Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Spinal Cord ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491303

RESUMO

STUDY DESIGN: A three-arm randomized controlled trial. OBJECTIVES: To investigate the effects of the Wim Hof Method (WHM), with (WHM-C) and without cold exposure (WHM-NC), on mental and physical health in persons with chronic spinal cord injury (SCI). SETTING: Rehabilitation centre (assessments and once-weekly intervention sessions) and home-based (daily intervention sessions). METHODS: Sixty adults with chronic SCI will be randomised (1:1:1) to one of three groups: participants in the intervention groups (i.e., WHM-C and WHM-NC) will engage in a 7-week intervention, with one weekly practice session at the rehabilitation centre and a daily WHM session at home. WHM-NC will consist of breathing exercises and mindset, while participants in WHM-C will partake in breathing exercises, mindset and cold exposure. Participants allocated to usual care (UC) will not receive the WHM intervention. The primary outcome is mental health reported via the Mental Health Inventory (MHI)-5, while secondary outcomes include circulating inflammatory and metabolic marker concentration, pulmonary function, body composition, sleep quality, spasticity, chronic pain and psychological stress. ETHICS AND DISSEMINATION: Ethics approval has been obtained from the medical ethics committee of the Máxima Medical Centre (Veldhoven, the Netherlands; identifier: w22.069). If shown efficacious in improving mental health, as well as physical health, in persons with chronic SCI, the low cost and accessibility of the WHM allows it to be directly implemented in SCI rehabilitation. TRIAL REGISTRATION NUMBER: NCT05704322.

3.
Genet Med ; 25(10): 100927, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37422718

RESUMO

PURPOSE: The SF3B splicing complex is composed of SF3B1-6 and PHF5A. We report a developmental disorder caused by de novo variants in PHF5A. METHODS: Clinical, genomic, and functional studies using subject-derived fibroblasts and a heterologous cellular system were performed. RESULTS: We studied 9 subjects with congenital malformations, including preauricular tags and hypospadias, growth abnormalities, and developmental delay who had de novo heterozygous PHF5A variants, including 4 loss-of-function (LOF), 3 missense, 1 splice, and 1 start-loss variant. In subject-derived fibroblasts with PHF5A LOF variants, wild-type and variant PHF5A mRNAs had a 1:1 ratio, and PHF5A mRNA levels were normal. Transcriptome sequencing revealed alternative promoter use and downregulated genes involved in cell-cycle regulation. Subject and control fibroblasts had similar amounts of PHF5A with the predicted wild-type molecular weight and of SF3B1-3 and SF3B6. SF3B complex formation was unaffected in 2 subject cell lines. CONCLUSION: Our data suggest the existence of feedback mechanisms in fibroblasts with PHF5A LOF variants to maintain normal levels of SF3B components. These compensatory mechanisms in subject fibroblasts with PHF5A or SF3B4 LOF variants suggest disturbed autoregulation of mutated splicing factor genes in specific cell types, that is, neural crest cells, during embryonic development rather than haploinsufficiency as pathomechanism.


Assuntos
Anormalidades Craniofaciais , Hipospadia , Masculino , Humanos , Hipospadia/genética , Fatores de Processamento de RNA/genética , Splicing de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transativadores/genética , Proteínas de Ligação a RNA/genética
4.
Clin Genet ; 104(2): 186-197, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37165752

RESUMO

POU3F3 variants cause developmental delay, behavioral problems, hypotonia and dysmorphic features. We investigated the phenotypic and genetic landscape, and genotype-phenotype correlations in individuals with POU3F3-related disorders. We recruited unpublished individuals with POU3F3 variants through international collaborations and obtained updated clinical data on previously published individuals. Trio exome sequencing or single exome sequencing followed by segregation analysis were performed in the novel cohort. Functional effects of missense variants were investigated with 3D protein modeling. We included 28 individuals (5 previously published) from 26 families carrying POU3F3 variants; 23 de novo and one inherited from an affected parent. Median age at study inclusion was 7.4 years. All had developmental delay mainly affecting speech, behavioral difficulties, psychiatric comorbidities and dysmorphisms. Additional features included gastrointestinal comorbidities, hearing loss, ophthalmological anomalies, epilepsy, sleep disturbances and joint hypermobility. Autism, hearing and eye comorbidities, dysmorphisms were more common in individuals with truncating variants, whereas epilepsy was only associated with missense variants. In silico structural modeling predicted that all (likely) pathogenic variants destabilize the DNA-binding region of POU3F3. Our study refined the phenotypic and genetic landscape of POU3F3-related disorders, it reports the functional properties of the identified pathogenic variants, and delineates some genotype-phenotype correlations.


Assuntos
Transtorno Autístico , Epilepsia , Deficiência Intelectual , Humanos , Criança , Deficiência Intelectual/genética , Transtorno Autístico/genética , Fenótipo , Epilepsia/genética , Mutação de Sentido Incorreto/genética , Deficiências do Desenvolvimento/genética , Fatores do Domínio POU/genética
5.
Am J Hum Genet ; 110(6): 963-978, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37196654

RESUMO

De novo variants are a leading cause of neurodevelopmental disorders (NDDs), but because every monogenic NDD is different and usually extremely rare, it remains a major challenge to understand the complete phenotype and genotype spectrum of any morbid gene. According to OMIM, heterozygous variants in KDM6B cause "neurodevelopmental disorder with coarse facies and mild distal skeletal abnormalities." Here, by examining the molecular and clinical spectrum of 85 reported individuals with mostly de novo (likely) pathogenic KDM6B variants, we demonstrate that this description is inaccurate and potentially misleading. Cognitive deficits are seen consistently in all individuals, but the overall phenotype is highly variable. Notably, coarse facies and distal skeletal anomalies, as defined by OMIM, are rare in this expanded cohort while other features are unexpectedly common (e.g., hypotonia, psychosis, etc.). Using 3D protein structure analysis and an innovative dual Drosophila gain-of-function assay, we demonstrated a disruptive effect of 11 missense/in-frame indels located in or near the enzymatic JmJC or Zn-containing domain of KDM6B. Consistent with the role of KDM6B in human cognition, we demonstrated a role for the Drosophila KDM6B ortholog in memory and behavior. Taken together, we accurately define the broad clinical spectrum of the KDM6B-related NDD, introduce an innovative functional testing paradigm for the assessment of KDM6B variants, and demonstrate a conserved role for KDM6B in cognition and behavior. Our study demonstrates the critical importance of international collaboration, sharing of clinical data, and rigorous functional analysis of genetic variants to ensure correct disease diagnosis for rare disorders.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Animais , Fácies , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Fenótipo , Drosophila , Deficiência Intelectual/patologia , Histona Desmetilases com o Domínio Jumonji/genética
6.
Genet Med ; 25(1): 49-62, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36322151

RESUMO

PURPOSE: Pathogenic variants in genes involved in the epigenetic machinery are an emerging cause of neurodevelopment disorders (NDDs). Lysine-demethylase 2B (KDM2B) encodes an epigenetic regulator and mouse models suggest an important role during development. We set out to determine whether KDM2B variants are associated with NDD. METHODS: Through international collaborations, we collected data on individuals with heterozygous KDM2B variants. We applied methylation arrays on peripheral blood DNA samples to determine a KDM2B associated epigenetic signature. RESULTS: We recruited a total of 27 individuals with heterozygous variants in KDM2B. We present evidence, including a shared epigenetic signature, to support a pathogenic classification of 15 KDM2B variants and identify the CxxC domain as a mutational hotspot. Both loss-of-function and CxxC-domain missense variants present with a specific subepisignature. Moreover, the KDM2B episignature was identified in the context of a dual molecular diagnosis in multiple individuals. Our efforts resulted in a cohort of 21 individuals with heterozygous (likely) pathogenic variants. Individuals in this cohort present with developmental delay and/or intellectual disability; autism; attention deficit disorder/attention deficit hyperactivity disorder; congenital organ anomalies mainly of the heart, eyes, and urogenital system; and subtle facial dysmorphism. CONCLUSION: Pathogenic heterozygous variants in KDM2B are associated with NDD and a specific epigenetic signature detectable in peripheral blood.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Camundongos , Animais , Humanos , Metilação de DNA/genética , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , DNA , Mutação
7.
J Med Genet ; 60(4): 359-367, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36113987

RESUMO

PURPOSE: The Retriever subunit VPS35L is the third responsible gene for Ritscher-Schinzel syndrome (RSS) after WASHC5 and CCDC22. To date, only one pair of siblings have been reported and their condition was significantly more severe than typical RSS. This study aimed to understand the clinical spectrum and underlying molecular mechanism in VPS35L-associated RSS. METHODS: We report three new patients with biallelic VPS35L variants. Biochemical and cellular analyses were performed to elucidate disease aetiology. RESULTS: In addition to typical features of RSS, we confirmed hypercholesterolaemia, hypogammaglobulinaemia and intestinal lymphangiectasia as novel complications of VPS35L-associated RSS. The latter two complications as well as proteinuria have not been reported in patients with CCDC22 and WASHC5 variants. One patient showed a severe phenotype and the other two were milder. Cells established from patients with the milder phenotypes showed relatively higher VPS35L protein expression. Cellular analysis found VPS35L ablation decreased the cell surface level of lipoprotein receptor-related protein 1 and low-density lipoprotein receptor, resulting in reduced low-density lipoprotein cellular uptake. CONCLUSION: VPS35L-associated RSS is a distinct clinical entity with diverse phenotype and severity, with a possible molecular mechanism of hypercholesterolaemia. These findings provide new insight into the essential and distinctive role of Retriever in human development.


Assuntos
Anormalidades Múltiplas , Síndrome de Dandy-Walker , Comunicação Interatrial , Hipercolesterolemia , Humanos , Anormalidades Múltiplas/genética , Síndrome de Dandy-Walker/genética , Comunicação Interatrial/genética
9.
Front Pediatr ; 9: 651995, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277514

RESUMO

Objective: Developmental language delay (DLD) is one of the most common disabilities in childhood and can negatively affect a child's communication skills and academic and/or psychosocial development. To date, an increasing number of causative genes have been identified by diagnostic techniques like next generation sequencing. An early genetic diagnosis is important to properly prepare and counsel children and parents for possible future difficulties. Despite this, genetic assessment is usually not part of a standardized diagnostic set in children with developmental language delay. In this study, we aim to assess the diagnostic outcomes of children primarily assessed for speech and language delay who were subsequently referred for genetic etiological assessment. Methods: Medical records of children referred to the department of Otorhinolaryngology of the Wilhelmina Children's Hospital for diagnostic work-up for a suspected speech and language delay between June 2011 and December 2018 who were additionally referred to a geneticist were evaluated. Study parameters concerning medical history, behavioral problems, language development, intelligence, and hearing were recorded. Outcomes of genetic analysis were evaluated. Results: A total of 127 patients were diagnosed with a developmental language delay. Genetic analysis was conducted in 119 out of 127 patients with a language delay and eligible for this study. The median time between initial speech and language assessment and the first genetic consultation was 10 months (IQR 5.0-23.0). In 34 out of 127 patients a causative genetic diagnosis was found to explain their DLD. Conclusion: In approximately a quarter of the patients (26.8%) diagnosed with developmental language delay, a causative genetic diagnosis was confirmed. This demonstrates the opportunity to identify an underlying genetic etiology in children with developmental language delay. However, in order to optimize the diagnostic process and clinical care for these children, two important research gaps need to be addressed. First, research should focus on assessing the clinical impact and effect on treatment outcomes of a genetic diagnosis. Secondly, it is important to recognize for which children genetic testing is most beneficial.

10.
Am J Hum Genet ; 108(9): 1669-1691, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34314705

RESUMO

Transportin-2 (TNPO2) mediates multiple pathways including non-classical nucleocytoplasmic shuttling of >60 cargoes, such as developmental and neuronal proteins. We identified 15 individuals carrying de novo coding variants in TNPO2 who presented with global developmental delay (GDD), dysmorphic features, ophthalmologic abnormalities, and neurological features. To assess the nature of these variants, functional studies were performed in Drosophila. We found that fly dTnpo (orthologous to TNPO2) is expressed in a subset of neurons. dTnpo is critical for neuronal maintenance and function as downregulating dTnpo in mature neurons using RNAi disrupts neuronal activity and survival. Altering the activity and expression of dTnpo using mutant alleles or RNAi causes developmental defects, including eye and wing deformities and lethality. These effects are dosage dependent as more severe phenotypes are associated with stronger dTnpo loss. Interestingly, similar phenotypes are observed with dTnpo upregulation and ectopic expression of TNPO2, showing that loss and gain of Transportin activity causes developmental defects. Further, proband-associated variants can cause more or less severe developmental abnormalities compared to wild-type TNPO2 when ectopically expressed. The impact of the variants tested seems to correlate with their position within the protein. Specifically, those that fall within the RAN binding domain cause more severe toxicity and those in the acidic loop are less toxic. Variants within the cargo binding domain show tissue-dependent effects. In summary, dTnpo is an essential gene in flies during development and in neurons. Further, proband-associated de novo variants within TNPO2 disrupt the function of the encoded protein. Hence, TNPO2 variants are causative for neurodevelopmental abnormalities.


Assuntos
Deficiências do Desenvolvimento/genética , Proteínas de Drosophila/genética , Oftalmopatias Hereditárias/genética , Deficiência Intelectual/genética , Carioferinas/genética , Anormalidades Musculoesqueléticas/genética , beta Carioferinas/genética , Proteína ran de Ligação ao GTP/genética , Alelos , Sequência de Aminoácidos , Animais , Deficiências do Desenvolvimento/metabolismo , Deficiências do Desenvolvimento/patologia , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Oftalmopatias Hereditárias/metabolismo , Oftalmopatias Hereditárias/patologia , Feminino , Dosagem de Genes , Regulação da Expressão Gênica no Desenvolvimento , Genoma Humano , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Carioferinas/antagonistas & inibidores , Carioferinas/metabolismo , Masculino , Anormalidades Musculoesqueléticas/metabolismo , Anormalidades Musculoesqueléticas/patologia , Mutação , Neurônios/metabolismo , Neurônios/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Sequenciamento Completo do Genoma , beta Carioferinas/metabolismo , Proteína ran de Ligação ao GTP/metabolismo
11.
Epilepsia ; 62(7): e103-e109, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34041744

RESUMO

CSNK2B has recently been implicated as a disease gene for neurodevelopmental disability (NDD) and epilepsy. Information about developmental outcomes has been limited by the young age and short follow-up for many of the previously reported cases, and further delineation of the spectrum of associated phenotypes is needed. We present 25 new patients with variants in CSNK2B and refine the associated NDD and epilepsy phenotypes. CSNK2B variants were identified by research or clinical exome sequencing, and investigators from different centers were connected via GeneMatcher. Most individuals had developmental delay and generalized epilepsy with onset in the first 2 years. However, we found a broad spectrum of phenotypic severity, ranging from early normal development with pharmacoresponsive seizures to profound intellectual disability with intractable epilepsy and recurrent refractory status epilepticus. These findings suggest that CSNK2B should be considered in the diagnostic evaluation of patients with a broad range of NDD with treatable or intractable seizures.


Assuntos
Deficiências do Desenvolvimento/genética , Epilepsia Generalizada/genética , Adolescente , Adulto , Idade de Início , Criança , Pré-Escolar , Deficiências do Desenvolvimento/fisiopatologia , Epilepsias Mioclônicas/diagnóstico , Epilepsias Mioclônicas/etiologia , Epilepsias Mioclônicas/genética , Epilepsia Generalizada/diagnóstico , Epilepsia Generalizada/etiologia , Exoma/genética , Feminino , Variação Genética , Humanos , Lactente , Deficiência Intelectual/etiologia , Deficiência Intelectual/genética , Masculino , Mutação/genética , Fenótipo , Estado Epiléptico/diagnóstico , Estado Epiléptico/etiologia , Estado Epiléptico/genética , Adulto Jovem
12.
Am J Hum Genet ; 108(6): 1053-1068, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33909990

RESUMO

Truncating variants in exons 33 and 34 of the SNF2-related CREBBP activator protein (SRCAP) gene cause the neurodevelopmental disorder (NDD) Floating-Harbor syndrome (FLHS), characterized by short stature, speech delay, and facial dysmorphism. Here, we present a cohort of 33 individuals with clinical features distinct from FLHS and truncating (mostly de novo) SRCAP variants either proximal (n = 28) or distal (n = 5) to the FLHS locus. Detailed clinical characterization of the proximal SRCAP individuals identified shared characteristics: developmental delay with or without intellectual disability, behavioral and psychiatric problems, non-specific facial features, musculoskeletal issues, and hypotonia. Because FLHS is known to be associated with a unique set of DNA methylation (DNAm) changes in blood, a DNAm signature, we investigated whether there was a distinct signature associated with our affected individuals. A machine-learning model, based on the FLHS DNAm signature, negatively classified all our tested subjects. Comparing proximal variants with typically developing controls, we identified a DNAm signature distinct from the FLHS signature. Based on the DNAm and clinical data, we refer to the condition as "non-FLHS SRCAP-related NDD." All five distal variants classified negatively using the FLHS DNAm model while two classified positively using the proximal model. This suggests divergent pathogenicity of these variants, though clinically the distal group presented with NDD, similar to the proximal SRCAP group. In summary, for SRCAP, there is a clear relationship between variant location, DNAm profile, and clinical phenotype. These results highlight the power of combined epigenetic, molecular, and clinical studies to identify and characterize genotype-epigenotype-phenotype correlations.


Assuntos
Anormalidades Múltiplas/patologia , Adenosina Trifosfatases/genética , Anormalidades Craniofaciais/patologia , Metilação de DNA , Epigênese Genética , Transtornos do Crescimento/patologia , Comunicação Interventricular/patologia , Mutação , Transtornos do Neurodesenvolvimento/patologia , Fenótipo , Anormalidades Múltiplas/genética , Estudos de Casos e Controles , Estudos de Coortes , Anormalidades Craniofaciais/genética , Feminino , Predisposição Genética para Doença , Transtornos do Crescimento/genética , Comunicação Interventricular/genética , Humanos , Recém-Nascido , Masculino , Transtornos do Neurodesenvolvimento/genética
13.
Eur J Hum Genet ; 29(9): 1384-1395, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33594261

RESUMO

Decreased or increased activity of potassium channels caused by loss-of-function and gain-of-function (GOF) variants in the corresponding genes, respectively, underlies a broad spectrum of human disorders affecting the central nervous system, heart, kidney, and other organs. While the association of epilepsy and intellectual disability (ID) with variants affecting function in genes encoding potassium channels is well known, GOF missense variants in K+ channel encoding genes in individuals with syndromic developmental disorders have only recently been recognized. These syndromic phenotypes include Zimmermann-Laband and Temple-Baraitser syndromes, caused by dominant variants in KCNH1, FHEIG syndrome due to dominant variants in KCNK4, and the clinical picture associated with dominant variants in KCNN3. Here we review the presentation of these individuals, including five newly reported with variants in KCNH1 and three additional individuals with KCNN3 variants, all variants likely affecting function. There is notable overlap in the phenotypic findings of these syndromes associated with dominant KCNN3, KCNH1, and KCNK4 variants, sharing developmental delay and/or ID, coarse facial features, gingival enlargement, distal digital hypoplasia, and hypertrichosis. We suggest to combine the phenotypes and define a new subgroup of potassium channelopathies caused by increased K+ conductance, referred to as syndromic neurodevelopmental K+ channelopathies due to dominant variants in KCNH1, KCNK4, or KCNN3.


Assuntos
Anormalidades Múltiplas/genética , Canalopatias/genética , Anormalidades Craniofaciais/genética , Canais de Potássio Éter-A-Go-Go/genética , Fibromatose Gengival/genética , Mutação com Ganho de Função , Hallux/anormalidades , Deformidades Congênitas da Mão/genética , Deficiência Intelectual/genética , Unhas Malformadas/genética , Canais de Potássio/genética , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética , Polegar/anormalidades , Anormalidades Múltiplas/patologia , Adolescente , Adulto , Canalopatias/patologia , Criança , Anormalidades Craniofaciais/patologia , Feminino , Fibromatose Gengival/patologia , Hallux/patologia , Deformidades Congênitas da Mão/patologia , Humanos , Deficiência Intelectual/patologia , Masculino , Unhas Malformadas/patologia , Fenótipo , Polegar/patologia
14.
Am J Hum Genet ; 108(1): 186-193, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33417887

RESUMO

POLR3B encodes the second-largest catalytic subunit of RNA polymerase III, an enzyme involved in transcription. Bi-allelic pathogenic variants in POLR3B are a well-established cause of hypomyelinating leukodystrophy. We describe six unrelated individuals with de novo missense variants in POLR3B and a clinical presentation substantially different from POLR3-related leukodystrophy. These individuals had afferent ataxia, spasticity, variable intellectual disability and epilepsy, and predominantly demyelinating sensory motor peripheral neuropathy. Protein modeling and proteomic analysis revealed a distinct mechanism of pathogenicity; the de novo POLR3B variants caused aberrant association of individual enzyme subunits rather than affecting overall enzyme assembly or stability. We expand the spectrum of disorders associated with pathogenic variants in POLR3B to include a de novo heterozygous POLR3B-related disorder.


Assuntos
Ataxia/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , RNA Polimerase III/genética , Adolescente , Adulto , Ataxia Cerebelar/genética , Criança , Pré-Escolar , Feminino , Genes Recessivos/genética , Heterozigoto , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Proteômica/métodos , Adulto Jovem
15.
Genome Med ; 11(1): 79, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31801603

RESUMO

BACKGROUND: Genomic structural variants (SVs) can affect many genes and regulatory elements. Therefore, the molecular mechanisms driving the phenotypes of patients carrying de novo SVs are frequently unknown. METHODS: We applied a combination of systematic experimental and bioinformatic methods to improve the molecular diagnosis of 39 patients with multiple congenital abnormalities and/or intellectual disability harboring apparent de novo SVs, most with an inconclusive diagnosis after regular genetic testing. RESULTS: In 7 of these cases (18%), whole-genome sequencing analysis revealed disease-relevant complexities of the SVs missed in routine microarray-based analyses. We developed a computational tool to predict the effects on genes directly affected by SVs and on genes indirectly affected likely due to the changes in chromatin organization and impact on regulatory mechanisms. By combining these functional predictions with extensive phenotype information, candidate driver genes were identified in 16/39 (41%) patients. In 8 cases, evidence was found for the involvement of multiple candidate drivers contributing to different parts of the phenotypes. Subsequently, we applied this computational method to two cohorts containing a total of 379 patients with previously detected and classified de novo SVs and identified candidate driver genes in 189 cases (50%), including 40 cases whose SVs were previously not classified as pathogenic. Pathogenic position effects were predicted in 28% of all studied cases with balanced SVs and in 11% of the cases with copy number variants. CONCLUSIONS: These results demonstrate an integrated computational and experimental approach to predict driver genes based on analyses of WGS data with phenotype association and chromatin organization datasets. These analyses nominate new pathogenic loci and have strong potential to improve the molecular diagnosis of patients with de novo SVs.


Assuntos
Estudos de Associação Genética , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Predisposição Genética para Doença , Variação Genética , Fenótipo , Biologia Computacional/métodos , Variações do Número de Cópias de DNA , Genoma Humano , Variação Estrutural do Genoma , Humanos , Anotação de Sequência Molecular , Sequenciamento Completo do Genoma
16.
Am J Hum Genet ; 105(3): 640-657, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31402090

RESUMO

The identification of genetic variants implicated in human developmental disorders has been revolutionized by second-generation sequencing combined with international pooling of cases. Here, we describe seven individuals who have diverse yet overlapping developmental anomalies, and who all have de novo missense FBXW11 variants identified by whole exome or whole genome sequencing and not reported in the gnomAD database. Their phenotypes include striking neurodevelopmental, digital, jaw, and eye anomalies, and in one individual, features resembling Noonan syndrome, a condition caused by dysregulated RAS signaling. FBXW11 encodes an F-box protein, part of the Skp1-cullin-F-box (SCF) ubiquitin ligase complex, involved in ubiquitination and proteasomal degradation and thus fundamental to many protein regulatory processes. FBXW11 targets include ß-catenin and GLI transcription factors, key mediators of Wnt and Hh signaling, respectively, critical to digital, neurological, and eye development. Structural analyses indicate affected residues cluster at the surface of the loops of the substrate-binding domain of FBXW11, and the variants are predicted to destabilize the protein and/or its interactions. In situ hybridization studies on human and zebrafish embryonic tissues demonstrate FBXW11 is expressed in the developing eye, brain, mandibular processes, and limb buds or pectoral fins. Knockdown of the zebrafish FBXW11 orthologs fbxw11a and fbxw11b resulted in embryos with smaller, misshapen, and underdeveloped eyes and abnormal jaw and pectoral fin development. Our findings support the role of FBXW11 in multiple developmental processes, including those involving the brain, eye, digits, and jaw.


Assuntos
Encéfalo/anormalidades , Anormalidades do Olho/genética , Dedos/anormalidades , Mutação de Sentido Incorreto , Fenótipo , Ubiquitina-Proteína Ligases/genética , Proteínas Contendo Repetições de beta-Transducina/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Masculino
17.
Am J Hum Genet ; 104(4): 709-720, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30905399

RESUMO

The Mediator is an evolutionarily conserved, multi-subunit complex that regulates multiple steps of transcription. Mediator activity is regulated by the reversible association of a four-subunit module comprising CDK8 or CDK19 kinases, together with cyclin C, MED12 or MED12L, and MED13 or MED13L. Mutations in MED12, MED13, and MED13L were previously identified in syndromic developmental disorders with overlapping phenotypes. Here, we report CDK8 mutations (located at 13q12.13) that cause a phenotypically related disorder. Using whole-exome or whole-genome sequencing, and by international collaboration, we identified eight different heterozygous missense CDK8 substitutions, including 10 shown to have arisen de novo, in 12 unrelated subjects; a recurrent mutation, c.185C>T (p.Ser62Leu), was present in five individuals. All predicted substitutions localize to the ATP-binding pocket of the kinase domain. Affected individuals have overlapping phenotypes characterized by hypotonia, mild to moderate intellectual disability, behavioral disorders, and variable facial dysmorphism. Congenital heart disease occurred in six subjects; additional features present in multiple individuals included agenesis of the corpus callosum, ano-rectal malformations, seizures, and hearing or visual impairments. To evaluate the functional impact of the mutations, we measured phosphorylation at STAT1-Ser727, a known CDK8 substrate, in a CDK8 and CDK19 CRISPR double-knockout cell line transfected with wild-type (WT) or mutant CDK8 constructs. These experiments demonstrated a reduction in STAT1 phosphorylation by all mutants, in most cases to a similar extent as in a kinase-dead control. We conclude that missense mutations in CDK8 cause a developmental disorder that has phenotypic similarity to syndromes associated with mutations in other subunits of the Mediator kinase module, indicating probable overlap in pathogenic mechanisms.


Assuntos
Quinase 8 Dependente de Ciclina/genética , Deficiências do Desenvolvimento/genética , Complexo Mediador/genética , Mutação de Sentido Incorreto , Encéfalo/anormalidades , Criança , Pré-Escolar , Ciclina C/genética , Quinases Ciclina-Dependentes/genética , Exoma , Feminino , Cardiopatias Congênitas/genética , Heterozigoto , Humanos , Lactente , Deficiência Intelectual/genética , Masculino , Mutação , Fenótipo , Fosforilação , Síndrome
18.
Eur J Hum Genet ; 27(7): 1101-1112, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30850703

RESUMO

We aimed to identify novel deletions and variants of TP63 associated with orofacial clefting (OFC). Copy number variants were assessed in three OFC families using microarray analysis. Subsequently, we analyzed TP63 in a cohort of 1072 individuals affected with OFC and 706 population-based controls using molecular inversion probes (MIPs). We identified partial deletions of TP63 in individuals from three families affected with OFC. In the OFC cohort, we identified several TP63 variants predicting to cause loss-of-function alleles, including a frameshift variant c.569_576del (p.(Ala190Aspfs*5)) and a nonsense variant c.997C>T (p.(Gln333*)) that introduces a premature stop codon in the DNA-binding domain. In addition, we identified the first missense variants in the oligomerization domain c.1213G>A (p.(Val405Met)), which occurred in individuals with OFC. This variant was shown to abrogate oligomerization of mutant p63 protein into oligomeric complexes, and therefore likely represents a loss-of-function allele rather than a dominant-negative. All of these variants were inherited from an unaffected parent, suggesting reduced penetrance of such loss-of-function alleles. Our data indicate that loss-of-function alleles in TP63 can also give rise to OFC as the main phenotype. We have uncovered the dosage-dependent functions of p63, which were previously rejected.


Assuntos
Alelos , Sequência de Bases , Fenda Labial/genética , Fissura Palatina/genética , Mutação com Perda de Função , Deleção de Sequência , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Adulto , Substituição de Aminoácidos , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto
19.
Eur J Hum Genet ; 27(5): 738-746, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30679813

RESUMO

Determining pathogenicity of genomic variation identified by next-generation sequencing techniques can be supported by recurrent disruptive variants in the same gene in phenotypically similar individuals. However, interpretation of novel variants in a specific gene in individuals with mild-moderate intellectual disability (ID) without recognizable syndromic features can be challenging and reverse phenotyping is often required. We describe 24 individuals with a de novo disease-causing variant in, or partial deletion of, the F-box only protein 11 gene (FBXO11, also known as VIT1 and PRMT9). FBXO11 is part of the SCF (SKP1-cullin-F-box) complex, a multi-protein E3 ubiquitin-ligase complex catalyzing the ubiquitination of proteins destined for proteasomal degradation. Twenty-two variants were identified by next-generation sequencing, comprising 2 in-frame deletions, 11 missense variants, 1 canonical splice site variant, and 8 nonsense or frameshift variants leading to a truncated protein or degraded transcript. The remaining two variants were identified by array-comparative genomic hybridization and consisted of a partial deletion of FBXO11. All individuals had borderline to severe ID and behavioral problems (autism spectrum disorder, attention-deficit/hyperactivity disorder, anxiety, aggression) were observed in most of them. The most relevant common facial features included a thin upper lip and a broad prominent space between the paramedian peaks of the upper lip. Other features were hypotonia and hyperlaxity of the joints. We show that de novo variants in FBXO11 cause a syndromic form of ID. The current series show the power of reverse phenotyping in the interpretation of novel genetic variances in individuals who initially did not appear to have a clear recognizable phenotype.


Assuntos
Anormalidades Múltiplas/genética , Comportamento , Proteínas F-Box/genética , Variação Genética , Deficiência Intelectual/genética , Proteína-Arginina N-Metiltransferases/genética , Deleção de Genes , Humanos , Síndrome
20.
Eur J Hum Genet ; 27(2): 278-290, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30291340

RESUMO

Deletions on chromosome 15q14 are a known chromosomal cause of cleft palate, typically co-occurring with intellectual disability, facial dysmorphism, and congenital heart defects. The identification of patients with loss-of-function variants in MEIS2, a gene within this deletion, suggests that these features are attributed to haploinsufficiency of MEIS2. To further delineate the phenotypic spectrum of the MEIS2-related syndrome, we collected 23 previously unreported patients with either a de novo sequence variant in MEIS2 (9 patients), or a 15q14 microdeletion affecting MEIS2 (14 patients). All but one de novo MEIS2 variant were identified by whole-exome sequencing. One variant was found by targeted sequencing of MEIS2 in a girl with a clinical suspicion of this syndrome. In addition to the triad of palatal defects, heart defects, and developmental delay, heterozygous loss of MEIS2 results in recurrent facial features, including thin and arched eyebrows, short alae nasi, and thin vermillion. Genotype-phenotype comparison between patients with 15q14 deletions and patients with sequence variants or intragenic deletions within MEIS2, showed a higher prevalence of moderate-to-severe intellectual disability in the former group, advocating for an independent locus for psychomotor development neighboring MEIS2.


Assuntos
Fissura Palatina/genética , Cardiopatias Congênitas/genética , Proteínas de Homeodomínio/genética , Deficiência Intelectual/genética , Mutação com Perda de Função , Fatores de Transcrição/genética , Adolescente , Criança , Pré-Escolar , Fissura Palatina/patologia , Feminino , Cardiopatias Congênitas/patologia , Heterozigoto , Proteínas de Homeodomínio/metabolismo , Humanos , Deficiência Intelectual/patologia , Masculino , Fenótipo , Síndrome , Fatores de Transcrição/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA