6J mice were fed a high fat diet (60% Kcal from fat) to induce obesity/T2D, or a control diet (10% Kcal from fat) for 3 months, and challenged with a transtibial pin coated with a bioluminescent USA300 strain of S. aureus. In the resulting infected bone, obesity/T2D was associated with increased S. aureus proliferation and colony forming units. RNA sequencing of the infected tibiae on days 7 and 14 revealed an increase in 635 genes in obese/T2D mice relative to controls. Pathways associated with ossification, angiogenesis, and immunity were enriched. MicroCT and histology on days 21 and 35 demonstrated significant increased periosteal reactive bone formation in infected obese/T2D mice versus infected controls (p < 0.05). The enhanced periosteal bone formation was associated with increased osteoblastic activity and robust endochondral ossification, with persistant cartilage on day 21 that was only observed in infected obesity/T2D. Osteolysis and osteoclast numbers in obesity/T2D were also significantly increased versus infected controls (p < 0.05). Consistent with an up-regulated immune transcriptome, macrophages were more abundant within both the periosteum and the new reactive bone of obese/T2D mice. In conclusion, we find that implant-associated S. aureus osteomyelitis in obesity/T2D is associated with increased inflammation, reactive bone formation, and osteolysis. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1614-1623, 2018.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Inflamação/etiologia , Obesidade/complicações , Osteogênese , Osteólise/etiologia , Infecções Relacionadas à Prótese/etiologia , Infecções Estafilocócicas/etiologia , Animais , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Staphylococcus aureus
17.
JCI Insight ; 2(12)2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28614801

RESUMO

Osteoarthritis (OA) is the most common form of arthritis worldwide. It is a complex disease affecting the whole joint but is generally characterized by progressive degradation of articular cartilage. Recent genome-wide association screens have implicated distinct DNA methylation signatures in OA patients. We show that the de novo DNA methyltransferase (Dnmt) 3b, but not Dnmt3a, is present in healthy murine and human articular chondrocytes and its expression decreases in OA mouse models and in chondrocytes from human OA patients. Targeted deletion of Dnmt3b in murine articular chondrocytes results in an early-onset and progressive postnatal OA-like pathology. RNA-Seq and methylC-Seq analyses of Dnmt3b loss-of-function chondrocytes show that cellular metabolic processes are affected. Specifically, TCA metabolites and mitochondrial respiration are elevated. Importantly, a chondroprotective effect was found following Dnmt3b gain of function in murine articular chondrocytes in vitro and in vivo. This study shows that Dnmt3b plays a significant role in regulating postnatal articular cartilage homeostasis. Cellular pathways regulated by Dnmt3b in chondrocytes may provide novel targets for therapeutic approaches to treat OA.

18.
PLoS One ; 12(4): e0174705, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28384173

RESUMO

Osteoarthritis (OA) is a degenerative joint disease for which there are no disease modifying therapies. Thus, strategies that offer chondroprotective or regenerative capability represent a critical unmet need. Recently, oral consumption of a hydrolyzed type 1 collagen (hCol1) preparation has been reported to reduce pain in human OA and support a positive influence on chondrocyte function. To evaluate the tissue and cellular basis for these effects, we examined the impact of orally administered hCol1 in a model of posttraumatic OA (PTOA). In addition to standard chow, male C57BL/6J mice were provided a daily oral dietary supplement of hCol1 and a meniscal-ligamentous injury was induced on the right knee. At various time points post-injury, hydroxyproline (hProline) assays were performed on blood samples to confirm hCol1 delivery, and joints were harvested for tissue and molecular analyses were performed, including histomorphometry, OARSI and synovial scoring, immunohistochemistry and mRNA expression studies. Confirming ingestion of the supplements, serum hProline levels were elevated in experimental mice administered hCol1. In the hCol1 supplemented mice, chondroprotective effects were observed in injured knee joints, with dose-dependent increases in cartilage area, chondrocyte number and proteoglycan matrix at 3 and 12 weeks post-injury. Preservation of cartilage and increased chondrocyte numbers correlated with reductions in MMP13 protein levels and apoptosis, respectively. Supplemented mice also displayed reduced synovial hyperplasia that paralleled a reduction in Tnf mRNA, suggesting an anti-inflammatory effect. These findings establish that in the context of murine knee PTOA, daily oral consumption of hCol1 is chondroprotective, anti-apoptotic in articular chondrocytes, and anti-inflammatory. While the underlying mechanism driving these effects is yet to be determined, these findings provide the first tissue and cellular level information explaining the already published evidence of symptom relief supported by hCol1 in human knee OA. These results suggest that oral consumption of hCol1 is disease modifying in the context of PTOA.


Assuntos
Cartilagem Articular/metabolismo , Colágeno Tipo I/administração & dosagem , Suplementos Nutricionais , Modelos Animais de Doenças , Osteoartrite/metabolismo , Ferimentos e Lesões/complicações , Administração Oral , Animais , Hidrólise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoartrite/etiologia , Osteoartrite/prevenção & controle
19.
Infect Immun ; 85(6)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28320836

RESUMO

Obesity and associated type 2 diabetes (T2D) are important risk factors for infection following orthopedic implant surgery. Staphylococcus aureus, the most common pathogen in bone infections, adapts to multiple environments to survive and evade host immune responses. Whether adaptation of S. aureus to the unique environment of the obese/T2D host accounts for its increased virulence and persistence in this population is unknown. Thus, we assessed implant-associated osteomyelitis in normal versus high-fat-diet obese/T2D mice and found that S. aureus infection was more severe, including increases in bone abscesses relative to nondiabetic controls. S. aureus isolated from bone of obese/T2D mice displayed marked upregulation of four adhesion genes (clfA, clfB, bbp, and sdrC), all with binding affinity for fibrin(ogen). Immunostaining of infected bone revealed increased fibrin deposition surrounding bacterial abscesses in obese/T2D mice. In vitro coagulation assays demonstrated a hypercoagulable state in obese/T2D mice that was comparable to that of diabetic patients. S. aureus with an inactivating mutation in clumping factor A (clfA) showed a reduction in bone infection severity that eliminated the effect of obesity/T2D, while infections in control mice were unchanged. In infected mice that overexpress plasminogen activator inhibitor-1 (PAI-1), S. aureusclfA expression and fibrin-encapsulated abscess communities in bone were also increased, further linking fibrin deposition to S. aureus expression of clfA and infection severity. Together, these results demonstrate an adaptation by S. aureus to obesity/T2D with increased expression of clfA that is associated with the hypercoagulable state of the host and increased virulence of S. aureus.


Assuntos
Coagulase/metabolismo , Diabetes Mellitus Tipo 2/complicações , Obesidade/complicações , Osteomielite/patologia , Infecções Estafilocócicas/microbiologia , Abscesso/patologia , Animais , Anticorpos Antibacterianos/genética , Anticorpos Antibacterianos/metabolismo , Coagulase/genética , Diabetes Mellitus Tipo 2/microbiologia , Modelos Animais de Doenças , Fibrinogênio/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/microbiologia , Osteomielite/microbiologia , Análise de Sequência de RNA , Ativação Transcricional , Regulação para Cima , Virulência
20.
Muscle Nerve ; 56(1): 143-151, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28168703

RESUMO

INTRODUCTION: Erythropoietin (EPO) has been identified as a neuroregenerative agent. We hypothesize that it may accelerate recovery after crush injury and may vary with crush severity. METHODS: Mice were randomized to mild, moderate, or severe crush of the sciatic nerve and were treated with EPO or vehicle control after injury. The sciatic function index (SFI) was monitored over the first week. Microstructural changes were analyzed by immunofluorescence for neurofilament (NF) and myelin (P0 ), and electron microscopy was used to assess ultrastructural changes. RESULTS: In moderate crush injuries, EPO significantly improved SFI at 7 days post-injury, an effect not observed with other severity levels. Increases in the ratio of P0 to NF were observed after EPO treatment in moderate crush injuries. Electron microscopy demonstrated endothelial cell hypertrophy in the EPO group. CONCLUSIONS: EPO accelerates recovery in moderately crushed nerves, which may be through effects on myelination and vascularization. Injury severity may influence the efficacy of EPO. Muscle Nerve 56: 143-151, 2017.


Assuntos
Eritropoetina/uso terapêutico , Recuperação de Função Fisiológica/efeitos dos fármacos , Neuropatia Ciática/tratamento farmacológico , Neuropatia Ciática/fisiopatologia , Análise de Variância , Animais , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Filamentos Intermediários/metabolismo , Filamentos Intermediários/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Proteína P0 da Mielina/metabolismo , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/patologia , Nervo Isquiático/ultraestrutura , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA