Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Front Immunol ; 15: 1297893, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38504977

RESUMO

Introduction: Atherosclerosis is a lipid-driven inflammatory disease of the arterial wall, and the underlying cause of the majority of cardiovascular diseases. Recent advances in high-parametric immunophenotyping of immune cells indicate that T cells constitute the major leukocyte population in the atherosclerotic plaque. The E3 ubiquitin ligase Casitas B-lymphoma proto-oncogene-B (CBL-B) is a critical intracellular regulator that sets the threshold for T cell activation, making CBL-B a potential therapeutic target to modulate inflammation in atherosclerosis. We previously demonstrated that complete knock-out of CBL-B aggravated atherosclerosis in Apoe-/- mice, which was attributed to increased macrophage recruitment and increased CD8+ T cell activation in the plaque. Methods: To further study the T cell specific role of CBL-B in atherosclerosis, Apoe-/- CD4cre Cblb fl/fl (Cbl-bcKO) mice and Apoe-/-CD4WTCblbfl/fl littermates (Cbl-bfl/fl) were fed a high cholesterol diet for ten weeks. Results: Cbl-bcKO mice had smaller atherosclerotic lesions in the aortic arch and root compared to Cbl-bfl/fl, and a substantial increase in CD3+ T cells in the plaque. Collagen content in the plaque was decreased, while other plaque characteristics including plaque necrotic core, macrophage content, and smooth muscle cell content, remained unchanged. Mice lacking T cell CBL-B had a 1.4-fold increase in CD8+ T cells and a 1.8-fold increase in regulatory T cells in the spleen. Splenic CD4+ and CD8+ T cells had increased expression of C-X-C Motif Chemokine Receptor 3 (CXCR3) and interferon-γ (IFN-γ), indicating a T helper 1 (Th1)-like/effector CD8+ T cell-like phenotype. Conclusion: In conclusion, Cbl-bcKO mice have reduced atherosclerosis but show increased T cell accumulation in the plaque accompanied by systemic T cell activation.


Assuntos
Aterosclerose , Linfoma , Placa Aterosclerótica , Animais , Camundongos , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Linfócitos T CD8-Positivos , Camundongos Knockout , Placa Aterosclerótica/patologia , Proteínas Proto-Oncogênicas c-cbl/genética , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
2.
Redox Biol ; 70: 103054, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38309122

RESUMO

Inflammatory macrophages are key drivers of atherosclerosis that can induce rupture-prone vulnerable plaques. Skewing the plaque macrophage population towards a more protective phenotype and reducing the occurrence of clinical events is thought to be a promising method of treating atherosclerotic patients. In the current study, we investigate the immunomodulatory properties of itaconate, an immunometabolite derived from the TCA cycle intermediate cis-aconitate and synthesised by the enzyme Aconitate Decarboxylase 1 (ACOD1, also known as IRG1), in the context of atherosclerosis. Ldlr-/- atherogenic mice transplanted with Acod1-/- bone marrow displayed a more stable plaque phenotype with smaller necrotic cores and showed increased recruitment of monocytes to the vessel intima. Macrophages from Acod1-/- mice contained more lipids whilst also displaying reduced induction of apoptosis. Using multi-omics approaches, we identify a metabolic shift towards purine metabolism, in addition to an altered glycolytic flux towards production of glycerol for triglyceride synthesis. Overall, our data highlight the potential of therapeutically blocking ACOD1 with the aim of stabilizing atherosclerotic plaques.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Animais , Camundongos , Placa Aterosclerótica/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo , Succinatos/farmacologia , Macrófagos/metabolismo
3.
Front Cardiovasc Med ; 10: 1171764, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215541

RESUMO

Background: Atherosclerosis is the underlying cause of many cardiovascular diseases, such as myocardial infarction or stroke. B cells, and their production of pro- and anti-atherogenic antibodies, play an important role in atherosclerosis. In B cells, TRAF2 and NCK-interacting Kinase (TNIK), a germinal center kinase, was shown to bind to TNF-receptor associated factor 6 (TRAF6), and to be involved in JNK and NF-κB signaling in human B cells, a pathway associated with antibody production. Objective: We here investigate the role of TNIK-deficient B cells in atherosclerosis. Results: ApoE-/-TNIKfl/fl (TNIKBWT) and ApoE-/-TNIKfl/flCD19-cre (TNIKBKO) mice received a high cholesterol diet for 10 weeks. Atherosclerotic plaque area did not differ between TNIKBKO and TNIKBWT mice, nor was there any difference in plaque necrotic core, macrophage, T cell, α-SMA and collagen content. B1 and B2 cell numbers did not change in TNIKBKO mice, and marginal zone, follicular or germinal center B cells were unaffected. Total IgM and IgG levels, as well as oxidation specific epitope (OSE) IgM and IgG levels, did not change in absence of B cell TNIK. In contrast, plasma IgA levels were decreased in TNIKBKO mice, whereas the number of IgA+ B cells in intestinal Peyer's patches increased. No effects could be detected on T cell or myeloid cell numbers or subsets. Conclusion: We here conclude that in hyperlipidemic ApoE-/- mice, B cell specific TNIK deficiency does not affect atherosclerosis.

4.
Cell Rep ; 41(8): 111703, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36417856

RESUMO

Macrophages are critical immune cells in inflammatory diseases, and their differentiation and function are tightly regulated by histone modifications. H3K79 methylation is a histone modification associated with active gene expression, and DOT1L is the only histone methyltransferase for H3K79. Here we determine the role of DOT1L in macrophages by applying a selective DOT1L inhibitor in mouse and human macrophages and using myeloid-specific Dot1l-deficient mice. We found that DOT1L directly regulates macrophage function by controlling lipid biosynthesis gene programs including central lipid regulators like sterol regulatory element-binding proteins SREBP1 and SREBP2. DOT1L inhibition also leads to macrophage hyperactivation, which is associated with disrupted SREBP pathways. In vivo, myeloid Dot1l deficiency reduces atherosclerotic plaque stability and increases the activation of inflammatory plaque macrophages. Our data show that DOT1L is a crucial regulator of macrophage inflammatory responses and lipid regulatory pathways and suggest a high relevance of H3K79 methylation in inflammatory disease.


Assuntos
Histona-Lisina N-Metiltransferase , Placa Aterosclerótica , Humanos , Camundongos , Animais , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Macrófagos/metabolismo , Lipídeos
5.
Front Cardiovasc Med ; 9: 829877, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35224060

RESUMO

Macrophages are critical components of atherosclerotic lesions and their pro- and anti-inflammatory responses influence atherogenesis. Type-I interferons (IFNs) are cytokines that play an essential role in antiviral responses and inflammatory activation and have been shown to promote atherosclerosis. Although the impact of type-I IFNs on macrophage foam cell formation is well-documented, the effect of lipid accumulation in monocytes and macrophages on type-I IFN responses remains unknown. Here we examined IFN stimulated (ISG) and non-ISG inflammatory gene expression in mouse and human macrophages that were loaded with acetylated LDL (acLDL), as a model for foam cell formation. We found that acLDL loading in mouse and human macrophages specifically suppressed expression of ISGs and IFN-ß secretion, but not other pro-inflammatory genes. The down regulation of ISGs could be rescued by exogenous IFN-ß supplementation. Activation of the cholesterol-sensing nuclear liver X receptor (LXR) recapitulated the cholesterol-initiated type-I IFN suppression. Additional analyses of murine in vitro and in vivo generated foam cells confirmed the suppressed IFN signaling pathways and suggest that this phenotype is mediated via down regulation of interferon regulatory factor binding at gene promoters. Finally, RNA-seq analysis of monocytes of familial hypercholesterolemia (FH) patients also showed type-I IFN suppression which was restored by lipid-lowering therapy and not present in monocytes of healthy donors. Taken together, we define type-I IFN suppression as an athero-protective characteristic of foamy macrophages. These data provide new insights into the mechanisms that control inflammatory responses in hyperlipidaemic settings and can support future therapeutic approaches focusing on reprogramming of macrophages to reduce atherosclerotic plaque progression and improve stability.

6.
Sci Transl Med ; 13(596)2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-33979301

RESUMO

Patients diagnosed with coronavirus disease 2019 (COVID-19) become critically ill primarily around the time of activation of the adaptive immune response. Here, we provide evidence that antibodies play a role in the worsening of disease at the time of seroconversion. We show that early-phase severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) spike protein-specific immunoglobulin G (IgG) in serum of critically ill COVID-19 patients induces excessive inflammatory responses by human alveolar macrophages. We identified that this excessive inflammatory response is dependent on two antibody features that are specific for patients with severe COVID-19. First, inflammation is driven by high titers of anti-spike IgG, a hallmark of severe disease. Second, we found that anti-spike IgG from patients with severe COVID-19 is intrinsically more proinflammatory because of different glycosylation, particularly low fucosylation, of the antibody Fc tail. Low fucosylation of anti-spike IgG was normalized in a few weeks after initial infection with SARS-CoV-2, indicating that the increased antibody-dependent inflammation mainly occurs at the time of seroconversion. We identified Fcγ receptor (FcγR) IIa and FcγRIII as the two primary IgG receptors that are responsible for the induction of key COVID-19-associated cytokines such as interleukin-6 and tumor necrosis factor. In addition, we show that anti-spike IgG-activated human macrophages can subsequently break pulmonary endothelial barrier integrity and induce microvascular thrombosis in vitro. Last, we demonstrate that the inflammatory response induced by anti-spike IgG can be specifically counteracted by fostamatinib, an FDA- and EMA-approved therapeutic small-molecule inhibitor of Syk kinase.


Assuntos
Anticorpos Antivirais/química , COVID-19/imunologia , Imunoglobulina G/química , Macrófagos Alveolares/imunologia , Glicosilação , Humanos , Inflamação , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/imunologia
7.
Int J Mol Sci ; 22(4)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562500

RESUMO

Fibrosis is a hallmark of adverse cardiac remodeling, which promotes heart failure, but it is also an essential repair mechanism to prevent cardiac rupture, signifying the importance of appropriate regulation of this process. In the remodeling heart, cardiac fibroblasts (CFs) differentiate into myofibroblasts (MyoFB), which are the key mediators of the fibrotic response. Additionally, cardiomyocytes are involved by providing pro-fibrotic cues. Nuclear receptor Nur77 is known to reduce cardiac hypertrophy and associated fibrosis; however, the exact function of Nur77 in the fibrotic response is yet unknown. Here, we show that Nur77-deficient mice exhibit severe myocardial wall thinning, rupture and reduced collagen fiber density after myocardial infarction and chronic isoproterenol (ISO) infusion. Upon Nur77 knockdown in cultured rat CFs, expression of MyoFB markers and extracellular matrix proteins is reduced after stimulation with ISO or transforming growth factor-ß (TGF-ß). Accordingly, Nur77-depleted CFs produce less collagen and exhibit diminished proliferation and wound closure capacity. Interestingly, Nur77 knockdown in neonatal rat cardiomyocytes results in increased paracrine induction of MyoFB differentiation, which was blocked by TGF-ß receptor antagonism. Taken together, Nur77-mediated regulation involves CF-intrinsic promotion of CF-to-MyoFB transition and inhibition of cardiomyocyte-driven paracrine TGF-ß-mediated MyoFB differentiation. As such, Nur77 provides distinct, cell-specific regulation of cardiac fibrosis.


Assuntos
Cardiomiopatias/metabolismo , Miócitos Cardíacos/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Animais , Cardiomiopatias/genética , Cardiomiopatias/patologia , Células Cultivadas , Colágeno/metabolismo , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Técnicas de Silenciamento de Genes , Ruptura Cardíaca/genética , Ruptura Cardíaca/metabolismo , Ruptura Cardíaca/patologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Knockout para ApoE , Modelos Cardiovasculares , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/patologia , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/antagonistas & inibidores , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/deficiência , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Ratos , Fator de Crescimento Transformador beta/metabolismo , Remodelação Ventricular/genética , Remodelação Ventricular/fisiologia
8.
Nat Commun ; 11(1): 6296, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33293558

RESUMO

Macrophages represent a major immune cell population in atherosclerotic plaques and play central role in the progression of this lipid-driven chronic inflammatory disease. Targeting immunometabolism is proposed as a strategy to revert aberrant macrophage activation to improve disease outcome. Here, we show ATP citrate lyase (Acly) to be activated in inflammatory macrophages and human atherosclerotic plaques. We demonstrate that myeloid Acly deficiency induces a stable plaque phenotype characterized by increased collagen deposition and fibrous cap thickness, along with a smaller necrotic core. In-depth functional, lipidomic, and transcriptional characterization indicate deregulated fatty acid and cholesterol biosynthesis and reduced liver X receptor activation within the macrophages in vitro. This results in macrophages that are more prone to undergo apoptosis, whilst maintaining their capacity to phagocytose apoptotic cells. Together, our results indicate that targeting macrophage metabolism improves atherosclerosis outcome and we reveal Acly as a promising therapeutic target to stabilize atherosclerotic plaques.


Assuntos
ATP Citrato (pro-S)-Liase/deficiência , Macrófagos/metabolismo , Placa Aterosclerótica/imunologia , ATP Citrato (pro-S)-Liase/antagonistas & inibidores , ATP Citrato (pro-S)-Liase/genética , Idoso , Animais , Apoptose/imunologia , Colesterol/biossíntese , Colágeno/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Ácidos Graxos/biossíntese , Feminino , Fibrose , Perfilação da Expressão Gênica , Humanos , Lipidômica , Lipogênese/imunologia , Receptores X do Fígado/metabolismo , Ativação de Macrófagos , Macrófagos/imunologia , Masculino , Camundongos Knockout , Necrose/imunologia , Necrose/patologia , Fagocitose , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/patologia
9.
BMJ Open Diabetes Res Care ; 7(1): e000751, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798899

RESUMO

Introduction: Obesity is recognized as a risk factor for various microbial infections. The immune system, which is affected by obesity, plays an important role in the pathophysiology of these infections and other obesity-related comorbidities. Weight loss is considered the most obvious treatment for obesity. However, multiple studies suggest that the comorbidities of obesity may persist after weight loss. Deregulation of immune cells including adipose tissue macrophages of obese individuals has been extensively studied, but how obesity and subsequent weight loss affect immune cell function outside adipose tissue is not well defined. Research design and methods: Here we investigated the phenotype of non-adipose tissue macrophages by transcriptional characterization of thioglycollate-elicited peritoneal macrophages (PM) from mice with diet-induced obesity and type 2 diabetes (T2D). Subsequently, we defined the characteristics of PMs after weight loss and mimicked a bacterial infection by exposing PMs to lipopolysaccharide. Results and conclusions: In contrast to the proinflammatory phenotype of adipose tissue macrophages in obesity and T2D, we found a deactivated state of PMs in obesity and T2D. Weight loss could reverse this deactivated macrophage phenotype. Anti-inflammatory characteristics of these non-adipose macrophages may explain why patients with obesity and T2D have an impaired immune response against pathogens. Our data also suggest that losing weight restores macrophage function and thus contributes to the reduction of immune-related comorbidities in patients.


Assuntos
Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 2/imunologia , Imunidade Celular/fisiologia , Macrófagos Peritoneais/imunologia , Obesidade/imunologia , Redução de Peso/fisiologia , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/terapia , Dieta Hiperlipídica , Gorduras na Dieta/farmacologia , Imunidade Celular/efeitos dos fármacos , Resistência à Insulina/fisiologia , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/fisiologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/complicações , Obesidade/patologia , Obesidade/terapia , Redução de Peso/imunologia
10.
Front Pharmacol ; 10: 1242, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31736752

RESUMO

Monocytes and macrophages are key drivers in the pathogenesis of inflammatory diseases. Epigenetic targets have been shown to control the transcriptional profile and phenotype of these cells. Since histone deacetylase protein inhibitors demonstrate profound anti-inflammatory activity, we wanted to test whether HDAC inhibition within monocytes and macrophages could be applied to suppress inflammation in vivo. ESM technology conjugates an esterase-sensitive motif (ESM) onto small molecules to allow targeting of cells that express carboxylesterase 1 (CES1), such as mononuclear myeloid cells. This study utilized an ESM-HDAC inhibitor to target monocytes and macrophages in mice in both an acute response model and an atherosclerosis model. We demonstrate that the molecule blocks the maturation of peritoneal macrophages and inhibits pro-inflammatory cytokine production in both models but to a lesser extent in the atherosclerosis model. Despite regulating the inflammatory response, ESM-HDAC528 did not significantly affect plaque size or phenotype, although histological classification of the plaques demonstrated a significant shift to a less severe phenotype. We hereby show that HDAC inhibition in myeloid cells impairs the maturation and activation of peritoneal macrophages but shows limited efficacy in a model of atherosclerosis.

11.
Diabetes ; 68(12): 2223-2234, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31578192

RESUMO

Obesity is taking on worldwide epidemic proportions, yet effective pharmacological agents with long-term efficacy remain unavailable. Previously, we designed the iminosugar N-adamantine-methyloxypentyl-deoxynojirimycin (AMP-DNM), which potently improves glucose homeostasis by lowering excessive glycosphingolipids. Here we show that AMP-DNM promotes satiety and activates brown adipose tissue (BAT) in obese rodents. Moreover, we demonstrate that the mechanism mediating these favorable actions depends on oral, but not central, administration of AMP-DNM, which ultimately stimulates systemic glucagon-like peptide 1 (GLP1) secretion. We evidence an essential role of brain GLP1 receptors (GLP1r), as AMP-DNM fails to promote satiety and activate BAT in mice lacking the brain GLP1r as well as in mice treated intracerebroventricularly with GLP1r antagonist exendin-9. In conclusion, AMP-DNM markedly ameliorates metabolic abnormalities in obese rodents by restoring satiety and activating BAT through central GLP1r, while improving glucose homeostasis by mechanisms independent of central GLP1r.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Adamantano/análogos & derivados , Tecido Adiposo Marrom/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/fisiologia , Saciação/efeitos dos fármacos , 1-Desoxinojirimicina/farmacologia , Adamantano/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Glucose/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
12.
ACS Nano ; 13(12): 13759-13774, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31268670

RESUMO

Atherosclerosis is associated with a compromised endothelial barrier, facilitating the accumulation of immune cells and macromolecules in atherosclerotic lesions. In this study, we investigate endothelial barrier integrity and the enhanced permeability and retention (EPR) effect during atherosclerosis progression and therapy in Apoe-/- mice using hyaluronan nanoparticles (HA-NPs). Utilizing ultrastructural and en face plaque imaging, we uncover a significantly decreased junction continuity in the atherosclerotic plaque-covering endothelium compared to the normal vessel wall, indicative of disrupted endothelial barrier. Intriguingly, the plaque advancement had a positive effect on junction stabilization, which correlated with a 3-fold lower accumulation of in vivo administrated HA-NPs in advanced plaques compared to early counterparts. Furthermore, by using super-resolution and correlative light and electron microscopy, we trace nanoparticles in the plaque microenvironment. We find nanoparticle-enriched endothelial junctions, containing 75% of detected HA-NPs, and a high HA-NP accumulation in the endothelium-underlying extracellular matrix, which suggest an endothelial junctional traffic of HA-NPs to the plague. Finally, we probe the EPR effect by HA-NPs in the context of metabolic therapy with a glycolysis inhibitor, 3PO, proposed as a vascular normalizing strategy. The observed trend of attenuated HA-NP uptake in aortas of 3PO-treated mice coincides with the endothelial silencing activity of 3PO, demonstrated in vitro. Interestingly, the therapy also reduced the plaque inflammatory burden, while activating macrophage metabolism. Our findings shed light on natural limitations of nanoparticle accumulation in atherosclerotic plaques and provide mechanistic insight into nanoparticle trafficking across the atherosclerotic endothelium. Furthermore, our data contribute to the rising field of endothelial barrier modulation in atherosclerosis.


Assuntos
Artérias/patologia , Aterosclerose/metabolismo , Aterosclerose/terapia , Progressão da Doença , Endotélio Vascular/patologia , Nanopartículas/química , Animais , Aterosclerose/patologia , Entropia , Európio/química , Camundongos , Probabilidade , Temperatura
13.
J Pathol ; 247(4): 471-480, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30471110

RESUMO

The costimulatory CD40L-CD40 dyad plays a major role in multiple sclerosis (MS). CD40 is highly expressed on MHCII+ B cells, dendritic cells and macrophages in human MS lesions. Here we investigated the role of the CD40 downstream signaling intermediates TNF receptor-associated factor 2 (TRAF2) and TRAF6 in MHCII+ cells in experimental autoimmune encephalomyelitis (EAE). Both MHCII-CD40-Traf2-/- and MHCII-CD40-Traf6-/- mice showed a reduction in clinical signs of EAE and prevented demyelination. However, only MHCII-CD40-Traf6-/- mice displayed a decrease in myeloid and lymphoid cell infiltration into the CNS that was accompanied by reduced levels of TNF-α, IL-6 and IFN-γ. As CD40-TRAF6 interactions predominantly occur in macrophages, we subjected CD40flfl LysMcre mice to EAE. This myeloid-specific deletion of CD40 resulted in a significant reduction in EAE severity, reduced CNS inflammation and demyelination. In conclusion, the CD40-TRAF6 signaling pathway in MHCII+ cells plays a key role in neuroinflammation and demyelination during EAE. Concomitant with the fact that CD40-TRAF6 interactions are predominant in macrophages, depletion of myeloid CD40 also reduces neuroinflammation. CD40-TRAF6 interactions thus represent a promising therapeutic target for MS. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Antígenos CD40/fisiologia , Encefalomielite Autoimune Experimental/imunologia , Macrófagos/imunologia , Transdução de Sinais/imunologia , Fator 6 Associado a Receptor de TNF/fisiologia , Animais , Autoanticorpos/metabolismo , Antígenos CD40/deficiência , Ligante de CD40/fisiologia , Citocinas/metabolismo , Feminino , Imunoglobulina G/imunologia , Camundongos Endogâmicos C57BL , Esclerose Múltipla/imunologia , Glicoproteína Mielina-Oligodendrócito/imunologia , Neurite (Inflamação)/imunologia
14.
Cardiovasc Res ; 114(12): 1617-1628, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29850786

RESUMO

Aims: Cardiac remodelling and heart failure are promoted by persistent sympathetic activity. We recently reported that nuclear receptor Nur77 may protect against sympathetic agonist-induced cardiac remodelling in mice. The sympathetic co-transmitter neuropeptide Y (NPY) is co-released with catecholamines and is a known cardiac modulator and predictor of heart failure mortality. Recently, transcriptome analyses revealed NPY as a putative target of Nur77. In this study, we assess whether Nur77 modulates adverse cardiac remodelling via NPY signalling. Methods and results: Nur77 represses NPY expression in the PC12 adrenal chromaffin cell line. Accordingly, NPY levels are higher in adrenal gland, plasma, and heart from Nur77-KO compared to wild-type mice. Conditioned medium from Nur77-silenced chromaffin cells and serum from Nur77-KO mice induce marked hypertrophy in cultured neonatal rat cardiomyocytes, which is inhibited by the NPY type 1 receptor (NPY1R) antagonist BIBO3304. In cardiomyocytes from Nur77-KO mice, intracellular Ca2+ is increased partially via the NPY1R. This is independent from elevated circulating NPY since cardiomyocyte-specific Nur77-deficient mice (CM-KO) do not have elevated circulating NPY, but do exhibit BIBO3304-sensitive, increased cardiomyocyte intracellular Ca2+. In vivo, this translates to NPY1R antagonism attenuating cardiac calcineurin activity and isoproterenol-induced cardiomyocyte hypertrophy and fibrosis in full-body Nur77-KO mice, but not in CM-KO mice. Conclusions: The cardioprotective action of Nur77 can be ascribed to both inhibition of circulating NPY levels and to cardiomyocyte-specific modulation of NPY-NPY1R signalling. These results reveal the underlying mechanism of Nur77 as a promising modifier gene in heart failure.


Assuntos
Glândulas Suprarrenais/metabolismo , Cardiomegalia/prevenção & controle , Miócitos Cardíacos/metabolismo , Neuropeptídeo Y/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Sistema Nervoso Simpático/metabolismo , Remodelação Ventricular , Animais , Calcineurina/metabolismo , Sinalização do Cálcio , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Feminino , Fibrose , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/patologia , Neuropeptídeo Y/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/deficiência , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Células PC12 , Ratos , Ratos Wistar , Receptores de Neuropeptídeo Y/metabolismo , Sistema Nervoso Simpático/fisiopatologia
15.
Atherosclerosis ; 275: 156-165, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29908485

RESUMO

BACKGROUND AND AIMS: Atherosclerosis is a lipid-driven chronic inflammatory disorder of the arteries, and monocytes and macrophages play a central role in this process. Within the atherosclerotic lesion, macrophages can scavenge modified lipids and become the so-called foam cells. We previously reported that the epigenetic enzyme Kdm6b (also known as Jmjd3) controls the pro-fibrotic transcriptional profile of peritoneal foam cells. Given the importance of these cells in atherosclerosis, we now studied the effect of myeloid Kdm6b on disease progression. METHODS: Bone marrow of myeloid Kdm6b deficient (Kdm6bdel) mice or wild type littermates (Kdm6bwt) was transplanted to lethally irradiated Ldlr-/- mice fed a high fat diet for 9 weeks to induce atherosclerosis. RESULTS: Lesion size was similar in Kdm6bwt and Kdm6bdel transplanted mice. However, lesions of Kdm6bdel mice contained more collagen and were more necrotic. Pathway analysis on peritoneal foam cells showed that the pathway involved in leukocyte chemotaxis was most significantly upregulated. Although macrophage and neutrophil content was similar after 9 weeks of high fat diet feeding, the relative increase in collagen content and necrosis revealed that atherosclerotic lesions in Kdm6bdel mice progress faster. CONCLUSION: Myeloid Kdm6b deficiency results in more advanced atherosclerosis.


Assuntos
Aorta/enzimologia , Doenças da Aorta/enzimologia , Aterosclerose/enzimologia , Células Espumosas/enzimologia , Histona Desmetilases com o Domínio Jumonji/deficiência , Macrófagos Peritoneais/enzimologia , Placa Aterosclerótica , Animais , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Aterosclerose/genética , Aterosclerose/patologia , Células Cultivadas , Quimiotaxia de Leucócito , Colágeno/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Progressão da Doença , Feminino , Fibrose , Células Espumosas/patologia , Histona Desmetilases com o Domínio Jumonji/genética , Macrófagos Peritoneais/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Necrose , Infiltração de Neutrófilos , Receptores de LDL/deficiência , Receptores de LDL/genética , Fatores de Tempo
16.
PLoS One ; 12(7): e0182075, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28753653

RESUMO

During obesity, adipose tissue macrophages (ATM) are increased in concert with local inflammation and insulin resistance. Since the levels of sphingolipid (SLs) in adipose tissue (AT) are altered during obesity we investigated the potential impact of SLs on ATMs. For this, we first analyzed expression of SL metabolizing genes in ATMs isolated from obese mice. A marked induction of sphingosine kinase 1 (Sphk1) expression was observed in obese ATM when compared to lean ATM. This induction was observed in both MGL-ve (M1) and MGL1+ve (M2) macrophages from obese WAT. Next, RAW264.7 cells were exposed to excessive palmitate, resulting in a similar induction of Sphk1. This Sphk1 induction was also observed when cells were treated with chloroquine, a lysosomotropic amine impacting lysosome function. Simultaneous incubation of RAW cells with palmitate and the Sphk1 inhibitor SK1-I promoted cell death, suggesting a protective role of Sphk1 during lipotoxic conditions. Interestingly, a reduction of endoplasmic reticulum (ER) stress related genes was detected in obese ATM and was found to be associated with elevated Sphk1 expression. Altogether, our data suggest that lipid overload in ATM induces Sphk1, which promotes cell viability.


Assuntos
Tecido Adiposo/citologia , Sobrevivência Celular/fisiologia , Macrófagos/metabolismo , Obesidade/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Antígeno CD11b/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cloroquina/farmacologia , Análise por Conglomerados , Dieta Hiperlipídica/efeitos adversos , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Ácido Palmítico/farmacologia , Células RAW 264.7 , Esfingolipídeos/metabolismo
17.
J Pathol ; 243(3): 294-306, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28727149

RESUMO

Marfan syndrome (MFS) is a connective tissue disorder in which aortic rupture is the major cause of death. MFS patients with an aortic diameter below the advised limit for prophylactic surgery (<5 cm) may unexpectedly experience an aortic dissection or rupture, despite yearly monitoring. Hence, there is a clear need for improved prognostic markers to predict such aortic events. We hypothesize that elastin fragments play a causal role in aortic calcification in MFS, and that microcalcification serves as a marker for aortic disease severity. To address this hypothesis, we analysed MFS patient and mouse aortas. MFS patient aortic tissue showed enhanced microcalcification in areas with extensive elastic lamina fragmentation in the media. A causal relationship between medial injury and microcalcification was revealed by studies in vascular smooth muscle cells (SMCs); elastin peptides were shown to increase the activity of the calcification marker alkaline phosphatase (ALP) and reduce the expression of the calcification inhibitor matrix GLA protein in human SMCs. In murine Fbn1C1039G/+ MFS aortic SMCs, Alpl mRNA and activity were upregulated as compared with wild-type SMCs. The elastin peptide-induced ALP activity was prevented by incubation with lactose or a neuraminidase inhibitor, which inhibit the elastin receptor complex, and a mitogen-activated protein kinase kinase-1/2 inhibitor, indicating downstream involvement of extracellular signal-regulated kinase-1/2 (ERK1/2) phosphorylation. Histological analyses in MFS mice revealed macrocalcification in the aortic root, whereas the ascending aorta contained microcalcification, as identified with the near-infrared fluorescent bisphosphonate probe OsteoSense-800. Significantly, microcalcification correlated strongly with aortic diameter, distensibility, elastin breaks, and phosphorylated ERK1/2. In conclusion, microcalcification co-localizes with aortic elastin degradation in MFS aortas of humans and mice, where elastin-derived peptides induce a calcification process in SMCs via the elastin receptor complex and ERK1/2 activation. We propose microcalcification as a novel imaging marker to monitor local elastin degradation and thus predict aortic events in MFS patients. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Elastina/metabolismo , Síndrome de Marfan/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Aorta/metabolismo , Aneurisma Aórtico/metabolismo , Aneurisma Aórtico/patologia , Calcinose/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Síndrome de Marfan/patologia , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia
18.
ACS Chem Biol ; 12(7): 1830-1841, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28485919

RESUMO

Glucocerebrosidase (GBA) is a lysosomal ß-glucosidase that degrades glucosylceramide. Its deficiency results in Gaucher disease (GD). We examined the effects of active site occupancy of GBA on its structural stability. For this, we made use of cyclophellitol-derived activity-based probes (ABPs) that bind irreversibly to the catalytic nucleophile (E340), and for comparison, we used the potent reversible inhibitor isofagomine. We demonstrate that cyclophellitol ABPs improve the stability of GBA in vitro, as revealed by thermodynamic measurements (Tm increase by 21 °C), and introduce resistance to tryptic digestion. The stabilizing effect of cell-permeable cyclophellitol ABPs is also observed in intact cultured cells containing wild-type GBA, N370S GBA (labile in lysosomes), and L444P GBA (exhibits impaired ER folding): all show marked increases in lysosomal forms of GBA molecules upon exposure to ABPs. The same stabilization effect is observed for endogenous GBA in the liver of wild-type mice injected with cyclophellitol ABPs. Stabilization effects similar to those observed with ABPs were also noted at high concentrations of the reversible inhibitor isofagomine. In conclusion, we provide evidence that the increase in cellular levels of GBA by ABPs and by the reversible inhibitor is in part caused by their ability to stabilize GBA folding, which increases the resistance of GBA against breakdown by lysosomal proteases. These effects are more pronounced in the case of the amphiphilic ABPs, presumably due to their high lipophilic potential, which may promote further structural compactness of GBA through hydrophobic interactions. Our study provides further rationale for the design of chaperones for GBA to ameliorate Gaucher disease.


Assuntos
Domínio Catalítico/fisiologia , Estabilidade Enzimática/fisiologia , Glucosilceramidase/química , Glucosilceramidase/metabolismo , Imino Piranoses/metabolismo , Animais , Sítios de Ligação , Estabilidade Enzimática/efeitos dos fármacos , Imino Piranoses/química , Imino Piranoses/farmacologia , Fígado/efeitos dos fármacos , Fígado/enzimologia , Camundongos , Estrutura Molecular , Temperatura
19.
PLoS One ; 12(2): e0170268, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28207759

RESUMO

Deficiency of glucocerebrosidase (GBA) causes Gaucher disease (GD). In the common non-neuronopathic GD type I variant, glucosylceramide accumulates primarily in the lysosomes of visceral macrophages. Supplementing storage cells with lacking enzyme is accomplished via chronic intravenous administration of recombinant GBA containing mannose-terminated N-linked glycans, mediating the selective uptake by macrophages expressing mannose-binding lectin(s). Two recombinant GBA preparations with distinct N-linked glycans are registered in Europe for treatment of type I GD: imiglucerase (Genzyme), contains predominantly Man(3) glycans, and velaglucerase (Shire PLC) Man(9) glycans. Activity-based probes (ABPs) enable fluorescent labeling of recombinant GBA preparations through their covalent attachment to the catalytic nucleophile E340 of GBA. We comparatively studied binding and uptake of ABP-labeled imiglucerase and velaglucerase in isolated dendritic cells, cultured human macrophages and living mice, through simultaneous detection of different GBAs by paired measurements. Uptake of ABP-labeled rGBAs by dendritic cells was comparable, as well as the bio-distribution following equimolar intravenous administration to mice. ABP-labeled rGBAs were recovered largely in liver, white-blood cells, bone marrow and spleen. Lungs, brain and skin, affected tissues in severe GD types II and III, were only poorly supplemented. Small, but significant differences were noted in binding and uptake of rGBAs in cultured human macrophages, in the absence and presence of mannan. Mannan-competed binding and uptake were largest for velaglucerase, when determined with single enzymes or as equimolar mixtures of both enzymes. Vice versa, imiglucerase showed more prominent binding and uptake not competed by mannan. Uptake of recombinant GBAs by cultured macrophages seems to involve multiple receptors, including several mannose-binding lectins. Differences among cells from different donors (n = 12) were noted, but the same trends were always observed. Our study suggests that further insight in targeting and efficacy of enzyme therapy of individual Gaucher patients could be obtained by the use of recombinant GBA, trace-labeled with an ABP, preferably equipped with an infrared fluorophore or other reporter tag suitable for in vivo imaging.


Assuntos
Células Dendríticas/enzimologia , Corantes Fluorescentes/química , Glucosilceramidase/metabolismo , Macrófagos/enzimologia , Monócitos/enzimologia , Animais , Benzofuranos/química , Células Cultivadas , Imunofluorescência , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polissacarídeos/metabolismo
20.
Chembiochem ; 18(4): 402-412, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28000364

RESUMO

Galactosylceramidase (GALC) is the lysosomal ß-galactosidase responsible for the hydrolysis of galactosylceramide. Inherited deficiency in GALC causes Krabbe disease, a devastating neurological disorder characterized by accumulation of galactosylceramide and its deacylated counterpart, the toxic sphingoid base galactosylsphingosine (psychosine). We report the design and application of a fluorescently tagged activity-based probe (ABP) for the sensitive and specific labeling of active GALC molecules from various species. The probe consists of a ß-galactopyranose-configured cyclophellitol-epoxide core, conferring specificity for GALC, equipped with a BODIPY fluorophore at C6 that allows visualization of active enzyme in cells and tissues. Detection of residual GALC in patient fibroblasts holds great promise for laboratory diagnosis of Krabbe disease. We further describe a procedure for in situ imaging of active GALC in murine brain by intra-cerebroventricular infusion of the ABP. In conclusion, this GALC-specific ABP should find broad applications in diagnosis, drug development, and evaluation of therapy for Krabbe disease.


Assuntos
Galactosilceramidase/genética , Galactosilceramidase/metabolismo , Leucodistrofia de Células Globoides/enzimologia , Sondas Moleculares , Deficiências Nutricionais/enzimologia , Deficiências Nutricionais/genética , Galactosilceramidase/antagonistas & inibidores , Leucodistrofia de Células Globoides/diagnóstico , Leucodistrofia de Células Globoides/genética , Doenças por Armazenamento dos Lisossomos/enzimologia , Doenças por Armazenamento dos Lisossomos/genética , Estrutura Molecular , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA